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Angular momentum effects and barrier modification in sub-barrier fusion reactions using the
proximity potential in the Wong formula
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Using the capture cross-section data from 48Ca + 238U, 48Ca + 244Pu, and 48Ca + 248Cm reactions in the
superheavy mass region, and fusion-evaporation cross sections from 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni +
100Mo reactions known for fusion hindrance phenomenon in coupled-channels calculations, the Wong formula
is assessed for its angular momentum and barrier-modification effects at sub-barrier energies. The simple, � = 0
barrier-based Wong formula is shown to ignore the modifications of the barrier due to its inbuilt � dependence
via � summation, which is found to be adequate enough to explain the capture cross sections for all the three
above-mentioned 48Ca-based reactions forming superheavy systems. For the capture (equivalently, quasifission)
reactions, the complete �-summed Wong formula is shown to be the same as the dynamical cluster-decay model
expression, of one of us (R.K.G.) and collaborators, with the condition of fragment preformation probability
P �

0 = 1 for all the angular momentum � values. In the case of fusion-evaporation cross sections, however, a further
modification of barriers is required for below-barrier energies, affected in terms of either the barrier “lowering” or
barrier “narrowing” via the curvature constant. Calculations are made for use of nuclear proximity potential, with
effects of multipole deformations included up to hexadecapole, and orientation degrees of freedom integrated for
both the coplanar and noncoplanar configurations.
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I. INTRODUCTION

The Wong formula [1] has been used quite extensively
for a variety of fusion reactions, from a dominantly fusion-
evaporation cross section [2–4] to fission cross section [5,6]
and the capture cross section [7]. The unexpected behavior
of fusion cross sections, in particular the fusion-evaporation
cross sections at energies far below the Coulomb barrier,
has challenged the theoretical models to explain the so-
called fusion hindrance phenomenon in coupled-channels
calculations (ccc) [8]. Misicu and Greiner [7] were the first
to have shown that the M3Y potential, with an additional
repulsive core, describes the capture cross sections, for at
least the 48Ca + 238U reaction, using equally well either the
Wong formula or the ccc with deformations included up to
hexadecapole (β2 > 0, β4 > 0) and the orientation degree of
freedom integrated over all allowed values in the same plane.
The same prescription, for both the Wong formula and ccc,
however, failed for other two reactions, 48Ca + 244Pu and
48Ca + 248Cm, in the superheavy mass region. In a further
application of the M3Y + repulsive-core potential in ccc,
Misicu and Esbensen [4] succeeded in describing the three
well-known 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni + 100Mo
reactions whose measured fusion-evaporation cross sections
show clear signatures of hindrance phenomenon in their true
ccc. The repulsive core is shown [4] to modify the shape of
the inner part of the potential in terms of a thicker barrier and
shallower pocket. Thus, the only acceptable explanation for
hindrance phenomenon in ccc so far is the “modified shape
of potential inside the barrier” at sub-barrier energies, also
supported by the dynamical cluster-decay model (DCM) of
preformed clusters [9,10] in a compound system where the
property of “lowering of barriers” at sub-barrier energies arises
in a simple way [11] in its fitting of the neck-length parameter.

In this article, we re-examine Wong formula for different
types of dominant cross sections for fusion reactions, in
particular the approximations introduced by Wong to obtain
a simplified form of expression for cross sections in terms of
s-wave (� = 0) barrier characteristics. We find that, at least for
48Ca-based reactions forming suprheavy systems, a modified
interaction potential (such as through an additional repulsive
core in M3Y [7] or through the neck-length parameter in
the DCM [9–11]) is required simply because of Wong’s
approximations for the centrifugal potential. In other words,
Wong’s specific �-summation procedure, leading to the use of
only the � = 0 barrier, seems to exclude the modifications
entering the potential due to its � dependence. In fact,
ignoring Wong’s specific �-summation procedure leads us to
an alternative model, the DCM with its fragment preformation
factor P �

0 = 1 (see below) where the � summation is carried out
explicitly. However, the same method of explicit � summation
in the Wong formula, when applied to reactions known
for hindrance effects in ccc (58Ni + 58Ni, 64Ni + 64Ni, and
64Ni + 100Mo), still require further “barrier modifications” at
sub-barrier energies. Note that the dominant cross sections
involved in these later reactions are the fusion-evaporation
cross sections where the condition of the incoming nuclei
keeping their identity (satisfied for capture or quasifission
reactions) does not apply. Also, in the DCM the condition of
P �

0 = 1 is satisfied only for capture (equivalently, quasifission)
data [9], which means to suggest that the “barrier modification”
for fusion-evaporation cross sections in case of Wong formula
is required for compensating the effects of P �

0 �= 1 in the DCM
(see below).

The article is organized as follows. Section II gives the
details of the Wong formula, and its possible extention to
complete �-summation effects. The relation between the Wong
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formula and the DCM is also worked out in this section. The
nuclear proximity potential due to Blocki et al. [12] is used,
with effects of deformations included (up to β4) and orientation
degrees of freedom integrated for both the coplanar [13] and
noncoplanar [14] configurations of nuclei. The calculations
are presented in Sec. III, and our discussion of results and
conclusions are given in Sec. IV.

II. THE THEORY

A. Wong formula and its extension to include explicit
summation of angular momentum effects

1. Wong formula

According to Wong [1], the fusion cross section, in terms
of angular-momentum � partial waves, for two deformed
and oriented nuclei (with orientation angles θi), lying in two
different planes (with azimuthal angle � between the planes),
and colliding with center-of-mass (c.m.) energy Ec.m., is

σ (Ec.m., θi , �) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m., θi , �), (1)

with k =
√

2µEc.m.

h̄2 and µ as the reduced mass. Here, P� is
the transmission coefficient for each � that describes the
penetration of barrier V�(R,Ec.m., θi , �) and �max is the
maximum angular momentum, defined later. Using the Hill-
Wheeler [15] approximation of assimilating the shape of
the interaction barrier V�(R,Ec.m., θi , �) through an inverted
harmonic oscillator [V�(R,Ec.m., θi , �) = V �

B(Ec.m., θi , �) −
1
2µω2(R − R�

B)2], the penetrability P�, in terms of its barrier
height V �

B(Ec.m., θi , �) and curvature h̄ω�(Ec.m., θi , �), is

P� =
[

1 + exp

(
2π (V �

B(Ec.m., θi , �) − Ec.m.)

h̄ω�(Ec.m., θi , �)

)]−1

, (2)

with h̄ω�(Ec.m., θi , �), evaluated at the barrier position
R = R�

B corresponding to the maximum barrier height
V �

B(Ec.m., θi , �), given as

h̄ω�(Ec.m., θi , �) = h̄
[|d2V�(R)/dR2|R=R�

B

/
µ

]1/2
, (3)

and, the R�
B obtained from the condition

|dV�(R)/dR|R=R�
B

= 0.

Instead of solving Eq. (1) explicitly, which requires the
complete �-dependent potentials V�(R,Ec.m., θi , �), Wong [1]
carried out the � summation in Eq. (1) approximately under
the conditions:

(i) h̄ω� ≈ h̄ω0, and
(ii) V �

B ≈ V 0
B + h̄2�(�+1)

2µR0
B

2 ,

which means to assume R�
B ≈ R0

B also. In other words, both
V �

B and h̄ω� are obtained in terms of its � = 0 values, with
V 0

B given as the sum of nuclear proximity potential VP and
Coulomb potential VC at R = R0

B ,

V 0
B = VP (R = R0

B,Ai, βλi, Ec.m., θi , �)

+VC(R = R0
B, Zi, βλi, Ec.m., θi , �), (4)

where βλi , λ = 2, 3, 4 are the static quadrupole, octupole, and
hexadecapole deformations.

Using the above two approximations, and replacing the �

summation in Eq. (1) by an integral, gives on integration the
Wong formula [1]

σ (Ec.m., θi , �)

= R0
B

2
h̄ω0

2Ec.m.

ln

[
1 + exp

(
2π

h̄ω0

(
Ec.m. − V 0

B

))]
, (5)

which on integration over the orientation angles θi and
azimuthal angle � gives the fusion cross section

σ (Ec.m.) =
∫ π/2

θi ,�=0
σ (Ec.m., θi , �)sin θ1dθ1sin θ2dθ2d�. (6)

Note that noncoplanar configurations (� �= 0) are included
here for the first time. Also, the Ec.m. dependence (equivalently,
temperature T dependence) of interaction potential V�(R) is
introduced in the Wong formula for the first time (see below),
related to the incoming center-of-mass energy Ec.m. or the
compound nucleus excitation energy E∗ as

E∗ = Ec.m. + Qin = 1

a
AT 2 − T (T in MeV), (7)

with a = 9 or 10, respectively, for intermediate mass or
superheavy systems. Qin is the entrance channel Q value. It
is important to note that the characteristics of only the � = 0
barrier play role in Wong formula (5).

2. Extension of the Wong formula to include the
� summation explicitly

For an explicit summation over � in Eq. (1), the �-dependent
interaction potential V�(R), entering Eq. (2) via V �

B , R�
B ,

and h̄ω� (also calculated in Hill-Wheeler method of inverted
harmonic oscillator for each � value), is given by

V�(R) = VP (R,Ai, βλi, T , θi,�)

+VC(R,Zi, βλi, T , θi,�) + h̄2�(� + 1)

2µR2
, (8)

with details of Coloumb interaction and nuclear proximity
potential for deformed, oriented nuclei in the same plane
(coplanar, � = 0) as well as in different planes (noncoplanar,
� �= 0), given in Ref. [16] and explicity for � = 0 and � �= 0,
respectively, in Ref. [13] and [14]. The � summation in
Eq. (1) is then carried out for the �max determined empirically
for a best fit to measured cross section. This procedure of
explicit � summation works very well for capture (equivalently,
quasifission) reactions, such as 48Ca + 238U, 244Pu, and
248Cm, forming the superheavy systems.

The temperature effects in both the VC and VP are
introduced via the radius vectors of two nuclei, as follows:

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
(9)
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FIG. 1. Variation of the θi-integrated (� =
0) cross section summed up to the angular
momentum � as a function of � itself for
different (a) 
V

emp
B values, and (b) 
h̄ωemp,

for the 64Ni + 100Mo reaction at Ec.m. =
129.2 MeV, showing the minimum value
of 
V

emp
B (or 
h̄ωemp) (solid line) re-

quired to fit the data at an �max value
(a saturation condition is reached for the
best fitted 
V

emp
B or 
h̄ωemp). Panel (a)

also shows the failure of the 
V
emp
B = 0

value (dashed line) to reach the experimental
cross section, and its uniqueness by its failure
again at a slightly above (dot-dashed line) and
slightly below (dotted line) the exact 
V

emp
B

value fitting the data.

with the temperature dependence of R0i , as in Ref. [17],

R0i(T ) = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2).

(10)

Here the orientation angle θi is the angle between the
nuclear symmetry axis and the collision Z axis, measured
in the counterclockwise direction, and angle αi is the angle
between the symmetry axis and the radius vector of the
colliding nucleus, measured in the clockwise direction from
the symmetry axis (see, e.g., Fig. 1 of Ref. [13]).

However, for reactions such as 58Ni + 58Ni, 64Ni + 64Ni,
or 64Ni + 100Mo, where the fusion-evaporation cross section
σevr is measured, the above procedure of explicit � summation
fails to reproduce the data at sub-barrier energies and possibly
demands modification of the barrier, which we carry out here
empirically by either (i) keeping the curvature h̄ω� same and
modifying the barrier height V �

B , obtained from Eq. (8), by

V

emp
B , i.e., define

V �
B(modified) = V �

B + 
V
emp
B

or (ii) keep the barrier height V �
B same and modify the curvature

h̄ω� as

h̄ω�(modified) = h̄ω� + 
h̄ωemp.

This is illustrated in Fig. 1, first for the failure of �-summation
method (dashed line in Fig. 1(a) for 
V

emp
B = 0), and then

for both of cases of modifying V �
B or h̄ω�, where 
V

emp
B (or


h̄ω
emp
� ) is determined empirically to be minimum for the best

fit to σevr at � = �max.
Alternatively, one could tend to think that the modification

of the barrier could also be carried out at the level of � = 0
barrier-based Wong formula (5) itself. Of course, such a fitting
procedure is possible but, as we shall show later, it leads to a
completely undesirable result (see below, Fig. 9).

B. Relation between the Wong formula and the dynamical
cluster-decay model

The DCM defines for each process the compound nucleus
decay, or fragment formation, cross section, in terms of �

partial waves, as [9–11]

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P �
0 P� (11)

with the additional P �
0 as the fragment preformation proba-

bility, referring to η[= (A1 − A2)/(A1 + A2)] motion. For the
capture (or quasifission) process, because the two incoming
nuclei do not loose their identity, P �

0 = 1 in the DCM
[9], which reduces Eq. (11) to Eq. (1) of Wong. Thus,
whereas the capture process is treated on similar footings (see
below) in both the Wong model and the DCM (P �

0 = 1), the
fusion-evaporation cross sections in Wong need the barrier
modification and in the DCM the preformation factor P �

0 > 0.
A point of difference in the two models (Wong and the

DCM) is that the penetrability P� in the Wong formula is
calculated in the Hill-Wheeler [15] approximation of inverted
harmonic oscillator for the interaction potential V�(R) of the
incoming channel, whereas the same in the DCM is the
WKB integral, whose first turning point Ra = R1(α1, T ) +
R2(α2, T ) + 
R(T ) is defined through a neck-length parame-
ter 
R for the best fit to, say, the data on the fusion-evaporation
cross section, which also contains the “barrier lowering”
effects in it for each decay channel [11].

III. CALCULATIONS AND RESULTS

First, we assess Wong’s approximations with a view to look
for barrier modifications due to its �, θ , and � dependences.
Figure 2 shows the interaction potential for 48Ca + 238U
reaction at Ec.m. = 193.57 MeV, using an illustrative θ = 90◦
and a few � values (48Ca being a spherical nucleus; only the
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FIG. 2. Interaction potential for 48Ca + 238U system at Ec.m. =
193.57 MeV (equivalently, T = 1.091 MeV), taking θ = 90◦ and
� = 0, 15, and 30 h̄.

orientation of deformed nucleus in the same plane comes into
play). It is clear from the figure that as � value increases the
barrier characteristics (the barrier height, its position, as well
as the oscillator frequency) change appreciably, i.e., barrier
thickness increases and pocket gets shallower. This result
is further evident from Table I that all barrier properties
change due to the � value, and this is more so for h̄ω� and
V �

B . Hence, Wong’s approximation of using only the � = 0
quantities neglect the in-built property of Eq. (1) to include
the barrier-modification property through an explicit use of
�-dependent barriers. Similarly, the orientation θ degree of
freedom modifies the barrier strongly, as is illustrated in
Fig. 3 for the � = 0 case of a below-barrier center-of-mass
energy. Thus, it is also important to consider the integration
over θ coordinate(s). Furthermore, Fig. 4 illustrates the case
of noncoplanar nuclei in 64Ni + 64Ni reactions where the
θi-integrated (� = 0◦) cross section is compared with �-
integrated cross section, together with the experimental data
[18]. The role of � is clearly shown to improve the comparison
with experiments at near and below-barrier energies, thereby
stressing the importance of integration over the � coordinate
to include also the noncoplanar configurations.

TABLE I. Calculated oscillator frequen-
cies h̄ω�, barrier heights V �

B , and its position
R�

B for different � values for the interaction
potential illustrated in Fig. 2.

� (h̄) h̄ω� (MeV) V �
B (MeV) R�

B (fm)

0 4.4104 194.333 12.715
15 4.4295 195.112 12.708
30 4.4780 197.355 12.6895

FIG. 3. Interaction potentials for the 48Ca + 238U system at
various θ values of 238U for � = 0 case of Ec.m. = 181.92 MeV.

Next, as a first application of the explicit �-summed
Wong formula, we consider the capture cross sections for
the reactions 48Ca + 238U, 48Ca + 244Pu, and 48Ca + 248Cm.
Figure 5 shows a comparison of the experimental data [19] for
capture cross sections with explicit �-summed Wong formula

FIG. 4. Fusion-evaporation cross section for the 64Ni + 64Ni
system, using the simple Wong formula (5), integrated over θi (� = 0)
alone and integrated over �, together with the experimental data [18].
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(a) (b) (c)

FIG. 5. The capture cross sections for the systems 48Ca + 238U, 244Pu, and 248Cm calculated by using the explicit �-summed Wong formula
(solid lines) compared with the simple � = 0 barrier-based Wong formula (dashed lines) and the experimental data [19] (solid circles with error
bars).

(solid line) and the � = 0 barrier based Wong formula (5)
(dotted line), both integrated over the θ coordinate (because
48Ca is a spherical nucleus, these reactions are the cases
of � = 0◦, coplanar nuclei). Apparently, the simple � = 0
barrier-based Wong formula does not fit the data, but the
explicit �-summed Wong formula gives a nice fitting of data
with �max(Ec.m.) deduced as shown in Fig. 6. An interesting
property of the variation of �max with Ec.m. is its near saturation
at maximum Ec.m. and tendency toward a zero value at energies
far below the barrier energies, with its average value matching
the global � value predicted on finite-range liquid-drop model
(FRLDM) [20].

The complete �-summed Wong formula, however, also fails
for the lighter systems 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni +
100Mo at below-barrier energies, as shown in Fig. 7 (dashed
line, θi-integrated, for 
V

emp
B = 0). The simple � = 0 barrier-

based Wong is already shown in Fig. 4 not to fit the data for
both the coplanar (� = 0◦) and noncoplanar (� �= 0◦) cases.
As already noted above, in these reactions, the measured data
are the fusion-evaporation cross sections and, in the language
of the DCM, we are considering here P �

0 = 1 more suitable for
capture cross sections. To include such effects, we modify here
all the �-dependent barriers empirically via a barrier-lowering
constant 
V

emp
B or barrier curvature constant 
h̄ωemp, as

(a) (b) (c)

FIG. 6. Variation of deduced maximum angular momentum �max with Ec.m. (solid circles with calculated error bars) for the systems
considered in Fig. 5. The solid lines are only a guide for the eye.
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(a) (b) (c)

FIG. 7. The experimental data on the fusion-evaporation cross section (solid circles) compared with complete �-summed Wong, integrated
over θi coordinates (� = 0◦), with 
V

emp
B = 0 (dashed line), and best fitted 
V

emp
B (solid line), for the systems (a) 58Ni + 58Ni [21],

(b) 64Ni + 64Ni [18], and (c) 64Ni + 100Mo [8].

already explained in Fig. 1. In the following, we do this for the
� = 0◦ case and for 
V

emp
B . A similar fitting of data can also

be carried out for 
h̄ωemp and for the � �= 0◦ case.
Figure 8 shows the resultant 
V

emp
B for the best fit to data in

Fig. 7 (solid line), with �max determined as in Fig. 1. Evidently,
no modification of the barrier is needed (
V

emp
B = 0) at the

above-barrier energies, but then, as Ec.m. decreases, 
V
emp
B as

a function of Ec.m. falls off steeply and then increases again
depending on how good or how bad the fit is to data in Fig. 7
for the case of 
V

emp
B = 0 (dashed line). In other words, no

particular significance can be attached to the nature of curves
in Fig. 8, i.e., its double valuedness, etc., except that it gives the
required modification of barrier to fit the fusion-evaporation
data.

Finally, we have checked if the process of barrier modifi-
cation could be carrier out by using the � = 0 barrier-based

Wong formula (5) itself. The result of this calculation is
illustrated in Fig. 9 for both the 48Ca- and Ni-based reactions.
We notice in this figure that, for a fit of the cross-section
data similar to that for the �-summed Wong formula (solid
lines in Figs. 5 and 7), the barrier-modification parameter

V

emp
B is positive for the 48Ca + 238U reaction (same for

the other two 48Ca-based reactions), which means that the
barrier has to be “raised,” and for the 64Ni + 64Ni (and other
two Ni-based reactions) it is negative (“lowering” the barrier)
for below-barrier energies but again positive (“raising” the
barrier), and ever increasing, for above-barrier energies. Note
that in case of the �-summed Wong formula, 
V

emp
B = 0 for all

above-barrier energies. Thus, for the � = 0 barrier-based Wong
formula (5), we find that at sub-barrier energies (for Ni-based
reactions) the procedure of modifying the � = 0 barrier is
perhaps not very different from that for the �-summed case,

(a) (b) (c)

FIG. 8. The variation of 
V
emp
B , fitting the data in Fig. 7, with center-of-mass energy Ec.m..
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(a)

(b)

FIG. 9. Same as for Fig. 8 but for the � = 0 barrier-based Wong
formula (5) fitting the data in Fig. 5(a) and 7(b) as well as for the
�-summed Wong formula.

but at above-barrier energies (for both the 48Ca- and Ni-based
reactions), instead of a zero modification of the barrier for the
�-summed Wong formula, it gives a completely undesirable
result of requiring the “raising” of barrier to fit the data on
both the capture and fusion-evaporation cross sections.

IV. CONCLUSIONS

The Wong formula is re-evaluated for its angular-
momentum and barrier-modification effects at sub-barrier
energies. This is done for use of nuclear proximity potential,

and with multipole deformations included up to hexadecapole
(β4) and orientation degrees of freedom integrated for both
the coplanar (� = 0◦) and noncoplanar (� �= 0◦) nuclei.
Calculations are made for the measured capture cross sections
in 48Ca + 238U, 48Ca + 244Pu, and 48Ca + 248Cm reactions
forming superheavy nuclei, and the fusion-evaporation cross
sections in medium mass 58Ni + 58Ni, 64Ni + 64Ni, and
64Ni + 100Mo reactions where fusion hindrance phenomenon
in coupled-channels calculations is known to exist.

The simple Wong formula, based on the � = 0 barrier,
is first shown to ignore the modifications of the barriers
entering the calculations due to their � dependences. The
�-dependent barriers introduced via � summation are found
to be sufficient to explain the capture cross sections for all
the three above-mentiond 48Ca-based reactions. The complete
�-summed Wong formula is in fact the same as the DCM
model expression with the condition of fragment preforma-
tion probability P �

0 = 1 for all angular-momentum � values,
applicable to capture (equivalently, quasifission) reactions
where the incoming nuclei keep their identity. However, for
the 58,64Ni-based fusion-evaporation cross sections mentioned
above, in agreement with Misicu and Esbensen [4] and the
DCM calculations of Gupta and collaborators [11], a further
modification of barriers is found essential for incident energies
below the barrier, which is shown possible to be included in
terms of either the “lowering of barrier” or “increasing of
barrier curvature parameter.” Apparently, the depth of the
potential pocket plays no role, at least in the context of
Wong formula. Similarly, with barrier-modification effects
introduced in the simple � = 0 barrier-based Wong formula,
it does not give realistic results at both the above- and
below-barrier energies.
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