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Spinodal instabilities in nuclear matter in a stochastic relativistic mean-field approach
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Spinodal instabilities and early growth of baryon density fluctuations in symmetric nuclear matter are
investigated in the basis of the stochastic extension of the relativistic mean-field approach in the semiclassical
approximation. Calculations are compared with the results of nonrelativistic calculations based on Skyrme-type
effective interactions under similar conditions. A qualitative difference appears in the unstable response of the
system: the system exhibits most unstable behavior at higher baryon densities around p, = 0.4 in the relativistic
approach while most unstable behavior occurs at lower baryon densities around p, = 0.2y in the nonrelativistic

calculations
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I. INTRODUCTION

Spinodal instability provides a possible dynamical mech-
anism for fragmentation of a hot piece of nuclear matter
produced in heavy-ion collisions. Small amplitude density
fluctuations grow rapidly and lead to the breakup of the
system into an ensemble of clusters [1]. In the coming years,
experimental investigations of multifragmentation reactions
in a neutron rich nuclear system will provide a further under-
standing of the isospin dependence of a nuclear matter equation
of state at low densities. On the theoretical side, extensive
investigations of spinodal instabilities have been carried out
in the basis of stochastic transport models [2—6]. In particular,
the recently proposed stochastic mean-field approach provides
us with a useful tool for a description of dynamics of density
fluctuations in the spinodal region [7]. It has been demonstrated
that the stochastic mean-field approach incorporates the one-
body dissipation and the associated fluctuation mechanism in
accordance with the quantal-dissipation fluctuation relation.
The approach gives rise to the same result for the dispersion
of one-body observables that was obtained in a variational
approach in a previous work [8]. Furthermore, in recent studies
[9,10] by projecting onto macroscopic variables, we deduce
transport coefficients for energy dissipation and nucleon
exchange in low-energy heavy-ion collisions, which have a
similar form to those familiar with the phenomenological
nucleon exchange model [11]. These investigations provide
a strong support for the fact that the stochastic mean-field
approach is a powerful tool for describing low-energy nuclear
collisions and spinodal dynamics.

In a recent work, we studied the early development
of spinodal dynamics of nuclear matter in the basis of
the stochastic mean-field approach by employing density-
dependent Skyrme-type effective interactions [12]. In the
present work, we carry out a similar investigation of early
development of density fluctuations in the spinodal region of
nuclear matter by employing the stochastic extension of the
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relativistic mean-field theory [13,14]. It has been shown in
recent years that the nuclear many-body system is in principal
a relativistic system driven by dynamics of large relativistic
attractive scalar and repulsive vector fields. Both fields are not
much smaller than the nucleon mass and therefore the average
nuclear field should be described by the Dirac equation. For
large components of Dirac spinors, two fields nearly cancel
each other leading to a relatively small attractive mean field.
The small components add up leading to a very large spin
orbit term, which was known since the early days of nuclear
physics. Relativistic models have been used with great success
to describe nuclear structure. In recent years, the approach
was also applied for the description of nuclear dynamics ex-
tended in the framework of time-dependent covariant density
functional theory [15,16]. A number of investigations have
been carried out on spinodal instabilities in nuclear matter
employing relativistic mean-field approaches [17-19]. In this
work, we consider the stochastic extension of the relativistic
mean-field theory in the semiclassical approximation. As
illustrated in the nonrelativistic limit, stochastic extension
of the mean-field theory provides a powerful approach for
investigating dynamics of density fluctuations. Employing the
stochastic extension of the relativistic mean-field approach,
we investigate not only spinodal instabilities but also the
early development of density fluctuations in symmetric nuclear
matter.

In Sec. II, we briefly describe the stochastic extension
of the relativistic mean-field theory in the semiclassical
approximation. In Sec. III, we calculate the early growth
of baryon density fluctuations, growth rates, and the phase
diagram of dominant modes in symmetric nuclear matter.
Conclusions are given in Sec. I'V.

II. STOCHASTIC RELATIVISTIC MEAN-FIELD THEORY

The stochastic mean-field approach is based on a very
appealing stochastic model proposed for describing deep-
inelastic heavy-ion collisions and sub-barrier fusion [20-22].
In that model, dynamics of relative motion is coupled to
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collective surface modes of colliding ions and treated in
a classical framework. The initial quantum zero point and
thermal fluctuations are incorporated into the calculations in
a stochastic manner by generating an ensemble of events
according to the initial distribution of collective modes. In
the mean-field evolution, couplings of relative motion with
all other collective and noncollective modes are automatically
taken into account. In the stochastic extension of the mean-field
approach, the zero point and thermal fluctuations of the initial
state are taken into account in a stochastic manner, in a similar
manner as presented in Refs. [20-22]. The initial fluctuations,
which are specified by a specific Gaussian random ensemble,
are simulated by considering the evolution of an ensemble of
single-particle density matrices. It is possible to incorporate
quantal and thermal fluctuations of the initial state into the
relativistic mean-field description in a similar manner.

In Refs. [23,24], the authors derived a relativistic Vlasov
equation from the Walecka model in the local density and
the semiclassical approximation. In the Walecka model, the
interaction between nucleons is mediated by a scalar meson
with mass m; and a vector meson with mass m, with respective
fields denoted as ¢ and V. Introducing the phase space
distribution function f(7,p, t) for the nucleons, the following
relativistic Vlasov equation has been obtained:

a . . 2 = .=
Ef(rapat)+v'Vrf(rvlJ’t)_vrh(r’p)'fo(rvpat)=Oa
ey

where V.= p*/e* and h = ¢* + g, Vj. The coupling constants
of the mesons and the nucleon are denoted by g, and g,
for the scalar and the vector mesons, respectively. In these
expressions, p* = p — g,V and e* = (p*? + M*?)!/2 with
M* = M — gy¢. The nucleon mass is denoted by M. In the
mean-field approximation, the meson fields are treated as
classical fields and their evolutions are determined by the field
equations

92 R 3
[m ~ Vi ME] (r,t) = gsps(r,t) )
and
82
[——V2+m2}V<7r>=gp(7r> (3)
8t2 v AAGE vPv\Fst).

In these expressions, the baryon density po(7,t) = pp(7,1),
the scalar density ps(¥,t), and the current density p,(7,¢) can
be expressed in terms of phase-space distribution function as
follows:

. d? L.
oot = y / #f(r,p,t), “)
Fit) = dp Mo p.t 5
,Os(rat)—)//(zn)3 e_*f(rvp’ )» ( )
and
- &p pr ..
Pv(r,t)—mee—*f(r,P,l), (6)

where y =4 is the spin-isospin degeneracy factor. The
original Walecka model gives a nuclear compressibility that is
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much larger than the one extracted from the giant monopole
resonances in nuclei. It also leads to an effective nucleon
mass which is smaller than the value determined from the
analysis of nucleon-nucleus scattering. In order to have a
model which allows different values of nuclear compressibility
and the nucleon effective mass, it is possible to improve
the Walecka model by including the self-interaction of the
scalar mesons or by considering density dependent coupling
constants. However, in the present exploratory work, we
employ the original Walecka model without including the
self-interaction of the scalar meson.

In the stochastic mean-field approach an ensemble
{f*(@,p, 1)} of the phase-space distributions is generated in
accordance with the initial fluctuations, where A indicates the
event label. In the following, for simplicity of notation, since
equations of motion do not change in the stochastic evolution,
we do not use the event label X for the phase-space distributions
and also for the other quantities. However it is understood that
the phase-space distribution, scalar meson, and vector meson
fields are fluctuating quantities. Each member of the ensemble
of phase-space distributions evolves by the same Vlasov [1]
equation according to its own self-consistent mean field, but
with different initial conditions. The main assumption of the
approach in the semiclassical representation is the following:
In each phase-space cell, the initial phase-space distribution
f(#,p,0) is a Gaussian random number with its mean value
determined by f(#,p,0) = fo(¥, p), and its second moment is
determined by [7,12]

fF.p.0O)f(,p',0)
= Qn)’8G =8P — P) foF. P11 = fo, P, (7)

where the overline represents the ensemble averaging and
fo(F, p) denotes the average phase-space distribution describ-
ing the initial state. In the special case of a homogenous
initial state, it is given by the Fermi-Dirac distribution
fo(p) = 1/lexp(e; — ug)/ T + 1]. In this expression ug§ =
o — (gv/ mv)ng, where 1 is the chemical potential and ,og
is the baryon density in the homogenous initial state.

In this work, we investigate the early growth of density
fluctuations in the spinodal region in symmetric nuclear matter.
For this purpose, it is sufficient to consider the linear response
treatment of dynamical evolution. The small amplitude fluctu-
ations of the phase-space distribution §f (¥, p,t) = f(¥,p,t) —
fo(p) around an equilibrium state fo(p) are determined by the
linearized Vlasov equation,

d N L = N
EW(”,PJ) +vo- V.8f(r,p,t)
—V,8h(F,p,1) -V, fo(p) = 0. (8)

In this expression the local velocity is Vo = p/ej with ef =

P>+ Mgz, M§ = M — gypo, and small fluctuations of the
mean-field Hamiltonian is given by

*

- - _ M() - - gv - i
ah(rspvt) - = g58¢(7,t) + gVSVo(r,t) - e_*l’ : SV(r,t).
0

)
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The small fluctuations of the scalar and vector mesons are
determined by the linearized field equations,

2
[% V2 4m } SO 1) = g.bps(F.t) (10)
and
82
[ﬁ—vz—l—m }SV(r 1) = gu8py(7.1). 1D

III. EARLY GROWTH OF DENSITY FLUCTUATIONS

A. Spinodal instabilities

In this section, we employ the stochastic relativistic
mean-field approach in the small amplitude limit to investi-
gate spinodal instabilities in symmetric nuclear matter. We
can obtain the solution of linear response Egs. (7)- (11)
by employing the standard method of the one-sided Fourier
transform in time [25]. It is also convenient to intro-
duce the Fourier transform of the phase-space distribution
in space,

af(lé,ﬁ,w)=f dte"w’/ Bre ® (G 5. (12)
0 —0

This leads to

5 fk.p.w) = < 328pu(k.w) — 328 pp(K. )
b k-v
+3 ﬁ* 55k, w)) k- Vo olp)
w—Vvg-k
8 kp,0
fk.p )7 (13)
a)—V() k

where § f (75, D, 0) denotes the Fourier transform of the ini-
tial fluctuations, and we use the short-hand notation, g2 =
g2/ (k* + m?), g2 = g2/(k* +m?). In this expression, the
fluctuations of the meson fields are expressed in terms of
Fourier transforms of the scalar density 8p,(7, ), the baryon
density 8p;(F,t), and the current density 80,(7,¢) fluctuations
by employing the field Eqs. (10) and (11). In Eq. (13) only the
initial fluctuations of the phase-space distribution § f (12, D, 0)
are kept, but the initial fluctuations associated with the scalar
and the vector fields are neglected. In the spinodal region since
it is expected to have a small contribution, we neglect the
frequency terms in the propagators, i.e., —@ + k*> +m2 ~
k* +m? and —w* + k* + m2 ~ k> + m2. Small fluctuations
of the baryon density, the scalar density, and the current density
are related to the fluctuation of the phase-space distribution
function 8 f (k p,w) according to

. Bp
Spy(fe) = 7 / Sd ffo), (14)
J o dp [ (M Mg
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d3p M*
=y [(gv =D 85, (k,w)

(277)3
Mi -
gb *3 (Sps(k w)) » (Sf(k,p,a))] ,
€9 40
(15)
and
85, (k.w) = o )3[ ( )fo(p)+ af(kpw)]

dp 2P - 2,7
N y/ (2n) [(83 ~3P8p(k.0)

80, (k
e V(* ) +g. o papsac w))
€
X fo(p) + :L*af(ié,ﬁ,m} . (16)
0

Multiplying both sides of Eq. (13) by M;/ej, 1, p/ej and
integrating over the momentum, we deduce a set of coupled
algebraic equations for the small fluctuations of the scalar den-
sity, the baryon density, and the current density, which can be
putin to a matrix form. Here we investigate spinodal dynamics
of the longitudinal unstable modes. For longitudinal modes the
current density oscillates along the direction of propagation,
1) ;SV(E,w) =34 ,5V(1?,w)1€. Then, for the longitudinal modes, the
set of equations becomes

A1 A2 A3 Sﬁv(l_é’w) Sb(]?,(l))
B B, By | | spskw) | =i | Sikw) |, (17)
Ci G2 C3 ) \spp(k,m) S, (k,w)

where the element of the coefficient matrix are defined
according to

Ay Ay A
B; B, B;
C) Cy Cs
—ginko) =g ko) 148k
=| -2xko) 1+27ko) +gxkw)
L+ @k —g2xko)  +22x ko)
(18)
In this expression, Xb(E,w), Xs(lz,w), and Xv(lz,a)) denote
the long wavelength limit of relativistic Lindhard functions

associated with baryon, scalar, and current density distribution
functions,

xu(k.0) p-kle

% — d’p M 2 kY folp)
RGO = | Gyt | MO | 5w
Xo(k,w) 1

19)
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and the stochastic source terms are determined by

So(k.) IR W

Sk | =y f | mige | 22829 o)
(2 ) PN CI)—V()'k

S.(k,w) p-kjey

The other three elements of the coefficient matrix in Eq. (18)
are given by

R M*zk A\
7k w) = / *3fo( ) MEEV ) |
@ny e

—V() k
(21)
_ d*p Mg k-9, folp)
Hkw) =y / By 2§ [ R RNy G5
(2m) eo ®— Vo - k
and
N d3p 6*2_(1-)’_12)2
ok, w) = 0
Xo(k,w) =y an ) [ o fo(p)
(- k) k- V, fo(p) (23)
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FIG. 1. (Color online) Growth rates of unstable modes as a
function of wave numbers in the spinodal region at baryon densities
oo = 0.2pp and p, = 0.4p, attemperature T = 5 MeV: (a) relativistic
calculations, and (b) nonrelativistic calculations.
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We obtain the solutions by inverting the algebraic matrix
equation, which gives, for the baryon density fluctuations,

D Sb(k w) + D5 S, (k w) + D58, (k w)
8pp(k,w) = o) ,

(24)

where D] = B]C2 - BQC], D2 = C_!Az - C2A1, and D3 =
A|B, — A;B; and the quantity e(k,w) = A3D; + B3D;, +
C3 D3 denotes the susceptibility.

The evolution in time is determined by taking the inverse
Fourier transformation in time, which can be calculated with
the help of the residue theorem [24]. Keeping only the growing
and decaying collective poles, we find

8pp(k.1) = 8o (K)e ™™ + 8py (k)e ™. (25)

Here, the amplitudes of baryon density fluctuations associated
with the growing and decaying modes at the initial instant are
given by
5p5 (K)
B { D;8p(k.0) + Dy Sy(k.w) + Dsﬁvdé,w)}
de(k,w)/dw J—

(26)

The growth and decay ratesqof the modes are obtained from
the dispersion relations, e(k,w) = 0, i.e., from the roots of
susceptibility. Solutions for the scalar density fluctuations
Sﬁs(z,w) and the current density Sﬁv(z,w) fluctuations can
be expressed in a similar manner. In the original Walecka
model, there are four free parameters, coupling constants, and
meson masses. The binding energy per nucleon at saturation
density determines the ratios of coupling constants to masses.
The standard values of the ratios g2(M/m,)* = 273.8 and

T T T T T T T
Relativistic T=5 MeV
0.04 - - - - Non-Relativistic 7
0.03 |- T
£
A
¢ 0.02 - 7
L E
0.01 |- 7
0.00 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P/,

FIG. 2. (Color online) Growth rates of the most unstable
modes as function of baryon density in the spinodal region at
temperature 7 = 5 MeV in relativistic calculations (solid line) and
in nonrelativistic calculations (dashed line).
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g2(M/mg)* = 357.4 give the binding energy per nucleon as
15.75 MeV at saturation density [13,14]. These ratios lead to an
effective nucleon mass M = 0.541 M and a compressibility
of 540 MeV at the saturation density. In numerical calculations,
we take the vector meson mass m, = 783 MeV, and the scalar
meson mass ms = 500 MeV. As an example, the upper panel in
Fig. 1 shows the growth rates of unstable modes as a function of
wave number in the spinodal region corresponding to the initial
baryon density p, = 0.2p9 and pp, = 0.4pp at a temperature
T = 5MeV. The lower panel of Fig. 1 illustrates the dispersion
relations obtained in the nonrelativistic approach with an
effective Skyrme force [12]. Although a direct comparison
of these calculations is rather difficult, we observe that there
are qualitative differences in both calculations. The range of
most unstable modes in relativistic calculations is concentrated
around k = 0.6 fm~" in both densities, while most unstable
modes shift toward larger wave numbers around k = 0.8 fm™!
at density p, = 0.2p9 and toward smaller wave numbers
around k = 0.5 fm~! at density p, = 0.4py. Growth rates
of most unstable modes at density p, = 0.4 in relativistic
calculations are nearly a factor of two larger than those
results obtained in the nonrelativistic calculations, while
at low density pp = 0.2py the growth rates are smaller in
relativistic calculations. Figure 2 illustrates growth rates of
the most unstable modes as a function of density in both
relativistic and nonrelativistic approaches. We observe the
qualitative difference in the unstable response of the system:
the system exhibits most unstable behavior at higher densities
around pp, = 0.4p¢ in the relativistic approach while most
unstable behavior occurs in the nonrelativistic calculations at
lower densities around pp, = 0.2p. As an example of phase
diagrams, Fig. 3 shows the boundary of the spinodal region
for the unstable mode of the wavelength A = 9.0 fm Again,
we observe that the unstable behavior shifts toward higher
densities in relativistic calculations.

Relativistic
- - - Non-Relativistic _ -~~~ -+

2=9 fm

T (MeV)

0 T T T T

0.00 0.02 0.04 0.06 0.08 0.10
p (fm®)

FIG. 3. (Color online) Boundary of the spinodal region in
the baryon density-temperature plane for the unstable mode with
wavelengths A = 9 fm in relativistic calculations (solid line) and in
nonrelativistic calculations (dashed line).
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FIG. 4. (Color online) Spectral intensity &b(%,t) of the baryon
density correlation function as a function of wave number at times
t =0,7=20fm/c and r = 40 fm/c at temperature 7 = 5 MeV in
relativistic calculations at densities (a) p, = 0.2,09 and (b) pp, = 0.4 .

B. Growth of density fluctuations

In this section, we calculate the early growth of baryon
density fluctuations in nuclear matter. the spectral intensity
of the density correlation function 6y (k,t) is related to the
variance of the Fourier transform of baryon density fluctuation
according to

Gun(k,1)27)*8(k — k') = 8ok, 0085 (K1), (27)

We calculate the spectral function using the solution (25)
and the expression (7) for the initial fluctuations to
give

- EF(k
(k) = ———0 (e 472
[9e(k,@)/dw] it |2
2E-(k
2EK (28)
|[9e(k,w)/dw]pmir, |2
where

EF (k) = |D\’KT, + |D2* K, F |Ds|*K5; + 2D, DLK T,
(29)
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FIG. 5. (Color online) Same as Fig. 4 in nonrelativistic
calculations.
with
d’p F;%:F(\Q’O'/_é)2
Q) (17 + Fo - k)]
K :yzf o <M6k>2—r/%3F(‘70";)2

2 Qe \ e ) 124G k2]

x fo(p)I1 = fo(p)], (31)

Kﬁ:y2

5 Jo(pI1 = fo(p)]. (30)

L oo\ 2 o >
Ki=v [ 20 (p.k) E.
) Cry \ e ) T2+ G- k2]
x fo(p)[1 = fo(p)l, (32)
and
- o[ &p M TIFGo-k)?

1

[

27)* € 17 + Go-0?]°
x fo(pI1 = fo(p)]. (33)

The upper and lower panels of Fig. 4 show the spectral
intensity of the baryon density correlation function as a
function of wave number at times ¢t = 0, t = 20 fm/c, and
t = 40 fm/c at temperature 7 = 5 MeV in relativistic calcu-
lations at densities pp, = 0.2p9 and p, = 0.4p0, respectively.
We observe that the largest growth occurs over the range
of wave numbers corresponding to the range of dominant
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0.020 . . . . . T " T
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FIG. 6. (Color online) Baryon density correlation function
op(x,t) as a function of distance x = |F — /| between two space
points at times t = 0, = 20 fm/c and t = 40 fm/c at temperature
T = 5MeV inrelativistic calculations at densities (a) p, = 0.2 and
(b) pp = 0.4p,.

unstable modes. Spectral intensity in the vicinity of most
unstable modes of k = 0.6 fm~! grows about a factor of ten
at density pp = 0.2p9 and about a factor of six at density
pb = 0.4p¢ during the time interval of + = 40 fm/c. Figure 5
shows similar information calculated in the nonrelativistic
approaches. We notice that at density p, = 0.2 the behavior
of the spectral intensity is rather similar in relativistic and
nonrelativistic approaches. However, at higher density p, =
0.4, the spectral intensity grows slower in the nonrelativistic
calculations than those obtained in the relativistic approach.
We note that in determining time evolution 8py,(k,#) with the
help of the residue theorem, there are other contributions
arising form the noncollective pole of the susceptibility e(k,w)
and from the poles of source terms S’V(lz,a)), §s(£,w), and
Sy(k,w). These contributions, in particular toward the short
wavelengths, i.e., toward higher wave numbers, are important
at the initial stage, however they dampen out in a short
time interval [25]. Since, we do not include effects from
noncollective poles, we terminate the spectral in Fig. 5 at a
cut-off wave number k. ~ 0.7 fm~'-0.8 fm~!. Consequently,
the expression (28) provides a good approximation for &, (I_é ,1)
in the long wavelength regime below k..

Local baryon density fluctuations 8py,(7,¢) are determined
by the Fourier transform of (Spb(lz, t). An equal time correlation
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FIG. 7. (Color online) Same as Fig. 6 in nonrelativistic
calculations.

function of baryon density fluctuations as a function of distance
between two space locations can be expressed interms of the
spectral intensity as

3

ikF~ (T
— k,t).
et (k1)

oun([F = F'I, 1) = 8pu(F,1)3pu (1) = /
(34)

The baryon density correlation function carries useful in-
formation about the unstable dynamics of the matter in the
spinodal region. As an example, the upper and lower panels
of Fig. 6 illustrates the baryon density correlation function
as a function distance between two space points at times
t =0, t =20 fm/c, and t = 40 fm/c at temperature 7 =
5 MeV in relativistic calculations at densities p, = 0.4p9 and
op = 0.2p9, respectively. Complementary to the dispersion
relation, the correlation length of baryon density fluctuations
provides an additional measure for the size of the primary
fragmentation pattern. We can estimate the correlation’s
length of baryon density fluctuations as the width of the
correlation function at half-maximum. From the figure, we
estimate that the correlation length is about the same at
both densities and temperatures around 3.0 fm, which is
consistent with the dispersion relation presented in Fig. 1.
Baryon density fluctuations grow faster at p, = 0.4p than
o = 0.2p. Figure 7 shows similar information calculated in
the nonrelativistic approach [12]. The correlation length is
around 3.5 fm at p, = 0.4pp and 3.0 fm at the lower density
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op = 0.2p9. However, unlike the relativistic calculations, the
baryon density fluctuations grow faster at lower density p, =
0.2 than at p, = 0.4p¢, which is a consistent result with that
presented in Fig. 2.

IV. CONCLUSIONS

It has been demonstrated in recent publications [7,9,10,12]
that the stochastic mean-field approach incorporates both the
one-body dissipation and the associated fluctuation mecha-
nism in a manner consistent with the fluctuation-dissipation
theorem of nonequilibrium statistical mechanics. Therefore the
approach provides a powerful tool for investigating dynamics
of density fluctuations in low-energy nuclear collisions. In
a similar manner, it is possible to develop an extension of
the relativistic mean-field theory by incorporating the initial
quantal zero point fluctuations and thermal fluctuations of
density in a stochastic manner. In this work, by employing the
stochastic extension of the relativistic mean-field approach, we
investigated spinodal instabilities in symmetric nuclear matter
in the semiclassical framework. We determined the growth
rates of unstable collective modes at different initial densities
and temperatures. The stochastic approach also allowed us to
calculate the early development of baryon density correlation
functions in the spinodal region, which provides valuable
complementary information about the emerging fragmentation
pattern of the system. We compared the results with those ob-
tained in nonrelativistic calculations under similar conditions.
Our calculations indicated a qualitative difference in behavior
in the unstable response of the system. In the relativistic
approach, the system exhibited most unstable behavior at
higher baryon densities around pp = 0.4p9, while in the
nonrelativistic calculations most unstable behavior occurred
at lower baryon densities around p, = 0.2py. In the present
exploratory work, we employed the original Walacka model
without a self-interaction of the scalar meson. The qualitative
difference in the unstable behavior may be partly due to the
fact that the original Walecka model leads to a relatively small
value of the nucleon effective mass of M* = 0.541M and
a large nuclear compressibility of 540 MeV. On the other
hand, the Skyrme interaction that we employ in nonrelativistic
calculations gives rise to a compressibility of 201 MeV
[12]. It will be interesting to carry out further investigations
of spinodal dynamics in symmetric and charge asymmetric
nuclear matter by including the self-interaction of the scalar
meson and also including the rho meson in the calculations.
The inclusion of the self-interaction of scalar meson allows
us to investigate spinodal dynamics over a wide range of
nuclear compressibility and nuclear effective mass. We also
note by working in the semiclassical framework, we neglect
the quantum statistical effects on the baryon density correlation
function, which become important at lower temperatures and
also at lower densities.
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