
PHYSICAL REVIEW C 80, 034611 (2009)

Parametrization of low-energy cross sections for nonresonant neutron capture
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1Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, People’s Republic of China
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The nonresonant component of radiative neutron capture reactions is parametrized at low energies by a
polynomial of second degree. The potential model is first used to reproduce experimental data below 1 MeV
with the help of spectroscopic factors. The fits are found sensitive to the scattering length of the initial s or
p waves. The coefficients of a Taylor expansion are then calculated by resolution of the Schrödinger equation
and its energy derivatives at energy zero. Such theory-guided parametrizations are derived for neutron capture
by 7Li, 12C, 14C, 16O, and 18O. When the capture proceeds from the s wave to a weakly bound state, a Padé-like
parametrization better approximates the potential-model results.
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I. INTRODUCTION

Many capture cross sections are measured accurately for
thermal neutrons. However, in the keV to MeV domain, fewer
experiments are available, and their difficulty often leads to
rather large error bars [1–12]. Moreover, the occurrence of
resonances can even complicate the interpretation of data.
It is thus difficult to extract simple and precise expressions
giving direct capture cross sections below about 1 MeV. Simple
parametrizations of these cross sections over a low-energy do-
main would be very useful to interpolating these data. They can
also help in deriving the properties of low-energy resonances
from deviations with respect to such parametrizations.

The derivation of a simple though precise parametrization is
easier when it is guided by theoretical considerations. Indeed,
the nonresonant behavior of low-energy capture cross sections
is well established theoretically. The purpose of this work is
to perform such analyses for several cases where enough data
exist. At low energies, a neutron capture cross section σ (E) to
a given bound state can be approximated at relative energy E

by a Taylor expansion truncated at order 2 [13],

σv = S0E
li (1 + s1E + s2E

2), (1)

where v is the initial relative velocity and li is the smallest
relevant orbital momentum of the initial scattering state. The
coefficients S0, s1, and s2 of this Taylor expansion can be
derived by a simple direct calculation at energy zero in any
capture model [13,14]. Notice that S0 as defined here is slightly
different from the definition in Ref. [13] [see Eq. (3) below].
This derivation is particularly simple in the potential model.
The coefficients are calculated from the wave function at zero
energy and from its energy derivatives which can be obtained
from inhomogeneous equations obtained at zero energy by
differentiating the Schrödinger equation with respect to energy.
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The goal of the present work is to use the simple potential
model including spectroscopic factors to provide polynomial
approximations of neutron capture cross sections at low
energies by various light nuclei for which some data exist.
Since the potential model has a limited predictive power,
the existence of data is essential to validating the different
approximations performed.

The principle of the derivation of the parametrizations
is summarized in Sec. II. Polynomial parametrizations are
derived for 7Li, 12C, 14C, 16O, 18O in Sec. III. Concluding
remarks are presented in Sec. IV.

II. EXPANSION OF CAPTURE CROSS SECTIONS AT
LOW ENERGIES

In this section we summarize the technique of calculating
the truncated Taylor expansion (1) developed in Ref. [13]. We
refer the reader to that reference for details.

A nucleus with mass M and charge Ze captures a neutron
with mass mn at energy E in the center-of-mass frame by
an electric transition Eλ of multipolarity λ. In the potential
model, bound and scattering states are described for a given
orbital momentum l by the Hamiltonian

Hl = − h̄2

2µ

[
d2

dr2
− l(l + 1)

r2

]
+ V (r), (2)

where µ = mnM/(M + mn) is the reduced mass of the system
and V is a neutron-nucleus interaction which may depend on
the considered partial wave. In the LS coupling scheme, a
bound state at negative energy EB is characterized by quantum
numbers lf Jf and a scattering partial wave by quantum
numbers liJi .

Let us denote as σ the partial cross section for the neutron
capture with those specific quantum numbers. The limit of σv

for E → 0 is given by

S0 = αcNEλ(|EB |/h̄c)2λ+1(2µ/h̄2)li [I (0)]2, (3)
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where α is the fine structure constant and c is the speed of light
in the vacuum. Coefficient S0 differs from S0 of Ref. [13] by
a factor of (2µ/h̄2)li . The constant NEλ reads

NEλ = 8πZ2
(mn

M

)2λ

× (λ + 1)(2λ + 1)

λ(2λ + 1)!!2

(2Ji + 1)(2Jf + 1)(2li + 1)(2lf + 1)

2(2I1 + 1)

×
(

lf λ li

0 0 0

)2 {
Jf lf I

li Ji λ

}2

. (4)

The integral I (0) is the limit at zero energy of the usual radial
integral I (E) of the potential model. It is given by

I (0) =
∫ ∞

0
ulf (r)rλu0

li
(r)dr, (5)

where ulf is the bound-state wave function solution of the
radial Schrödinger equation Hlf ulf = EBulf , and u0

l (r) is a
solution vanishing at the origin of the radial Schrödinger
equation at energy 0,

Hlu
0
l = 0. (6)

Here and elsewhere, the superscript 0 indicates a limit at energy
zero. Since Eq. (6) does not fix the normalization, function u0

l

must be normalized by imposing the condition

W
{
G0

l , u
0
l

} −→
r→∞ 1, (7)

where the Wronskian W {g,f } is equal to g(df/dr) −
f (dg/dr) and

G0
0 = 1, G0

1 = r−1, G0
2 = 3r−2, . . . (8)

The scattering lengths are given by

al = 2µ

h̄2

∫ ∞

0
F0

l (r)V (r)u0
l (r) dr, (9)

where

F0
0 = r, F0

1 = r2

3
, F0

2 = r3

15
, . . . (10)

The dimensions of the scattering lengths are fm2l+1. General
expressions for F0

l and G0
l can be found in Ref. [13].

The coefficient s1 in expansion (1) reads

s1 = 2λ + 1

|EB | + 2I ′(0)

I (0)
− δli0

2µa2
0

h̄2 , (11)

where a0 is the s-wave scattering length. The prime indicates
a derivative with respect to energy. The integral I ′(0) is given
by

I ′(0) =
∫ ∞

0
ulf (r)rλu′0

li
(r)dr. (12)

In this expression, the energy derivative of the radial wave
function at zero energy u′0

l is a solution of the derivative of the
Schrödinger equation at the limit E → 0, i.e.,

Hlu
′0
l = u0

l . (13)

Since solutions vanishing at the origin are not uniquely fixed
by this equation, one imposes the condition

W
{
G0

l , u
′0
l − (µ/h̄2)

(
F ′0

l + alG ′0
l

)} −→
r→∞ 0, (14)

where al is the scattering length of partial wave l and

F ′0
0 = −r3/3, F ′0

1 = −r4/15, F ′0
2 = −r5/105, . . .

G ′0
0 = −r2, G ′0

1 = r, G ′0
2 = 1, . . . (15)

The notation f ′0 represents the energy derivative of f

calculated at E = 0. General expressions for F ′0
l and G ′0

l can
be found in Ref. [13]. Coefficient s2 can be calculated in a
similar way (see Ref. [13]).

To determine the cross section, we have to choose a
potential. To keep the calculations simple, we take the standard
Saxon-Woods form

V (r) = − VlJ

1 + exp[(r − R)/a]
, (16)

where coefficient VlJ is adjusted individually for each bound or
scattering state. It depends on the quantum numbers l and/or J

relevant to the considered state. It may sometimes also depend
on the channel spin I . For a bound state, this coefficient is
adjusted by fitting its energy. For a scattering state, different
strategies will be used depending on the available information.
Then, spectroscopic factors Slf Jf

are introduced with the aim
of correcting the simplicity of the bound-state description in
the potential model. The partial cross sections are multiplied
by these factors to give

σ =
∑
lf Jf

Slf Jf

∑
li Ji

σliJi→lf Jf
, (17)

where the sum runs over the considered initial waves and final
bound states. Only the E1 multipolarity is used in practice
here.

We use c.m. energies everywhere. Units are MeV and fm.
Coefficients s1 and s2 are thus given in MeV−1 and MeV−2,
respectively. The product σv and coefficient S0 will be
expressed in mb c.

III. PARAMETRIZATIONS OF CROSS SECTIONS

A. Reaction 7Li(n,γ )8Li

The 2+ ground state of 8Li is located at −2.033 MeV with
respect to the 7Li + n threshold. The 1+ excited state is at
−1.052 MeV. A 3+ resonance occurs near 0.23 MeV.

The 7Li(n,γ )8Li has been the subject of a number of
experiments in several energy domains. The thermal cross
section is 45.4 ± 3 mb [15]. Possible deviations with respect
to the 1/v low-energy behavior have been searched for from
1.5 to 1340 eV [16]. Further measurements concern the domain
20–600 keV [1,2,5,6,11].

To fit the low-energy experimental data, we use R =
2.30 fm and a = 0.27 fm [17]. The potential depth for the final
bound state is adjusted to reproduce its energy. The obtained
depths are given in Table I. The accuracy on VlJ is limited
to 0.01 MeV, so the energies may differ slightly from the
experimental values throughout this paper. These differences
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TABLE I. Energies and po-
tential depths (in MeV) for 8Li.

J π l E VlJ

2+ 1 −2.034 50.64
1+ 1 −1.048 48.35

have no influence on the accuracy of the parametrizations.
The depths for the l = 0 scattering states are adjusted to fit
the s-wave scattering lengths of the different channel spins:
0.87 ± 0.07 fm for I = 1 and −3.63 ± 0.05 fm for I = 2 [18].
These scattering lengths are reproduced with the depths 71.80
and 85.36 MeV, respectively. For the d wave, the depth is
rather arbitrarily chosen as their average of 78.58 MeV since
we have no data to fit. The results for the small d-wave capture
component are almost insensitive to this choice.

To provide a parametrization of the nonresonant cross
section, we calculate the coefficients of the Taylor expansion
with Eqs. (3) and (11). They are displayed in Table II.
The spectroscopic factors are taken from Barker [19] and
given in the last column of Table II. Choosing other sets of
spectroscopic factors [20–22] has little influence on the shape
of the results.

The product σv calculated with Eq. (17) as a function of
energy E within the potential model and the spectroscopic
factors of Table II is displayed in Fig. 1. One observes that the
agreement is quite good for the thermal cross section. The data
of Blackmon et al. [16] represented as triangles correspond to
the neutron capture to the ground state. They can be compared
with the ground-state capture in the potential model. At low
energies, we obtain σv = 3.0 × 10−4 (dash-dotted line). There
is a small but systematic discrepancy between the calculated
cross sections and the data of Ref. [16], which are on the
average located about 10% lower. Higher energy data display
the 3+ resonance. The present nonresonant cross section seems
to agree below and above this resonance.

A parametrization of the potential model results is then
obtained by weighting the different expressions of Table II
with the corresponding spectroscopic factors. The d-wave
capture contributes only at order E2 according to Eq. (1).
The experimental data can thus be parametrized as

σv = 3.3 × 10−4(1 − 1.37E + 1.95E2) mb c. (18)

TABLE II. Coefficients S0, s1, and s2 of the Taylor expansions for
different transitions of reaction 7Li(n,γ )8Li; spectroscopic factors
SI lJ .

J
πf

f li I s1 s2 S0 SI lJ

2+ 0 1 −0.165 0.086 1.16 × 10−4 0.251
2 −1.492 1.928 3.56 × 10−4 0.765

2 1,2 −0.447 0.230 3.97 × 10−5 1.016
1+ 0 1 −0.285 0.239 3.31 × 10−5 0.159

2 −1.698 2.424 8.07 × 10−5 0.295
2 1,2 −0.832 0.410 3.59 × 10−5 0.454
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FIG. 1. Comparison of potential model results (full line) and
experimental data from Refs. [15] (square), [6] (circles), and [1]
(diamonds) for the 7Li(n,γ )8Li reaction as a function of neutron
c.m. energies in MeV. The ground-state capture is represented as a
dash-dotted line and compared with the 7Li(n,γ0)8Li data of Ref. [16]
(triangles). Parametrization (18) is represented as a dashed line. The
semiempirical parametrization with s2 replaced by 1.25 is represented
as a dotted line.

This parametrization is displayed as a dashed line in Fig. 1. It
approximates the potential model up to about 0.2 MeV.

This range is more limited than in most of the cases
discussed below. In the present case, the Taylor expansion
does not converge well as shown by the large value of
s2. The Padé-like approximations discussed in Sec. III E do
not enlarge the domain of validity significantly. However, a
good semiempirical parametrization is obtained by replacing
coefficient s2 = 1.95 in Eq. (18) by 1.25. The modified
second-order polynomial (dotted line in Fig. 1) follows closely
the full line up to about 0.6 MeV. This fit is slightly less good
than the truncated Taylor expansion around 0.1 MeV.

B. Reaction 12C(n,γ )13C

This reaction has been studied in detail in Ref. [13]. Here we
just adapt the obtained parametrization to the present notation
and units,

σv = 2.6 × 10−5(1 + 88E − 50E2) mb c. (19)

It provides a good fit of the data displayed in Fig. 5 of Ref. [13].

C. Reaction 14C(n,γ )15C

The 15C nucleus possesses only two bound states: 1/2+
at −1.218 MeV and 5/2+ at −0.478 MeV with respect to
the 14C + n threshold. The experimental 14C(n,γ )15C cross
sections have long been controversial [23]. Recent direct
measurements performed at neutron energies between 20 and
800 keV [12] now agree with indirect measurements from
Coulomb breakup [24]. The thermal cross section is not
known. An upper bound is 1 µb.

The potential parameters we use for reaction 14C(n,γ )15C
are taken from Ref. [25]: R = 2.96 fm and a = 0.6 fm.
However, here, we keep the simple form (18) without the
spin-orbit term. The depths fitting the bound-state energies are
given in Table III. These depths are also used for scattering
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TABLE III. Same as Table I, but for 15C.

J π l E VlJ

1/2+ 0 −1.220 52.814
5/2+ 2 −0.476 55.98

states in the corresponding partial wave. For the p wave, we
take 51.3 MeV, as in Ref. [25].

Since the ground and first excited states of 14C both have
a strong single-particle character, their spectroscopic factors
can be approximated as 1.0 in the present context. The E1
capture to the positive-parity ground and first excited states
proceeds from the p wave. The coefficients S0, s1, and s2

calculated as explained in Sec. II are displayed in Table IV.
The total product σv decreases with decreasing energy (see
Fig. 2). The thermal cross section is due either to an M1
transition from the s wave to the 1/2+ ground state or to an E2
transition from the s wave to the 5/2+ bound state. We cannot
estimate the M1 transitions: they vanish in the present model
because of the orthogonality between the initial and final radial
wave functions which belong to the same partial wave. We have
calculated the E2 capture, but it represents less than 10 % of
the cross section at thermal energy.

Weighting the various expressions (1) with the spectro-
scopic factor, the experimental data can thus be parametrized
as

σv = 1.76 × 10−3E(1 − 0.85E + 0.54E2) mb c. (20)

Notice the additional factor E due to the initial p wave. This
simple parametrization is represented by a dashed line in Fig. 2.
It is valid up to about 0.8 MeV.

D. Reaction 16O(n,γ )17O

The 17O nucleus possesses four bound states: 5/2+ at
−4.144 MeV, 1/2+ at −3.273 MeV, 1/2− at −1.088 MeV, and
5/2− at −0.303 MeV with respect to the 16O + n threshold.
It also displays a narrow 3/2− resonance near 0.41 MeV.
The 16O(n,γ )17O thermal cross section has been measured
as 202 ± 28 µb [26] and 187 ± 10 µb [27]. The branching
ratios are (18 ± 3)% to the 1/2+ state and (82 ± 3)% to the
1/2− state. Since transitions to the 5/2− state are not observed,
we do not consider that state (which is not a single-particle
state) in the capture calculation. Measurements have also been
performed at neutron energies between 20 and 80 keV [3], at
280 keV [9], and on resonance at 45 keV [9,10].

The potential parameters we use for the reaction
16O(n,γ )17O are R = 3.15 fm and a = 0.62 fm. The depths
fitting the bound-state energies are given in Table V. For the

TABLE IV. Same as Table II, but for the reaction 14C(n,γ )15C.

J
πf

f lf li s1 s2 S0 SlJ

1/2+ 0 1 −0.903 0.654 1.70 × 10−3 1
5/2+ 2 1 0.633 −2.579 6.21 × 10−5 1

E  (MeV)

σv
 (

m
b 

c
)

10-2
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10-8 10-6 10-4 10-2 1

14C(n,γ)15C

FIG. 2. Comparison of potential model results (full line) and
experimental data from Ref. [12] (squares) for the 14C(n,γ )15C
reaction as a function of the neutron c.m. energy in MeV. An
upper bound is shown at the thermal energy. Parametrization (20)
is represented as a dashed line.

scattering s wave, we use the depth given in this table. It
provides a reasonable scattering length of 5.52 fm. Existing
data do not allow us to choose the depth of the scattering
p wave. We shall thus use three different depths: 53.6, 60,
and 64 MeV corresponding to the p-wave scattering lengths
of −10.8, −29.2, and −51.5 fm3.

The coefficients of the Taylor expansions are given in
Table VI for the potential depth 60 MeV in the initial p

wave. Since the ground state and the first excited state of 17O
both have a strong single-particle character, their spectroscopic
factor can be assumed to be 1.0. The second excited state of
17O is not a single-particle state. If we assume that the neutron
is in a p1/2 wave, the fact that it is not a single-particle state
is confirmed by the large depth necessary to reproduce its
binding energy. Since the spectroscopic factor of this state is
not available, we will fit it on the thermal cross section as
explained below.

The E1 capture to the positive-parity ground and first
excited states proceeds from the p wave. The product σv

decreases with decreasing energy, and this behavior cannot
explain the order of magnitude of the thermal cross section.
Yamamoto et al. [28] have proposed to explain the thermal
cross section by M1 transitions to the 1/2+ bound state.
However, the experimental branching ratios indicate that
thermal transitions mainly lead to the 1/2− bound state.
Moreover M1 transitions vanish in the present model as
explained above. They can be evaluated in a microscopic
cluster model [29]. Therefore, we approximate the thermal
cross section with an E1 transition to the 1/2− state and
adjust the spectroscopic factor to the experimental value.

TABLE V. Same as Table I, but for 17O.

J π l E VlJ

5/2+ 2 −4.142 57.26
1/2+ 0 −3.274 53.60
1/2− 1 −1.088 78.32
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TABLE VI. Same as Table II, but for the reaction 16O(n,γ )17O.

J
πf

f lf li s1 s2 S0 SlJ

5/2+ 2 1 0.516 −0.058 1.73 × 10−3 1
3/2+ 2 1 0.250 −0.124 4.99 × 10−3 1
1/2− 1 0 0.008 0.060 9.61 × 10−5 0.015

This approximate procedure leads to a value of 0.015 for the
coefficient, which is not strictly a spectroscopic factor since
it also simulates the M1 transition. The results displayed as a
full line in Fig. 3 fairly reproduce the data.

The coefficients S0, s1, and s2 are displayed in Table VI. By
weighting the various expressions (1) with the spectroscopic
factors, the experimental data can be parametrized as

σv = 1.44 × 10−6(1 + 4660E + 1480E2) mb c. (21)

This simple parametrization is represented by a dashed line in
Fig. 3. It is valid up to about 1 MeV.

If we use the other depths for the potential of the initial p

wave, the agreement of the potential model with the data is
less good. Figure 3 shows the corresponding parametrizations
as dotted lines. For the smaller depth 53.6 MeV, they lead
to smaller capture cross sections, while for the larger depth
64 MeV, they lead to larger ones. The model cross section
is thus sensitive to the scattering length of the initial wave.
To our knowledge, the p-wave scattering length is not known
for such a system. Here we find that it should be negative
and lie between −20 and −30 fm3. This result disagrees
with the value found with the microscopic cluster model,
which is positive, near 9 fm3 [30]. It would be interesting
to determine the scattering length for which this microscopic
model reproduces the capture cross section.

E  (MeV)

σv
 (

m
b 

c
)

10-2

10-3

10-4

10-5

10-6

10-8 10-6 10-4 10-2 1

16O(n,γ)17O

FIG. 3. Comparison of potential model results (full line) and
experimental data from Refs. [26,27] (square) and [3] (triangles)
for the 16O(n,γ )17O reaction as a function of the neutron c.m. energy
in MeV. The dashed line represents the Taylor expansion (21) for
a p-wave scattering length of −29.2 fm3. The lower and upper
dotted lines correspond to p-wave scattering lengths of −10.8 and
−51.5 fm3, respectively.

TABLE VII. Same as Table I, but for 19O.

J π l Ex VlJ

5/2+ 2 −3.959 57.73
3/2+ 2 −3.859 57.54
1/2+ 0 −2.483 53.90
3/2− 1 −0.018 78.588

E. Reaction 18O(n,γ )19O

The 19O nucleus has many states under the 18O + n

threshold. Most of these states have positive parity. The 5/2+
ground state is located at −3.957 MeV. The 3/2+ first excited
state and 1/2+ second excited state are located at −3.861 and
−2.485 MeV, respectively. These states are populated by E1
capture from the p wave. Two negative-parity states appear:
1/2− at −0.725 MeV and 3/2− at only −0.018 MeV. For
the latter state, we adopt the energy of Ref. [7] rather than the
usual value −13 keV. Capture from the s wave proceeds mostly
to this weakly bound 3/2− state as shown experimentally in
Ref. [7]. We thus neglect the capture to the 1/2− state.

The thermal cross section has been measured as 0.16 ±
0.01 mb [7]. Measurements have also been performed at
neutron energies between 10 and 80 keV [8] and between
25 and 370 keV [4].

Because several resonances exist below 1 MeV, parametriz-
ing the nonresonant part of the cross sections is more
difficult. However, it remains possible by focusing on neutron
energies below 300 keV. The potential parameters of reaction
18O(n,γ )19O are thus chosen to fit the low-energy cross section
data to avoid the effect of resonances as much as possible.

The potential parameters we use for reaction 18O(n,γ )19O
are R = 3.10 fm and a = 0.52 fm. The depths fitting the
bound-state energies are given in Table VII. The s1/2 depth
is also used for scattering in the s wave. The scattering length
is 5.75 fm. We have adjusted the depth for the initial p wave.
The obtained value is 60 MeV providing a scattering length of
−10.2 fm3.

The various parametrizations are displayed in Table VIII.
In our calculations, the spectroscopic factors used for the
positive-parity states are taken from the shell model calculation
of Ref. [4] and are given in Table VIII. The spectroscopic factor
of the 3/2− state is adjusted to the thermal data. The resulting
cross section obtained with the potential model is displayed as
a solid line in Fig. 4. It reproduces the data below the resonance
region. The point at the laboratory energy 370 keV is already
affected by the resonance.

TABLE VIII. Same as Table II, but for the reaction 18O(n,γ )19O.

J
πf

f lf li s1 s2 S0 SlJ

5/2+ 2 1 0.0115 −0.075 7.63 × 10−4 0.69
3/2+ 2 1 0.0115 −0.074 4.94 × 10−4 0.013
1/2+ 0 1 −0.233 0.0145 2.36 × 10−3 0.83
3/2− 1 0 −14.7 1198 4.36 × 10−6 0.25
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FIG. 4. Comparison of potential model results (full line) and
experimental data from Refs. [7] (square), [8] (triangle), and [4]
(circles) for the 18O(n,γ )19O reaction as a function of the neutron
c.m. energy in MeV. The dashed and dotted lines represent the Taylor
expansion (22) and the Padé expansion (24), respectively.

From Table VIII, the experimental data can be parametrized
as

σv = 1.09 × 10−6(1 + 2267E + 836E2) mb c. (22)

Figure 4 shows that the Taylor expansion can fit the potential
model well at low energy but has a validity limited to about
30 keV. Beyond that energy, the parametrization of the s-wave
partial cross section has a too large slope. This is not surprising:
the convergence of the Taylor expansion for s-wave capture is
limited as shown by the large s2 value in Table VIII because
of the weakly bound final state at EB = −0.018 MeV. The E1
cross section for s-wave capture would be better described with
a Laurent series containing a term (E − EB)−1 [31]. Rather
than the truncated Taylor expansion (1), we thus propose to
use for s-wave capture the Padé-like approximation

σv = S0

(
1 + s1E + s2E

2

1 − (E/EB)

)
. (23)

The Taylor expansion of this expression limited at order 2 is
still given by Eq. (1); but, in addition, it takes account of the
existence of a pole at the bound-state energy EB .

Combining the Taylor expansions (1) for the various
components of p-wave capture with approximation (22) for
s-wave capture, one obtains

σv = 1.09 × 10−6

×
(

1 + 2267E − 362E2 + 1198E2

1 + (E/0.018)

)
mb c.

(24)

Expression (24) is easily derived directly from Eq. (22). The
coefficient 1198 in the last term is the s2 value from the p3/2

line in Table VIII. The coefficient −362 of the E2 term is the
difference between s2 = 836 in Eq. (22) and 1198. As shown
in Fig. 4, this parametrization is valid up to about 0.8 MeV.

IV. CONCLUDING REMARKS

In this paper, nonresonant neutron capture cross sections
are parametrized below about 1 MeV by simple polynomials
obtained from Taylor expansions. In a case where s wave
capture proceeds to a weakly bound state, we have shown
that the same Taylor coefficients lead to a much better
parametrization under the form of a Padé-like approximation.
An exception is 7Li(n,γ )8Li, where the domain of validity can
nevertheless be enlarged with an empirical modification of the
Taylor polynomial. Such approximations can be useful for the
interpolation of experimental data and for the measurement of
resonance properties.

The derivation of these parametrizations is based on the
potential model of neutron capture. It involves a direct
calculation of the coefficients of a Taylor expansion on the
basis of a plausible potential. The resulting coefficients are
weighted by spectroscopic factors and/or by empirical factors
fitted on the thermal cross section.

In some cases where E1 capture proceeds to positive-
parity bound states, we have observed some sensitivity to the
scattering length of the initial p wave. Neutron capture may
thus offer an indirect way of obtaining some information about
the corresponding low-energy phase shifts. Since the value
obtained for neutron capture by 16O contradicts a microscopic
model [30], it would be interesting to perform a comparison
of this model with the same capture data.

Let us emphasize that the present approach can easily be
applied to any neutron capture reaction for which the potential
model can fairly reproduce the data. This is only possible, of
course, in an energy domain without or with few resonances.
These parametrizations can also easily be improved if new
data become available. The technique can be extended to the
microscopic cluster model as will be shown elsewhere.
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