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The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving
several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion
fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated
with the classical action in the classically forbidden region.
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I. INTRODUCTION

In complex quantum systems with several active degrees of
freedom, one usually finds a strong deviation of the tunneling
probability from the prediction of the simple one-dimensional
barrier penetration model. Experiments on the fusion of
nuclei at sub-barrier energies have clearly shown a very large
enhancement of the tunneling probability when compared to
simple one-dimensional barrier model calculations. In several
important theoretical papers [1–5] addressing the tunneling
problem in systems coupled to a reservoir attempts were
made to obtain semiquantitative, albeit important estimates
of the effects of the reservoir’s degrees of freedom on
the tunneling dynamics of the subsystem of interest. More
detailed numerical calculations based on the coupled-channels
description of, e.g., sub-barrier fusion, attempt to give a
quantitative description within a restricted dimension of the
reservoir (the number of channels strongly coupled to the
entrance channel) [6–9].

Furthermore, a very low energy fusion of light nuclei such
as 2H + 2H has been of interest over the last two decades
in the context of the so-called cold fusion. In this endeavor
the effect of the environment is important. Recent work on
the fusion of such light nuclei has indicated that in metals
electron screening is enhanced, reducing the fusion barrier
and accordingly enhancing fusion probability. Of course such
light ion reactions are of great importance in astrophysics
[10] and the understanding of the effect of the environment
on them has been under intensive experimental [11–13] and
theoretical [14–17] scrutiny. It would be a useful compliment
to the above discussion to find general inequalities that involve
the tunneling probability for a subsystem of the many-degrees-
of-freedom system when compared to the subsystem alone
(with the coupling to the reservoir being averaged). This is
the aim of the present work. We rely on a general theorem in
analysis referred to as the Jensen theorem.

The paper is organized as follows. In Sec. II, we introduce
Jensen’s inequality and show that what is known as Peierls
theorem is an example of such an inequality. We use the
scattering of heavy ions to illustrate this. In Sec. III we discuss
the tunneling in systems with many degrees of freedom.
The coupling is treated in the sudden limit. The uniform
approximation (also known as Kemble’s formula) of the
tunneling probability is then introduced and its evaluation
below and above the barrier is discussed. In Sec. IV the

Jensen’s inequality is applied to tunneling. The coupling
Hamiltonian is taken to be a function of the reservoir’s
variables, while the radial separation is fixed at the barrier
position. In Sec. V numerical examples are presented for
heavy ion fusion. Both heavy systems and very light systems
are considered. In the latter, we found that the application
of Jensen’s inequality is impractical. Finally, in Sec. VI
several concluding remarks are given. In Appendix A we give
supplementary details about how the uniform approximation
formula of the tunneling probability is evaluated above the
barrier, while in Appendix B, supplementary details of the
applicability of Jensen’s inequality at deep sub-barrier energies
are given.

II. THE JENSEN INEQUALITY AND PEIERLS THEOREM

The Jensen inequality [18] ensures that if F (f (ζ )) is a
functional of a function f (ζ ), then 〈F (f (ζ ))〉ζ � F (〈f (ζ )〉ζ )
if and only if F is a convex functional of f within the interval
in which the average 〈 〉ζ is being calculated. One possible
way of explicitly stating the Jensen inequality is the following:

∫ b

a
dζφ(ζ )F (f (ζ ))∫ b

a
dζφ(ζ )

� F

[∫ b

a
dζφ(ζ )f (ζ )∫ b

a
dζφ(ζ )

]
, (1)

if and only if F (f ) is a convex functional of f within the
interval [a, b], and φ(ζ ) is any positive integrable function.
If the convexity turns out to be a concavity, the inequality is
reversed.

One immediate consequence of the Jensen inequality is
Peierls theorem, which was used by Peierls [20] to prove
that the canonical partition function, Z(β), defined by Z(β) =
T r[exp[−βH ]], is greater than or equal to exp[−βTrH ].

Using Peierls theorem, Johnson and Goebel (JG) derived
an inequality involving the reflection above the barrier in order
to assess the effect of breakup on the elastic scattering of halo
nuclei [19]. That inequality clarified why the reaction cross
section calculated within the Glauber model is appreciably
smaller than that calculated using the optical limit of the model,
a point first emphasized in [21], thus resulting in larger radii of
halo nuclei. In the following we show that the result of JG [19]
and that of [21] can be considered as a consequence of the
Jensen inequality.
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In their above cited work, JG considered the elastic S-matrix
element for the lth partial wave

Sl(E, ζ ) = exp[2iδl(E, ζ )] = exp[f ] (2)

where the phase shift δl , in the JWKB approximation is given
by

δl(E, ζ ) = lim
r→∞

{∫ r

r0

dr ′kl(r
′, ζ ) −

∫ r

r
(0)
0

dr ′k(0)
l (r ′)

}
. (3)

Above, kl(r, ζ ) is the local wave number given by kl(r, ζ ) =√
2µ

h̄2 [E − Vl(r) − Fl(r)G(ζ )], where Fl(r)G(ζ ) is the contri-
bution for the effective potential which is due to the coupling
to the reservoir, which was considered to be separable. The
free particle local wave number is denoted by k

(0)
l (r), r0 is

the classical turning point defined by kl(r0, ζ ) = 0, and r
(0)
0

is the corresponding one for the free local wave number. The
asymptotic wave number is denoted by k = k

(0)
l (r = ∞) and

the mass by µ.
At high energies, one may expand the local wave number

in powers of Vl (r)+Fl (r)G(ζ )
E

and retain the leading term. This
constitutes the eikonal approximation considered by JG [19].
This approximation gives, for the phase shift,

δeikonal(E,b,ζ ) = − µ

h̄2k

∫ ∞

b

rdr
Vl(r) + Fl(r)G(ζ )√

r2 − b2
, (4)

where the impact parameter b = l+1/2
k

. We consider, as JG,
the case where the potential, and accordingly the form factor,
is purely absorptive (Vl(r) = −iWl(r) and Fl(r) = Vl (r)

dr
).

Then the phase shift δeikonal becomes pure imaginary and
f real. From the Jensen inequality and from the fact that
δeikonal(E, b, ζ ) is a linear function of G(ζ ) we obtain the
following inequality:

Sl(E, ζ ) � exp[−2|δeikonal(E, b, ζ )|] (5)

which is the result obtained in the work of JG.
The above inequality only holds for imaginary phase shifts.

Clearly the actual heavy-ion scattering at intermediate energies
involves complex phase shifts, and this fact points to an
inherent limitation of the work of JG. This limitation is
removed if we go to very low energies and consider fusion
which is dominated by quantum tunneling (with real action
integral).

III. TUNNELING IN SYSTEMS WITH MANY DEGREES OF
FREEDOM AND FUSION REACTIONS

In order to apply the Jensen inequality to tunneling and
fusion reactions, we recall first the expression for tunneling
probability provided by the coupled-channel treatment in the
case of a coupling to an oscillator reservoir with zero frequency
(sudden approximation), which can be cast as a simple average
[22]:

〈Tl(E)〉ζ ≡
∫

dζ |φ0(ζ )|2Tl[E,Vl(r) + Hint(r, ζ )], (6)

where Tl[E,Vl(r) + Hint(r, ζ )] is the transmission probability
evaluated at energy E with an effective potential Vl(r) +

Hint(r, ζ ), in which Hint(r, ζ ) is the potential term due to the
coupling to the reservoir. The wave function φ0(ζ ) denotes the
ground state wave function related to the reservoir coupling.
Of course wave functions for excited states of the considered
reservoir coupling can be used instead. The above equation
refers to the limit in which the intrinsic energies are small
compared to the coupling interaction, so that the reservoir
Hamiltonian is set equal to zero. For simplicity, we consider
in the following the coupling Hamiltonian to be operative
only at r = Rl , where Rl is the position of the angular
momentum-dependent barrier. Thus, Hint(r, ζ ) = Hint(Rl, ζ ).
Although this is a very rough approximation, it is a first step
in the direction of assessing the effects of the contribution of
the coupled potential on the transmission coefficient.

Using the Kemble [23] form of the transmission probability
below the barrier, which guarantees a 1/2 transmission at the
top of a symmetrical barrier [24], and takes into account
multiple reflections inside the barrier to all order if the
uniform approximation is used in a path integral formulation
of tunneling [25], Tl[E,Vl(r) + Hint(Rl,ζ )] is found to be

Tl[E,Vl(r) + Hint(Rl, ζ )]

= 1

1 + exp{gl[E,Vl(r) + Hint(Rl, ζ )]} , (7)

with gl[E,Vl(r) + Hint(Rl, ζ )] being twice the action integral
Sl , and is given by

gl[E,Vl(r) + Hint(Rl, ζ )]

=
√

8µ

h̄2

∫ r2(l,ζ )

r1(l,ζ )
dr

√
Vl(r) + Hint(Rl, ζ ) − E, (8)

where r1(l, ζ ) and r2(l, ζ ) are the real classical turning points
which are the roots of Vl(r) + Hint(Rl, ζ ) = E.

For the transmission probability above the barrier, a
detailed discussion was given, e.g., in [26] which shows that
Tl[E,Vl(r) + Hint(Rl, ζ )] can be written in exactly the same
form as for sub-barrier energies, if due attention is given to
the localization of the turning points and the branch cut in the
imaginary r plane arising from the square root. In Appendix A,
we give the full details of the arguments used by [26].

It is important to comment about the way the turning points
move around in the complex r plane as the energy is changed
gradually from below to above the barrier. Below the barrier,
there are two real turning points, the outer one r2 and the
inner one r1. As the energy is increased these turning points,
which are actually branch points, come closer and closer and
eventually they “collide” as E reaches the top of the barrier, and
move out into the complex plane, becoming complex conjugate
of each other for E above the barrier. This is shown in Figure 4
of [26]. The inner turning point moves to the upper half plane,
while the outer turning point moves to the lower half plane.
The calculation of the tunneling action which in our notation
is g/2, is performed introducing the branch cuts which render
such action real both below and above the barrier.

Guided by Brink and Takigawa [26], Kemble [23], and
Miller and Good [24], we adapted the following practical
prescription used in the numerical calculation. The expression
for the tunneling probability is formally similar to that used
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below the barrier,

Tl[E,Vl(r) + Hint(Rl, ζ )]

= 1

1 + exp{gl[E,Vl(r) + Hint(r, ζ )]} , (9)

with gl[E,Vl(r) + Hint(Rl, ζ )] given by

gl[E,Vl(r) + Hint(Rl, ζ )]

=
√

8µ

h̄2

∫ z2(l,ζ )

z1(l,ζ )
dr

√
(Vl(r) + Hint(Rl, ζ ) − E), (10)

where z1(l, ζ ) and z2(l, ζ ) are the complex conjugate roots
(z1 = z2∗) of the equation Vl(r) + Hint(Rl, ζ ) − E = 0, as-
suming a parabolic form for the potential, as done by [23]. As
emphasized by [26], z1 is located in the upper half plane, which
makes z2 to be in the lower half plane (see Appendix A). In
the actual evaluation of gl , the above turning points are used,
but the potential Vl(r) inside the square root in the integral
gl is treated exactly. Clearly, a consistent way to perform
the calculation is to follow [26] by first locating the exact
complex turning points and then choosing the integration
path along the branch cut that guarantees a real gl . This
procedure is demonstrated in Appendix A for the analytically
doable parabolic approximation which shows that gl (above
the barrier) = gl(below the barrier) = 2π

h̄ωl
[Vl(Rl) − E]. The

conclusion that gl (above the barrier) = gl (below the barrier),
if the correct integration route and turning points in the
complex r plane are employed, is a general property of
well-behaved interactions.

IV. JENSEN’S INEQUALITY AND TUNNELING

Bringing the Jensen inequality into the context of tunneling
and fusion probability, one can state that

〈Tl(E)〉ζ � Tl[E,Vl(r) + 〈Hint(Rl, ζ )〉ζ ], (11)

if and only if Tl[E,Vl(r) + Hint(Rl, ζ )] is a convex functional
of Hint(Rl, ζ ). In the equation above, 〈Hint(Rl, ζ )〉ζ is defined
as 〈Hint(Rl, ζ )〉ζ ≡ ∫ b

a
dζ |φ0(ζ )|2Hint(Rl, ζ ) and |φ0(ζ )|2 is

the square modulus of the normalized ground-state wave
function related to the reservoir. The same definition holds
for the average 〈Tl(E)〉ζ . Hence, it is necessary to determine
whether the transmission probability is a convex or a concave
function of Hint(Rl, ζ ) [where Hint(Rl, ζ ) is regarded as a
simple variable] in order to make a comparison of the type
of inequality (11). The interval [a, b] stands for all possible
values that the coordinate related to the oscillator reservoir, ζ,

may assume.
Let us introduce the quantity w(ζ ) = E − Hint(Rl, ζ ),

which will be used in our calculations in order to make the
physical comprehension clearer, that is, w(ζ ) will stand for
the effective energy. Because w(ζ ) is a linear function of
Hint(Rl, ζ ), the sign of the second derivative of the tunneling
probability Tl , with respect to w(ζ ) determines if Tl is a convex
functional of the function Hint(Rl, ζ ) or a concave one. For the
region bellow the barrier, such second derivative would be,

according to Eqs. (7) and (8),

∂2Tl

∂w2
= exp[hl(w)]

(1 + exp[hl(w)])3

{
(exp[hl(w)] − 1)(fl(w))2

+ (exp[hl(w)] + 1)

(
∂fl(w)

∂w

)}
, (12)

in which hl(w) =
√

8µ

h̄2

∫ r2(l,w)
r1(l,w) dr

√
Vl(r) − w and fl(w) =√

2µ

h̄2

∫ r2(l,w)
r1(l,w)

dr√
Vl (r)−w

.

For heavy ions at near-barrier energies, the effective
tunneling potential Vl(r) is usually approximated by a an
inverted parabola, which enables us to follow the Hill-Wheeler
procedure [27], in order to obtain a closed form for the Kemble
tunneling probability. For such heavy ions, the extra degree
of freedom, namely the coordinate ζ, would correspond to
the displacement due to vibrational modes, and the coupled
reservoir would be represented by an oscillator in this case.
Therefore, for such cases,

Vl(r) = VHWl(r) ≡ Vl(Rl) − 1
2µω2

l (r − Rl)
2. (13)

Hence

hl(w) =
√

8µ

h̄2

∫ r2(l,w)

r1(l,w)
dr

√
Vl(Rl) − 1

2
µω2

l (r − Rl)2 − w

= 2π

h̄ωl

[Vl(Rl) − w] (14)

and

fl(w) =
√

2µ

h̄2

∫ r2(l,w)

r1(l,w)

dr√
Vl(Rl) − 1

2µω2
l (r − Rl)2 − w

= 2π

h̄ωl

⇒ ∂fl(w)

∂w
= 0. (15)

The above result combined with Eq. (12) yields

∂2Tl

∂w2
= exp[hl(w)]

(1 + exp[hl(w)])3
(exp[hl(w)] − 1)(fl(w))2 > 0

(16)

and finally,

〈Tl[w(ζ ), VHWl(r)]〉ζ � Tl[〈w(ζ )〉ζ , VHWl(r)]

or, since 〈w(ζ )〉ζ = E − 〈Hint(Rl, ζ )〉ζ ,

〈Tl[E,VHWl(r) + Hint(Rl, ζ )]〉ζ
� Tl[E,VHWl(r) + 〈Hint(Rl, ζ )〉ζ ] (17)

for all l-partial wave functions and different values of µ.
Thus within the parabolic approximation for the potential, all
systems show enhanced tunneling.

Calculating the second derivative of the transmission
probability represented by Eqs. (9) and (10) and following
the same procedure described above, one finds that

〈Tl[E,VHWl(r) + Hint(Rl, ζ )]〉ζ
� Tl[E,VHWl(r) + 〈Hint(Rl, ζ )〉ζ ] (18)

for energies above the potential barrier. It means that within
the parabolic approximation for the potential, all systems show
hindered transmission above the barrier.
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The inequalities (17) and (18), attained solely by the
application of the Jensen inequality to an analytical form of the
transmission coefficient in which we consider a linear coupling
to the reservoir, have a direct correspondence to an empirically
well-known result obtained through numerical calculations
for different models, namely that the linear coupling to an
oscillator enhances the tunneling probability at energies below
the potential barrier in the absence of coupling, while hinders
the transmission probability at energies above the barrier. In
fact, the inequalities (17) and (18) lead exactly to such rule in
the special case that 〈Hint(Rl, ζ )〉ζ = 0.

We now assess the application of the Jensen inequality
for the case of low energies. By “low” energies, we mean
small values of the function w(ζ ). Here the coupling to the
reservoir could stand for coupling to the electronic degrees of
freedom. The parabolic approximation for the potential barrier
is not suitable for this case, and we shall use a general ion-ion
effective interaction, which has the form

V
l
(r) ≡ VN (r) + Z1Z2e

2

r
+ h̄2l(l + 1)

2µr2
, (19)

where VN (r) is the nuclear attractive potential. Although not
being parabolic, the above potential barrier can be regarded as
locally parabolic for regions close to the top of the barrier.
For that reason, we still make use here of the Eq. (7) in
order to evaluate the tunneling probability. As shown in the
Appendix B, whatever specific analytic form the short-range
nuclear interaction, VN (r), may take, a potential barrier
resulting from Vl(r) of Eq. (19) always leads to the following
important Jensen inequality for very small values of w

and/or E:

〈Tl[E,Vl(r) + Hint(Rl, ζ )]〉ζ
� Tl[E,Vl(r) + 〈Hint(Rl, ζ )〉ζ ], (20)

where Vl(r) is defined by Eq. (19).
This very general result implies that whatever attractive

nuclear potential model one may use, the plot of the curve of
the transmission probability versus w(ζ ), where w(ζ ) = E −
Hint(Rl, ζ ), is always convex for small values of w, leading to
enhanced tunneling.

So far we have concentrated our attention on the lth
transmission coefficient. The experimental data, on the other
hand, are represented by the fusion cross section defined by

σF (E) = πh̄2

2µE

∞∑
l=0

(2l + 1)Tl(E) =
∞∑
l=0

σl(E). (21)

From Eq. (21), we see that the dependence of σF (E) on the
coupling Hint(Rl, ζ ) lies only on the terms Tl(E). Then, if it is
possible to state that, for instance, Tl(E) is a convex functional
of Hint(Rl, ζ ) for all values of the quantum number l, then one
can also state that σF (E) is a convex functional of Hint(Rl, ζ ).
The above lends support to the general idea that there is an
enhancement of the fusion cross section when coupling to the
degrees of freedom of the reservoir are taken into account,
namely,

〈σF (w(ζ ))〉ζ � σF (〈w(ζ )〉ζ ) (22)

for the fusion process occurring via tunneling through a
potential barrier.

This is easily seen at deep sub-barrier energies, where
in fact the transmission coefficient or tunneling probability
can be approximated by an exponential, since the action in
the uniform approximation for the transmission coefficient is
small:

σF (E) = πh̄2

2µE
T0(E)

= πh̄2

2µE
exp[−g0(E,V (r) + Hint(Rl, ζ ))]. (23)

As shown in Appendix B, the above function is convex in
Hint(Rl, ζ ) for w(ζ ) → 0, and thus its average over ζ is greater
than that calculated with 〈Hint(Rl, ζ )〉ζ . Thus, we can state

〈exp [−g0(E,V (r) + Hint(Rl, ζ ))]〉ζ
� exp [−g0(E,V (r) + 〈Hint(Rl, ζ )〉ζ )] (24)

which represents the very low energy tunneling version of the
JG inequality of elastic scattering eikonal S-matrix element of
halo nuclei.

It is by now well known that a large enhancement in σF

over the no-coupling limit has been observed for most heavy-
ion fusion systems at sub-barrier energies [30]. Recently,
it has been reported that at deep sub-barrier energies, this
enhancement is reduced [31] [unfortunately, this effect has
been widely called “hindrance,” which should not be confused
with what we mean by hindrance in this paper, namely, a
concave behavior of Tl(w(ζ )) as a function of Hint(Rl, ζ )].

V. NUMERICAL EXAMPLES

From the results depicted by Eqs. (17) and (18) and by
Eq. (20), one is compelled to infer that, in general, the tunneling
probability Tl would tend to be a convex functional of the
function w(ζ ), when w(ζ ) assumes values which are smaller
than the potential barrier height, and a concave functional of
w(ζ ) for higher values of this function. In order to assess the
validity of the analytical results we obtained so far, we plot the
transmission probability as a function of w, as it can be seen
in Fig. 1, for the systems (a) 64Ni + 64Ni and (b) 16O + 150Sm,
both for l = 0. There, the tunneling probability was defined
by Eqs. (7) and (8) and by Eqs. (9) and (10), respectively,
for values of w below and above the top of the barrier. The
potential barrier used was the ion-ion effective interaction
represented by Eq. (19), where the nuclear interaction was
taken to be the Woods-Saxon potential:

VN (r) = −V0

1 + exp
(

r−R0
ap

) (25)

in which the diffuseness ap was 0.65 fm, the effective nuclear
radius of the system was taken to be R0 = 1.31( 3

√
A1 +

3
√

A2) − 1.68 fm, where A1 and A2 are the mass numbers of the
nuclei involved in the fusion reaction, and the potential strength
V0 was adjusted to make the potential above to coincide with
the numerical value provided by the São Paulo potential on the
effective nuclear surface [28,29].
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FIG. 1. (Color online) Tunneling probability versus the function w(ζ ) for l = 0, for the systems (a) 64Ni + 64Ni and (b) 16O + 150Sm.
The curves show a convex dependence of the tunneling probability functional on the function w(ζ ) in the classically forbidden region
0 � T (w) � 0, 5, while in the classically allowed region the curves become concave. Since the concavity changes, the Jensen inequality is
reversed when one goes from below to above the barrier region, and as a consequence the enhancement seen in the former region becomes a
hindrance in the latter.

This general property of convexity of the unaveraged
tunneling probability for Tl(w) � 0.5 implies an enhanced
tunneling or fusion, as experimental data seem to clearly
indicate [30].

However, plots of the tunneling probability as a function
of w(ζ ) for very light ions (such as hydrogen and helium
isotopes) display a different behavior concerning the concavity
of the curves, as shown in Fig. 2 for the systems (a) 2H + 2H
and (b) 3H + 3H, both graphics for l = 0. These graphics
were obtained using the same method as in Fig. 1, i.e., the
transmission probability was defined by Eqs. (7) and (8) and
by Eqs. (9) and (10), respectively, for values of w below
and above the top of the barrier. The potential barrier used
was also given by Eq. (19), where the nuclear interaction
had Woods-Saxon form. For such light ions, the curve of Tl

versus w(ζ ) presents three inflection points instead of only one,
becoming concave before w reaches the value correspondent
to the top of the potential barrier. This result is in contradiction
with the general analytical result represented by Eq. (17),
where the parabolic potential was used to approximate the real
potential barrier. That happens possibly because for light ions
such approximation for the potential barrier is not suitable, as
it appears that a more accurate approximation that would take
into account the highly asymmetrical character of the potential
curve would be required. A third degree polynomial would
be a better fit for this purpose, but the analytical treatment
becomes extraordinarily more complicated. In addition, the
asymmetrical character of the barrier limits even the validity
of the analytical form for the tunneling probability represented
by Eqs. (7) and (8).
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FIG. 2. (Color online) Tunneling probability versus the function w(ζ ) for l = 0, for the systems (a) 2H + 2H and (b) 3H + 3H. Both curves
show more than one inflection points, when compared to the heavy ion systems of Fig. 1, which may be due to the highly asymmetrical potential
barrier in such very light systems. The Jensen inequality reverses several times, making it of lesser practical use in such systems.
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VI. CONCLUSIONS

In conclusion we have considered some general properties
of the tunneling probability for systems coupled to a reservoir.
Using the Jensen inequality, we have shown that within
the Kemble/uniform approximation theory of the tunneling
probability, the average tunneling probability is in general
larger than that calculated when the reservoir degrees of
freedom are averaged out at the outset. On the other hand,
the average transmission probability at energies above the
barrier is in general smaller than that calculated when the
reservoir degrees of freedom are averaged out at the outset.
This has an immediate consequence on sub-barrier fusion
of heavy ions, where data seem to indicate an enhanced
tunneling owing to the coupling to the reservoir (coupled
channels effects). In addition, we have shown that the results
obtained by JG [19] can be generalized by using the Jensen
inequality. The underlying mathematical dependence of the
tunneling probability as a function of the reservoir coupling,
namely the tunneling probability is in general a convex
functional of the coupling hamiltonian in the classically
forbidden region, and a concave functional of the coupling in
the classically permitted region allows the Jensen inequality
to be applied to this research field in order to compare two
different forms of reaction probabilities, both of physical
interest. The inequalities obtained in this work lend support
to the idea that the one-dimensional barrier penetration model
leads to inherent deviations from the expected values for the
transmission coefficient, even if its parameters are adjusted
in the best possible way in order to represent the physical
phenomenon.

Our results for very light ion fusion shown in Fig. 2 do
not allow the use of the Jensen inequality, applied to the
Kemble/uniform approximation tunneling probability, since
several reversals of the inequality occur as the “energy”
changes. Thus the peculiar behavior presented by the curves
of tunneling probability for light ions indicates that for such
systems a more accurate treatment of semiclassical tunneling
through an asymmetrical potential barriers is called for [24] in
order to determine whether one has enhancement or hindrance
owing to the presence of the environment.
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APPENDIX A

We discuss here how to evaluate the action integral in
the formula of the tunneling probability in the uniform

approximation by considering the branch cuts for the square
root in a consistent way.

We follow the paper by Brink and Takigawa [26], which we
call paper I in the following, and use this letter (I) to label the
turning points and the way to choose the branch cuts arising
from the square root inside the action integral S.

The tunneling probability in the uniform
approximation/Kemble is given by

T = 1

1 + exp [g]
, (A1)

g ≡ 2S = 2
∫ r2

r1

√
2m

h̄2 (V (r) − E)dr, (A2)

where the r1 is the inner turning point and r2 the outer turning
point, respectively.

Our concern is how to evaluate the action integral g/2 in a
consistent way when the energy E varies from below to above
the potential barrier.

For illustration, let us consider a parabolic potential barrier,

V (r) = V0 − 1
2m	2(r − R0)2. (A3)

In this case, the action integral becomes

g = 2
m	

h̄

∫ r2

r1

√
(r2 − r)(r − r1)dr, (A4)

r2 = R0 +
√

2(V0 − E)

m	2
= R0 + 
r, (A5)

r1 = R0 − 
r. (A6)

The phase of the argument of the square root in Eq. (A4)
should be chosen to be consistent with the choice of the branch
cuts so as to give the correct result for E < V0, a case whose
result is well known. As we see later, this consideration leads
to

g = 2
m	

h̄
e− π

2 i

∫ r2

r1

√
(r − r1)(r − r2)dr. (A7)

1. The case when E � V0

Let us first consider the tunneling probability under the
barrier, i.e., the case when E � V0.

If the potential is real, as is in our case here in this paper,
two turning points lie on the real axis of the complex r plane.

The action integral is taken along the real r axis

r = r1 + ρ, dr = dρ. (A8)

As stated before, we introduce the branch cuts following
paper I, i.e., the upward branch cut stemming from the
inner turning point r1(− 3

2π < arg(r − r1) < 1
2π )), and the

downward branch cut from the outer turning point r2(− 1
2π <

arg(r − r2) < 3
2π )) (see Fig. 2 in I). The magnitude and the

phase of r − r2 and r − r1 along the integration path are then
given by

r − r2 = (2
r − ρ)eiπ , (A9)

r − r1 = ρei0. (A10)

034610-6



JENSEN INEQUALITIES FOR TUNNELING . . . PHYSICAL REVIEW C 80, 034610 (2009)

Therefore,

g = 2
m	

h̄
e− π

2 ieiπ/2
∫ 2
r

0

√
(2
r − ρ)ρdρ (A11)

= 2π
V0 − E

h̄	
. (A12)

The tunneling probability is thus given by

P = 1

1 + e
2π(V0−E)

h̄	

. (A13)

This agrees with the well-known result. It is commonly
referred to as the Hill-Wheeler formula. This also shows that
the phase choice Eq. (A7) is correct.

2. The case when E � V0

The turning points move into the complex r plane, i.e.,
become complex numbers, at energies above the potential
barrier. We could say that as the energy is increased from
below the barrier to above the barrier, the turning points move
toward each other on the real axis till they reach R0 at E = V0

at which point they “collide” and “scatter” into the complex r

plane. As can be seen in Fig. 4 in I, the inner turning point, r1,
moves to upper half plane, while the outer turning point, r2,
moves to the lower half plane.

Therefore, corresponding to Eqs. (A5) and (A6), we have,
for the outer and the inner turning points,

r2 = R0 + e− π
2 i

√
2(E − V0)

m	2
= R0 + e− π

2 i
′r, (A14)

r1 = R0 + e
π
2 i

√
2(E − V0)

m	2
= R0 + e

π
2 i
′r. (A15)

The integration is taken vertically along the imaginary r

axis, which we denote as

r = R0 + iy, dr = idy. (A16)

Along the integration path, our choice of the branch cuts lead
to

r − r2 = e
π
2 i(y − (−
′r)) = e

π
2 i(y + 
′r), (A17)

r − r1 = e− π
2 i(
′r − y). (A18)

Therefore, the action integral becomes

g = 2
m	

h̄
e− π

2 i i

∫ −
′r


′r
dye

π
4 i

√
y + 
′re− π

4 i
√


′r − y

(A19)

= −2
m	

h̄

∫ 
′r

−
′r

√
(y + 
′r)(
′r − y)dy (A20)

= −2π (E − V0)

h̄	
. (A21)

This is the desired result. Formally, it is the same as
Eq. (A12) for energies below the potential barrier.

For the general case of a potential such as the one used here,
the arguments above still holds, namely the Kemble/uniform
approximation formula for the tunneling probability T =

1
1+exp [g] with g being twice the action integral in the classically

forbidden region (the barrier region), holds both below and
above the barrier, if due attention is given to the location of
the branch points and the integration path. Clearly adding the
coupling interaction does not alter this general conclusion.

APPENDIX B

In this appendix we apply the Jensen inequality for the
tunneling probability for very small w and/or E, Eq. (17).

From Eq. (12), it follows that for small values of w(ζ ), one
has

∂2Tl

∂w2
≈ exp[2hl(w)]

(1 + exp[hl(w)])3

{
(fl(w))2 +

(
∂fl(w)

∂w

)}
, (B1)

where fl(w) and hl(w) are defined as in Eq. (12). From the
equation above, we see that the sign of ∂2Tl

∂w2 will depend

exclusively on the term {(fl(w))2 + ( ∂fl (w)
∂w

)}. We will show
that such term, considering the potential barrier for fusion
reaction with which we are dealing [Eq. (19)], is always
positive when w(ζ ) tends to zero. In order to do this, we
first assume the contrary, namely we suppose that {(fl(w))2 +
( ∂fl (w)

∂w
)}w→0 � 0. Then,

lim
w→0

{
− d

dw

(
1

fl(w)

)}
� − 1 ⇒ 1 � lim

w→0
{wfl(w)}

⇒ 1 � lim
w→0

{√
2µ

h̄2 w

∫ r2(l,w)

r1(l,w)

dr√
Vl(r) − w

}
.

Now, let us make

lim
w→0

{∫ r2(l,w)

r1(l,w)

dr√
Vl(r) − w

}
= lim

w→0

{∫ r∗

r1(l,w)

dr√
Vl(r) − w

}

+ lim
w→0

{∫ r2(l,w)

r∗

dr√
Vl(r) − w

}
in which r1(l, w) < r∗ < r2(l, w). Here r∗ is chosen to be
greater than the distance at which the attractive nuclear
potential becomes negligible. Hence, for w → 0, we have

1 � lim
w→0

{√
2µ

h̄2 wI1

}
+ lim

w→0

{√
2µ

h̄2 wI2

}
, (B2)

where I1 ≡ ∫ r∗

r1(l,w)
dr√

Vl (r)−w
and I2 ≡ ∫ r2(l,w)

r∗
dr√

Vl (r)−w
. Clearly

I1 is bounded for all values of w → 0, and therefore

limw→0{
√

2µ

h̄2 wI1} = 0. That leave us with the inequality

1 � lim
w→0

{√
2µ

h̄2 wI2

}
. (B3)

We now turn to the question whether wI2 is bounded for
w → 0. Performing a change of variables, namely y = V

l
(r) −

w, one gets for I2

I2 =
∫ 0

V (r∗)−w

dy√
y

dV −1
l (y + w)

dy
.

Since the point r∗ is taken to be much greater than the
effective nucleus radius, the contribution for the total potential
V

l
(r) of the attractive Woods-Saxon potential can be neglected
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within the interval (r∗, r2(l, w)). Therefore, in the calculations
for I2, we approximate

V
l
(r) ≈ C1

r
+ C2l

r2
(B4)

in which C1 = Z1Z2e
2 and C2l = h̄2l(l+1)

2µ
. Clearly C1 and

C2l are non-negative. Here we first assume that l �= 0, and
therefore C2l is strictly positive. From Eq. (B4), we have

r =
C1 +

√
C2

1 + 4(y + w)C2l

2(y + w)

and accordingly

I2 =
∫ 0

C1
r∗ + C2l

r∗2 −w

dy

⎡
⎣ C2l

(y + w)
√

y(C2
1 + 4(y + w)C2l)

−
C1 +

√
C2

1 + 4(y + w)C2l

2
√

y(y + w)2

⎤
⎦ .

It is not difficult to prove that ∂I2
∂C1

> 0. A direct consequence
of this fact is that limC1→0{I2(C1)} � I2(C1), since C1 is
positive. Hence

√
C2l

w

√
1 − w(r∗)2

C2l

� I2 ⇒
√

C2l � lim
w→0

{wI2(w)}.

Combining the last result with the inequality (B3) we find

1 �
√

2µ

h̄2 lim
w→0

{wI2(w)} �
√

2µ

h̄2 C2l

which implies the absurd result that
√

l(l + 1) � 1
since C2l = h̄2l(l+1)

2µ
. By assumption, l �= 0, and hence

the minimum value for the term
√

l(l + 1) is
√

2. That leads
us to a contradiction, and therefore our initial assumption,
{(fl(w))2 + ( ∂fl (w)

∂w
)}w→0 � 0 cannot be true. Let us examine

now the case where l = 0, which means that the effective
potential Vl(r) used in I2 will be just the Coulomb potential:

V0 (r) ≈ C1

r
.

With the above potential, the integral I2 becomes, for
w → 0,

I2 = r∗
√

w

√
C1

wr∗ − 1 + 2C1

w
3
2

arctan

×
{

exp

[
arccosh

(√
C1

wr∗

)]}
− πC1

2w
3
2

. (B5)

Multiplying both sides of Eq. (B5) by w and taking
the limit w → 0, we find that limw→0{wI2(w)} = ∞, and
therefore the inequality (B3) can neither be satisfied for the
case of the partial wave with l = 0, nor the case l �= 0.
This proves that the assumption we made at the beginning
of this section, namely {(fl(w))2 + ( ∂fl (w)

∂w
)}w→0 � 0, is false.

Therefore, recalling Eq. (B1), we have that for small values of
w(ζ ), ∂2Tl

∂w2 > 0, which implies, for w → 0, that

〈Tl[E,Vl(r) + Hint(Rl, ζ )]〉ζ
� Tl[E,Vl(r) + 〈Hint(Rl, ζ )〉ζ ], (B6)

where Vl(r) is defined by Eq. (19).
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