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We discuss the use of reduced fusion cross sections in the derivation of fusion barrier distributions. We show
that the elimination of static effects associated with system sizes and optical potentials obtained by the recently
introduced fusion functions can be extended to barrier distributions. This can be a useful tool for systematic
studies of breakup coupling effects in fusion processes.
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I. INTRODUCTION

Nuclear reactions induced by weakly bound projectiles
have attracted considerable interest for the last two decades
[1–3]. These reactions are influenced by two factors. The
first is that the potential barrier for weakly bound systems
tends to be lower and somewhat broader. The second factor
is the strong coupling with the breakup channel. While the
lower barrier leads to larger fusion cross sections, the role of
breakup coupling is more complicated. The breakup process
gives rise to different kinds of fusion. Besides the usual
complete fusion (CF), where the whole projectile merges
with the target to form the compound nucleus, the breakup
process may take place, populating different reaction channels:
(i) incomplete fusion (ICF), when some—but not all—
projectile fragments are absorbed by the target while at least
one escapes the interaction region, (ii) noncapture breakup
(NCBU), when none of the fragments is absorbed by the
target, and (iii) sequential complete fusion, when all fragments
are absorbed sequentially. From the experimental point of
view, sequential complete fusion cannot be distinguished from
the usual complete fusion. Furthermore, most experiments
can only measure the total fusion (TF) cross section, which
corresponds to the sum σCF + σICF.

To understand the reaction mechanisms in collisions of
weakly bound systems, several experiments have been per-
formed and various theoretical models have been developed
[1]. In addition to the analysis of fusion excitation functions,
useful information can be extracted from fusion barrier
distributions (FBDs). They have been introduced by Rowley,
Satchler, and Stelson [4,5] and are defined as

D(E) = d2

dE2
[EσF (E)] . (1)

Above, E is the collision energy in the c.m. frame and σF (E) is
the fusion cross section. Although FBDs are hard to measure in

weakly bound systems, there are results available in collisions
of a few stable weakly bound projectiles with heavy targets.

To perform systematic studies of the effects of the breakup
channel on fusion, it is necessary to compare the cross
sections for weakly bound systems with those for tightly
bound ones, as well as the results for different weakly bound
systems (stable and/or radioactive) among themselves. For
this purpose, it is necessary to isolate the effects of breakup
coupling, eliminating the influence of other factors such as
system size and the height and shape of the potential barrier.
This can be achieved through an appropriate reduction of
the fusion data. Although several reduction methods have
been proposed [6–11], in most cases the influence of the
breakup channel is entangled with some influence of other
factors. Recently, we introduced a new reduction method that
eliminates all static effects of weak binding and also the effects
of coupling to bound channels [12]. In this method, the fusion
cross section is transformed into a dimensionless cross section,
which is called the fusion function. The method was then
employed to analyze CF and TF data for several heavy [13]
and light [14] systems. More recently, this method was also
extended to total reaction cross sections [15].

In the present work, we extend the reduction method of
Ref. [12] to fusion barrier distributions. In Sec. II, we review
the basic concepts of fusion functions. In Sec. III, we define
fusion function barrier distributions and derive an analytical
expression for a universal function to which they should be
compared. In Sec. IV, we discuss the numerical evaluation of
these distributions and give as examples the fusion function
barrier distributions for some strongly bound systems. In
Sec. V, we use these concepts to study the fusion of weakly
bound systems. Finally, in Sec. VI, we present our conclusions.

II. FUSION FUNCTIONS

In recent papers, Canto et al. [12,13] proposed a new
method to reduce fusion data. In this method, the collision
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energy in the c.m. frame, E, and the fusion cross section, σF ,
are respectively transformed into the dimensionless quantities
x and F (x), defined as

x = E − VB

h̄ω
, F (x) = 2E

h̄ωR2
B

σF . (2)

Above, RB , VB , and h̄ω stand for the barrier radius, height,
and curvature parameters, which should be obtained from
a realistic model for the bare projectile-target interaction.
We point out that the reduction method of Eq. (2) is model
dependent. To avoid problems arising from unreasonable
choices of the bare potential, one should adopt theoretical
models that can be used over a wide mass range and take
into account the static effects of low breakup thresholds in
collisions of weakly bound nuclei. The natural candidates
are double-folding models based on realistic nuclear densities
and standard nucleon-nucleon interactions. We use here the
Sao Paulo potential (SPP) [16–18], which has these features.
This potential has no free parameter and has been used
to study elastic scattering and other reaction mechanisms
in collisions of several tightly and weakly bound systems
[18–21], including fusion barrier distributions of weakly
bound systems [22]. Barrier parameters obtained from the SPP
for a large number of systems are given in Table 2 of Ref. [12].
In the same reference, one can also find a detailed description
of the SPP and a study of the sensitivity of fusion functions to
changes in the parameters of the bare potential.

The transformation of Eq. (2) is inspired by Wong’s
approximation [23] for the fusion cross section. In Wong’s
approximation, the barrier at the s wave is approximated by
the parabola,

V (r) ∼ VB + 1
2 µω2 (r − RB)2 , (3)

where µ is the projectile-target reduced mass. Using the
Hill-Wheeler expression for the tunneling probabilities [24]
and approximating the partial-wave summation by an integral,
Wong got the analytical expression

σW
F (x) = R2

B

h̄ω

2E
ln

[
1 + exp

(
2π (E − VB)

h̄ω

)]
. (4)

If we now insert this approximation into Eq. (2), we get the
fusion function

F0(x) = ln[1 + exp(2πx)]. (5)

The fusion function of Eq. (5) has the important property of
being independent of the system. For this reason, it is called
the universal fusion function (UFF) in Ref. [12].

When fusion data are available, one can evaluate experi-
mental fusion functions Fexp(x) using the experimental cross
sections in Eq. (2). In situations where Wong’s approximation
is valid and the fusion cross section is not influenced by
channel coupling, Fexp(x) � F0(x). However, these conditions
are hardly satisfied. In Refs. [12,13], it is pointed out that
Wong’s approximation breaks down in collisions of light
systems at subbarrier energies and that the fusion cross section
is frequently affected by channel coupling. The present work
is not concerned with very light systems or with energies well
below the barrier, where Wong’s approximation breaks down.
Thus, the differences between Fexp and F0 are mainly due

to couplings with bound channels and breakup. To study the
influence of the breakup channel on fusion, it is then necessary
to reduce the influence of bound channels on the data. For this
purpose, we renormalize the experimental fusion function as

F̄exp(x) = Fexp

R(x)
, R(x) = σ CC

F

σW
F

. (6)

Above, σ CC
F is the fusion cross section obtained from a

coupled-channel (CC) calculation including all relevant bound
channels, and σW

F is the one-dimensional barrier penetration
cross section (with all couplings switched off) within Wong’s
approximation. Since R(x) is an estimate of the influence
of couplings to bound channels on the fusion cross section,
dividing the experimental fusion function by this factor
minimizes this influence. The use of Wong’s cross section
instead of the one obtained from the direct solution of the
single-channel Schrödinger equation has the advantage of
eliminating deviations from the universal function that are
not related to channel-coupling effects. However, we point
out that this difference is not relevant for the system and
energy range considered in the present work. Renormalized
fusion functions were shown to be a very useful tool for
studying the influence of the breakup channel in the fusion
of heavy [12,13] and light [14] systems. It should be remarked
that the renormalization factor R(x) is also model dependent.
The effects of the breakup channel on the fusion cross sections
will only be correctly indicated if all couplings with bound
channels are accurately accounted for. If a strongly coupled
bound channel is left out or its coupling strength is wrong,
the influence of this channel will be entangled with that of
the breakup channel and the comparison with the data may
be misleading. However, the same difficulties are encountered
in the usual analysis, in which the data are directly compared
with predictions of CC calculations including bound channels.
The advantage of the procedure of Eq. (6) is that it allows
comparisons of fusion data for different systems in a single
plot, which is not possible with the conventional approach.
The coupled-channel calculations of the present work were
performed with the code FRESCO [25].

III. FUSION FUNCTION BARRIER DISTRIBUTIONS

The same procedures used in the construction of fusion
functions can be extended to fusion barrier distributions. We
define the fusion function barrier distribution (FFBD) as

D(x) = 1

2π

[
d2F (x)

dx2

]
. (7)

Note that this definition is analogous to the usual one [4,5,26],
except for an overall normalization factor.

The different fusion functions considered in the previous
sections give rise to different FFBDs. Of particular interest
is the universal barrier distribution (UBD), which is obtained
from the universal fusion function of Eq. (5). In this case, the
second derivative of Eq. (7) can be evaluated analytically, and
we get

D0(x) = π

1 + cosh(2πx)
. (8)
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FIG. 1. Fusion barrier distribution derived from the universal
fusion function.

The function D0(x) is represented in Fig. 1. It is symmetric
around the maximum at x = 0 and is normalized as∫ ∞

−∞
D0(x) dx = 1. (9)

Experimental fusion function barrier distributions can be
obtained from Fexp(x) and F̄exp(x). That is,

Dexp(x) = 1

2π

[
d2Fexp(x)

dx2

]
, (10)

and

D̄exp(x) = 1

2π

[
d2F̄exp(x)

dx2

]
. (11)

If Wong’s approximation holds and CC effects on the fusion
cross section are negligible, one should haveDexp(x) � D0(x).
In most cases, the validity of Wong’s approximation should
not be a problem. Barrier distributions are usually evaluated
around the Coulomb barrier, and in this region Wong’s
approximation is expected to be reasonable, except for very
light systems [13]. The differences between Dexp(x) andD0(x)
should then be attributed to CC effects. These effects can be ac-
counted for in D̄exp(x), if all relevant CC effects are contained
in the factor σ CC

F (x), used in the renormalization procedure
of Eq. (6). Therefore, the differences between D̄exp(x) and
D0(x) measure the importance of the channel coupling effects
missing in σ CC

F (x). In this way, the differences between D̄exp(x)
and D0(x), in a situation where σ CC

F (x) contains the effects of
coupling to all relevant bound channels, represent the influence
of the breakup process on the experimental FFBDs.

IV. NUMERICAL EVALUATION OF THE FFBD

As fusion functions are measured at a discrete set of
x values, corresponding to a finite number of collision
energies, exact evaluations of experimental FFBDs cannot be
performed. Thus, one has to resort to numerical procedures,
which approximate derivatives by finite differences. Typically,
one starts with sets of data points {xi, F̄exp(xi), δi(F̄exp); i =
1, . . . , N}, where δi(F̄exp) is the statistical error associated

with the measurement of F̄ (xi). We neglect errors arising
from the factor σW

F (x)/σ CC
F (x). The usual method to derive

fusion barrier distributions is to use the three-point formula.
To evaluate the FFBD at one value xi of the set, one selects
two other points, xj and xk , one above xi and one below.
In most cases, one uses an equally spaced grid. That is,
xk − xi = xi − xj = �x. The three-point formula is obtained
from a linear combination of Taylor expansions of the fusion
function at the points x − �x and x + �x. For an equally
spaced x grid, one gets

D(xi) ≈ F (x+) + F (x−) − 2F (xi)

�x2
, (12)

where x± = xi ± �x. Above, F and D are short-hand
notations for the experimental fusion function and FFBD,
respectively. The statistical error of the barrier distribution
at the point xi is

δstat
i ≈

√
[δF (x+)]2 + [δF (x−)]2 + 4 [δF (xi)]2

(�x)2
. (13)

Equation (13) indicates that when the grid step decreases,
the statistical error grows quadratically with its inverse. In
principle, one can use any �x, provided that it is compatible
with the available data points. In typical evaluations of
barrier distributions, the grid spacing is �E ∼ 2 MeV. This
corresponds to �x ∼ 0.4–0.5, since h̄ω ∼ 4 MeV. Larger grid
spacings tend to wash out structures of the barrier distribution
around the Coulomb barrier [5]. On the other hand, small
values of �E are avoided, because they lead to large statistical
errors, as indicated in Eq. (13).

Besides the above-discussed statistical error, there is a
systematic error associated with the three-point formula. It
arises from the truncation of the Taylor series at second order.
It is given by

δ
syst
i ≈ 1

12

[
d4F (xi)

dx4
i

]
(�x)2. (14)

This problem was considered in detail by Canto and Donangelo
[27]. Using Wong’s approximation to estimate the fourth-
order derivative of the cross section, they showed that the
systematic error can be quite large, specially at E ≈ VB .
For the grid spacing �E = 2 MeV, the systematic error in
the barrier region is much larger than the statistical one. In
general, the systematic error is disregarded when experimental
fusion barrier distributions are compared with predictions of
theoretical models. The justification for this procedure is that
both distributions are evaluated using the same energy step.
Therefore, the systematic error is not expected to influence the
comparison. The situation is different in the present work. We
have an analytical expression for the standard FFBD, D0(x),
to which experimental distributions should be compared. To
handle the situation, we adopt two procedures. The first is
to use an x-dependent step �x, chosen to minimize the total
error,

δtot
i =

√[
δstat
i

]2 + [
δ

syst
i

]2
. (15)
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FIG. 2. (Color online) Inaccu-
racy of the three-point formula.
(a) Comparison of the exact values
of the universal distribution (solid
line) with results of the three-point
formula using the optimal grid (long-
dashed line) and the constant step
size �x = 0.45 (short-dashed line).
(b) Correction factors for the two
options of the grid.

The optimal grid step is given by the parametric expression
[27]

�xopt = 0.5 ε1/4 for x � −0.8, (16)

�xopt = 0.5 ε1/4 × f (x) for x > −0.8, (17)

where f (x) is the second-degree polynomial

f (x) = 1 + 1.8 (x + 0.8)2, (18)

and ε is the average relative error for the three values of the
fusion function appearing in Eq. (12). The second procedure
is to multiply the experimental barrier distribution by a factor
C(x) to correct the systematic error. This factor is estimated
by the ratio

C(x) = D0(x)

D3pt
0 (x)

. (19)

Above, D3pt
0 (x) is the UBD, evaluated by the three-point

formula. It can also be evaluated analytically, and the result is

D3pt
0 (x) = 1

2π (�x)2
ln

{
[1 + e2π(x+�x)][1 + e2π(x−�x)]

[1 + e2πx]2

}
.

(20)

In Fig. 2, we illustrate the systematic error in the three-point
formula. We use it to evaluate the universal distribution D0(x),
which is known analytically [Eq. (8)]. In Fig. 2(a), the exact
results are compared with results of the three-point formula
for two choices of the grid. The first is the constant step
�x = 0.45, which corresponds to �E � 2 MeV. The second
is the optimized variable step given by the parametrization of
Eqs. (16)–(18). In this case, the average relative statistical
error was assumed to be 1%. In Fig. 2(b), we show the
corresponding correction factor for each option of the grid. It is
clear that important systematic errors arise from the numerical
evaluation of the second derivative.

According to the discussion in this section, one should
expect to get D̄exp(x) � D0(x) when couplings with all relevant
channels are included in the calculation of σ CC

F (x). We check
this point in simple applications, where the relevant channels
as well as their couplings are well established: the collisions
16O + 144,148,154Sm. The results are shown in Fig. 3. The
data are from Refs. [26,28], and the CC calculations used

to renormalize the data [see Eq. (6)] are from Ref. [29]. In
Fig. 3(a), the experimental points are very different from the
universal FFBDs. In Fig. 3(b), where the experimental FFBD
is renormalized according to Eq. (6), the results for the three
systems are similar, and they agree very well with the universal
distribution.

V. APPLICATION: STUDY OF WEAKLY BOUND SYSTEMS

We now investigate the effects of the breakup channel
on the experimental FFBD for collisions of stable weakly
bound projectile on heavy targets. We consider the 9Be + 208Pb
and 6,7Li + 209Bi systems, for which high-precision data are
available [30–32]. One should have in mind that numerical
evaluations of second derivatives require data with great
accuracy. The numerical evaluation of the experimental FFBDs
for these systems was based on the data points in the tables of
Ref. [32]. Typically, these tables give CF or TF cross sections
σF (Ei) and the corresponding statistical error δi at N collision
energies in the center-of-mass frame, Ei , i = 1, . . . , N . Using
Eqs. (2) and (6), we build a new table, each line containing
{xi , F̄exp(xi), δF̄i}. We then evaluate the barrier distribution
at each of the x values appearing in the table. For this
purpose, we use F̄exp(xi) and also the fusion functions at
two other x values, xj and xk , being xj < xi and xk > xi .
These points are chosen by the criterion of minimizing the
total (statistical+systematic) error, as discussed in Ref. [27].
That is, xi − xj and xk − xi should be as close as possible to the
optimal x-dependent energy step �xopt given in Eqs. (16)–(18).
Using this procedure, we have evaluated the FFBDs associated
with CF for the 6,7Li + 209Bi and 9Be + 208Pb systems. For
9Be + 208Pb, we study also TF, since there are experimental
data available. The TF and CF results are shown respectively
in Figs. 4(a) and 4(b). In the case of TF, we observe that
the experimental FFBDs are quite close to the UBDs around
and above the barrier. The only exception is one point at
the maximum, which is slightly below. On the other hand,
the experimental points at lower energies are above the
universal curve. This is not surprising, since there are important
contributions from ICF at subbarrier energies, which were not
included in the renormalization procedure.
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FIG. 3. (Color online) Experimental FFBDs for the 16O + 144,148,154Sm systems in comparison with the universal distribution D0(x) (solid
lines). (a) Dexp(x). (b) Renormalized distribution D̄exp(x). The data are from Ref. [26].

We now consider the results for CF, appearing in Fig. 4(b).
Examining the figure, one reaches several interesting conclu-
sions. The first is that the results for the three systems are
similar, specially in the cases of 9Be + 208Pb and 7Li + 209Bi.
This is consistent with the analysis of renormalized fusion
functions of Refs. [12,13]. The second interesting point is
that the experimental FFBDs for CF are close to the UBDs
at energies well above and well below the Coulomb barrier.
However, their maxima at x � 0 are about 40% lower. The
experimental FFBDs for the 7Li + 208Pb and 9Be + 209Bi are
very close to the universal curve multiplied by a suppression
factor of 0.6 (dashed line). This conclusion is consistent with
the results of Refs. [30–32]. The FFBD for 6Li + 208Pb is also

similar to the universal curve multiplied by 0.6. However,
in this case, where the breakup threshold has the lowest
value (B6Li = 1.47 MeV), the suppression is slightly stronger,
and the coupling with the breakup channel produces a slight
shift of the experimental curve toward positive x values. An
effect of this kind was found in the CDCC calculations of
Ref. [33]. The fact that breakup coupling leads to a uniform
(energy-independent) reduction of the fusion function barrier
distribution is not trivial. It is clear that a suppression of
the fusion function propagates to the barrier distribution.
However, one would expect that some subtle energy de-
pendence would emerge from the process of taking second
derivatives.
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FIG. 4. (Color online) Experimental FFBDs for the 9Be + 208Pb and 6,7Li + 209Bi system, in comparison with the UBDs for total and
complete fusion. The dashed line in (b) corresponds to the UFFBD multiplied by the factor 0.6. For details, see the text.
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It should be emphasized that similar conclusions could be
reached separately for each system, through a comparison
of experimental cross sections or barrier distributions with
theoretical predictions of CC calculations. However, by using
reduced data, one can put together results for a variety of
systems. In this way, systematic properties of weakly bound
system emerge more clearly.

VI. CONCLUSIONS

We have investigated the role of the breakup channel in
fusion barrier distributions for weakly bound systems. For
this purpose, we obtain fusion barrier distributions from
experimental fusion data reduced by a recently developed
method. This method has the advantage of removing all static
effects associated with system size and details of the potential
barrier. It can eliminate also the influence of the couplings to
bound excited channels. In this way, the effects of breakup
coupling can be better investigated.

The method was used to study total fusion and complete
fusion barrier distributions in the case of collisions of stable
weakly bound projectiles with heavy targets, for which there
are data available. The results were compared with a universal
curve representing barrier distributions in the absence of
breakup, and the deviations from this curve were attributed
mainly to breakup coupling. We found that the distribution for
total fusion is close to the universal curve except at subbarrier
energies. We pointed out that this difference should arise
from incomplete fusion. In the case of complete fusion barrier
distributions, the maxima of the experimental distributions are
about 40% lower than that of the universal curve.
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