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Isospin dependent global nucleon-nucleus optical model at intermediate energies
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A global nucleon-nucleus optical potential for elastic scattering has been produced which replicates
experimental data to high accuracy and compares well with other recently formulated potentials. The calculation
that has been developed describes proton and neutron scattering from target nuclei ranging from carbon to nickel
and is applicable for projectile energies from 30 to 160 MeV. With these ranges it is suitable for calculations
associated with experiments performed by exotic beam accelerators. The potential has both real and imaginary
isovector asymmetry terms to better describe the dynamics of chains of isotopes and mirror nuclei. An analysis
of the validity and strength of the asymmetry term is included with connections established to other optical
potentials and charge-exchange reaction data.
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I. INTRODUCTION

The fitting of global nucleon-nucleus optical model po-
tentials (OMP) for elastic scattering has a venerable his-
tory [1–10]. The global optical potential of this work (WP
OMP) was specifically designed with the next generation of
radioactive beam accelerators in mind. It attempts to fit a
lighter range of targets (12 � A � 60), including those far
from stability, and it is over a limited projectile energy range
(30 MeV � E � 160 MeV). This research has produced one
continuous global isospin dependent OMP which incorporates
both proton and neutron scattering and real and imaginary
isovector asymmetry terms. Overall the potential of this work
is recommended if one is interested in examining trends in
the light and medium nuclei, specifically isospin asymmetry
dependencies, shell closure, and neutron excess in isotopes.
Since the elastic potential is often used as a starting point
in developing further inelastic results, this global optical
potential will give the researcher a consistent formulation over
a wide variety of nuclei from which to generate multichannel
calculations. To promote its use we provide an on-line optical
potential calculator [11].

Recently there has been the development of two other
modern global OMPs for nucleon-nucleus elastic scattering
which cover an extensive projectile energy and target range:
the potentials of Koning and Delaroche (KD OMP) [1] and
Madland (MD OMP) [2]. Specifically the potential of Ref. [1]
has set an impressive benchmark for its extensive projectile
energy range (1 keV to 200 MeV) and its accuracy of fit.
We will make theoretical and calculatable comparisons of the
new WP OMP to these noteworthy potentials throughout this
article.
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In Sec. II we briefly discuss the theory of the global optical
potential. A summary of our theoretical fitting procedure
and the experimental reactions constraining the fit follows in
Sec. III. A generous amount of example calculations, given
in Sec. IV, compare the results of this potential with the two
other contemporary optical potentials. This is followed, in
Sec. V, by a detailed analysis of the isovector asymmetric
term identifying dramatic differences in the magnitude and
character of the isovector asymmetry N − Z term of the three
global OMPs as well as with standard t − ρ microscopic
potentials. Reactions are isolated which would better constrain
the isovector term in the future. We end with concluding
remarks and future directions.

II. THEORY

The theoretical and computational aspects of creating
a global optical potential have been discussed in detail
elsewhere, we only mention a few works which were found
to be especially useful for this research. The seminal work
of Melkanoff et al. [12] discusses in thorough detail many
of the hurdles that need to be overcome when attempting a
computational fitting of nuclear scattering data. Beccetti and
Greenless [3] created the first comprehensive and still viable
global optical potential, we especially found poignant their
discussion on weighting the various observables. Recently
Koning and Delaroche have provide the nuclear physics
community with an ambitious optical model potential (KD
OMP) [1] as previously mentioned. The work accompanying
the KD OMP was beneficial for its clear discussion of
theoretical issues and its extensive and comprehensive tables
of available experimental data.

A. A new potential

Our complex phenomenological optical model potential
contains the traditional volume (V ), surface (S), and spin-orbit
(SO) nuclear terms which are delineated using the standard
Woods-Saxon form factors

fWS(r,Ri ,Ai) = (1 + exp ((r − Ri)/Ai))
−1 , (1)
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where Ri is the radius parameter and Ai is the geometric
diffusive parameter. The i is a placeholder index for the V

(volume), S (surface), and SO (spin orbit) designations. The
phenomenological optical model potential takes the standard
form

U(r, E,A,N,Z,P,MN)

= −VV (E,A,N,Z,P,MN)fWS(r,RV ,AV )

− iWV (E,A,N,Z,P,MN)fWS(r,RV ,AV )

+ 4ASVD(E,A)
d

dr
fWS(r,RS,AS)

+ i4ASWD(E,A,N,Z,P)
d

dr
fWS(r,RS,AS)

+ 2

r
VSO(E,A,N,Z,P)

d

dr
fWS(r,RSO,ASO)(l · σ )

+ i
2

r
WSO (E,A,N,Z,P)

d

dr
fWS(r,RSO,ASO )(l · σ )

+ fcoul(r,RC,A,N,Z,P), (2)

where the Vi and Wi are the real and imaginary potential
amplitudes, respectively, and fcoul is the Coulomb term which
has the following traditional format:

fcoul(r,RC,A,N,Z,P) = 1 + P
2

Ze2

r
,

(3)
r � RC,

fcoul(r,RC,A,N,Z,P) = 1 + P
2

Ze2

2RC

(
3 − r2

RC
2

)
,

(4)
r � RC.

For a neutron projectile this term is set to zero. The amplitudes,
radii, and diffusive parameters have the following dependent
variables:

(i) E—projectile nucleon laboratory energy in MeV
(ii) A—Atomic number of the target nucleus

(iii) N—Number of neutrons in the target nucleus
(iv) Z—Number of protons in the target nucleus
(v) P—+1 if projectile is a proton, −1 if a neutron

(vi) MN—set to 1 if the target is traditionally singly magic
—set to 2 if the target is traditionally doubly magic
—otherwise set to 0.

Explicitly the 13 Woods-Saxon terms of this OMP are given
using 23 distinct parameters where one Woods-Saxon potential
term may have up to three of these parameters. The systematic
polynomial formats of these terms are described below. The
parameters are purposely labeled to emphasize that each was
fitted independently in the process of arriving at the final WP
OMP, the techniques used will be detailed in Sec. III.

Here are the polynomial forms of this optical potential
beginning with the volume amplitudes:

VV = VV0 + VV1A + VV2A
2 + VV3A

3 + VV5E

+VV6E
2 + VV7E

3 (5)

+P(N − Z)
(
VVi0 + VVi1A + VVi2A

2 + VVi3A
3

+VVi4A
4 + VVi5E + VVi6E

2
)

(6)

+MN
(
VVm0 + VVm1A + VVm2A

2 + VVm3A
3

+VVm5E + VVm6E
2), (7)

WV = WV0 + WV1A + WV2A
2 + WV3A

3 + WV5E

+WV6E
2 + WV7E

3 (8)

+P(N − Z)
(
WVi0 + WVi1A + WVi2A

2 + WVi3A
3

+WVi4A
4 + WVi5E + WVi6E

2
)

(9)

+MN
(
WVm0 + WVm1A + WVm2A

2 + WVm3A
3

+WVm5E + WVm6E
2
)
. (10)

The surface amplitudes are

VS = VS0 + VS1A + VS2A
2 + VS3A

3 + VS5E

+VS6E
2 + VS7E

3, (11)

WS = WS0 + WS1A + WS2A
2 + WS3A

3 + WS5E

+WS6E
2 + WS7E

3 (12)

+P(N − Z)
(
WSi0 + WSi1A + WSi2A

2 + WSi3A
3

+WSi4A
4 + WSi5E + WSi6E

2). (13)

The spin orbit amplitudes are

VSO = VSO0 + VSO1A + VSO2A
2 + VSO3A

3 + VSO5E

+VSO6E
2 + VSO7E

3 (14)

+P(N − Z)
(
VSOi0 + VSOi1A + VSOi2A

2

+VSOi3A
3 + VSOi4A

4 + VSOi5E + VSOi6E
2
)
,

(15)

WSO = WSO0 + WSO1A + WSO2A
2 + WSO3A

3 + WSO5E

+WSO6E
2 + WSO7E

3 (16)

+P(N − Z)
(
WSOi0 + WSOi1A + WSOi2A

2

+WSOi3A
3 + WSOi4A

4 + WSOi5E + WSOi6E
2
)
.

(17)

The volume radius and diffusive terms are

RV = RV0 + RV1A + RV2A
2 + RV3A

3 + RV5E

+RV6E
2 + RV7E

3, (18)

AV = AV0 + AV1A + AV2A
2 + AV3A

3 + AV5E

+AV6E
2 + AV7E

3 (19)

+P(N − Z)
(
AVi0 + AVi1A + AVi2A

2 + AVi3A
3

+AVi5 E + AVi6E
2 + AVi7E

3
)
. (20)

The surface radius and diffusive terms are

RS = RS0 + RS1A + RS2A
2 + RS3A

3 + RS5E

+RS6E
2 + RS7E

3, (21)

AS = AS0 + AS1A + AS2A
2 + AS3A

3 + AS5E

+AS6E
2 + AS7E

3, (22)

the spin-orbit radius and diffusive terms are

RSO = RSO0 + RSO1A + RSO2A
2 + RSO3A

3 + RSO5E

+RSO6E
2 + RSO7E

3 (23)

+P(N − Z)
(
RSOi0 + RSOi1A + RSOi2A

2 + RSOi3A
3

+RSOi5E + RSOi6E
2 + RSOi7E

3
)
, (24)
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TABLE I. Model parameters for the subject of this work, the WP global optical potential Each term is a 5 to 7 term separable polynomial in
A are E which are given in Eqs. (5)–(27). Tools have been developed to facilitate the use of this potential including an on-line optical potential
calculator [11].

Term 0 1 (A) 2 (A2) 3 (A3) 4 (A4) 5 (E) 6 (E2) 7 (E3)

V +5.703 × 10+1 +4.099 × 10−1 −8.656 × 10−3 +5.793 × 10−5 – −5.881 × 10−1 +1.822 × 10−3 –
Vi −7.810 × 10+0 +1.054 × 10+0 −4.616 × 10−2 +8.384 × 10−4 −5.416 × 10−6 −6.729 × 10−3 +3.684 × 10−5 –
Vm −3.723 × 10−1 +6.563 × 10−3 −5.308 × 10−4 +7.987 × 10−6 – +2.515 × 10−3 −5.607 × 10−6 –
W −1.897 × 10+0 −1.843 × 10−1 +5.034 × 10−3 −3.814 × 10−5 – +2.367 × 10−1 −1.423 × 10−3 2.556 × 10−6

Wi +8.216 × 10+0 −8.359 × 10−1 +3.221 × 10−2 −5.426 × 10−4 +3.320 × 10−6 +8.446 × 10−3 −2.644 × 10−5 –
Wm −3.781 × 10+0 +1.818 × 10−1 −4.772 × 10−3 +3.374 × 10−5 – +4.157 × 10−2 −2.149 × 10−4 –
VS −4.612 × 10−1 −1.178 × 10−2 +9.658 × 10−4 −1.270 × 10−5 – +7.906 × 10−3 −4.230 × 10−5 –
WS +6.189 × 10+0 +1.740 × 10−1 −4.790 × 10−3 +3.670 × 10−5 – −6.423 × 10−2 −3.753 × 10−4 +3.096 × 10−6

WSi
+3.471 × 10+0 −4.265 × 10−1 +1.670 × 10−2 −2.828 × 10−4 +1.744 × 10−6 +1.449 × 10−2 −8.093 × 10−5 –

VSO +1.562 × 10+1 −1.202 × 10−1 +1.765 × 10−3 – – −1.923 × 10−1 +1.168 × 10−3 +2.400 × 10−6

VSOi
−3.666 × 10+0 +7.228 × 10−1 −3.524 × 10−2 +6.493 × 10−4 −4.151 × 10−6 +2.472 × 10−3 −3.317 × 10−6 –

WSO +3.929 × 10−1 +1.660 × 10−1 −5.369 × 10−3 +4.646 × 10−5 – −3.702 × 10−2 +9.223 × 10−5 –
WSOi

+5.399 × 10+0 −4.639 × 10−1 +1.718 × 10−2 −2.809 × 10−4 +1.696 × 10−6 −1.720 × 10−2 +1.234 × 10−4 –
RV +1.491 × 10+0 −1.971 × 10−2 +5.447 × 10−4 −4.561 × 10−6 – −6.255 × 10−3 +9.064 × 10−5 −3.187 × 10−7

AV +1.933 × 10−1 +3.484 × 10−2 −9.172 × 10−4 +6.999 × 10−6 – +5.762 × 10−3 −6.097 × 10−5 +1.929 × 10−7

AVi
+2.207 × 10−3 +5.253 × 10−3 −1.970 × 10−4 +2.043 × 10−6 – −5.014 × 10−4 +1.898 × 10−6 –

RS +8.599 × 10−1 −5.657 × 10−3 +8.884 × 10−5 +7.253 × 10−7 – +1.024 × 10−2 −4.166 × 10−5 –
AS +9.477 × 10−1 +5.097 × 10−3 +1.201 × 10−4 −2.824 × 10−6 – −1.255 × 10−2 +4.597 × 10−5 –
RSO +8.293 × 10−1 +3.098 × 10−2 −7.747 × 10−4 +6.035 × 10−6 – −3.894 × 10−3 +1.799 × 10−5 –
RSOi

−1.132 × 10−1 −5.916 × 10−4 +3.596 × 10−6 – – +4.458 × 10−3 −4.652 × 10−5 +1.521 × 10−7

ASO +9.239 × 10−1 +3.091 × 10−2 −7.702 × 10−4 +5.982 × 10−6 – −1.874 × 10−2 +1.576 × 10−4 −4.161 × 10−7

RC +3.604 × 10+0 −2.103 × 10−1 +7.753 × 10−3 −8.155 × 10−5 – +1.074 × 10−1 −6.348 × 10−4 –
RCi

+3.404 × 10−1 −1.038 × 10−1 +1.294 × 10−3 – – +4.501 × 10−2 −3.729 × 10−4 +9.467 × 10−7

ASO = ASO0 + ASO1A + ASO2A
2 + ASO3A

3 + ASO5E

+ASO6E
2 + ASO7E

3, (25)

and finally the Coulomb radius term is

RC = RC0 + RC1A + RC2A
2 + RC3A

3 + RC5E

+RC6E
2 + RC7E

3 (26)

+P(N − Z)

(
2Z

A

) 1
3 (

RCi0 + RCi1A + RCi2A
2

+RCi3A
3 + RCi4A

4 + RCi5E + RCi6E
2 + RCi7E

3
)
.

(27)

Parameters in this OMP which are at variance with the
other OMPs are the real surface amplitude [Eq. (11)] (which is
small), imaginary asymmetry (N − Z) [Eqs. (9), (13), (17)],
geometric asymmetry [Eqs. (20), (24), (27)], and the magic
number dependent terms [Eqs. (7), (10)]. The asymmetric
parameters and their ramifications are discussed in Sec. V.
The magic number terms attempt to better characterize the
bonding that occurs in these closed shell nuclei. Our short term
Coulomb radius is also untraditionally energy dependent, the
rational for this will be discussed in Sec. V. The 23 parameters,
of Eqs. (5)–(27), which describe the 13 potential terms of
Eq. (2), are listed in Table I.

This potential was put into a standard optical potential
calculator which solves the Schrödinger equation for spin
1
2 -spin 0 scattering using a distorted Born wave approximation
(DWBA) in a Coulomb wave function basis. TALYS [13,14]

was used which applies ECIS [15] to calculate the solution
once the final product was developed. We have produced a
Java applet [11] which contains our own optical potential
calculator as well as some useful input files for use in TALYS

and ECIS which will let researchers produce results quickly.
The gestation of the parameters will be described in Sec. III
but first an overview will be given of the theoretical structure
of this and the other recent global OMPs.

B. Theoretical comparison with other global optical potentials

The general design of all three OMPs under study (KD [1],
MD [2], WP) is the same. They use similar Woods-Saxon
functional forms which include volume and spin-orbit terms.
Additionally the KD and WP optical potentials include surface
terms. The KD and MD potentials also include an additional
Coulomb correction term, in the WP optical potential the short
term Coulomb potential includes energy dependence to include
these Coulomb correction effects (this will be discussed in
great detail in Sec. V B). Both the WP and MD produce one
potential that is utilized for both proton and neutron scattering
while the KD potential has separate potentials for the isospin
dependence of the projectile.

The KP OMP [1] imaginary parameters are determined by
a dispersive relationship which is dependant on the difference
between the projectile laboratory energy and the Fermi energy
of the target potential as well as constants designated as part
of the real potential. Of the three optical potentials discussed
it has the deepest theoretical underpinnings and given these
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dispersive constraints and high accuracy it has successfully
pushed the theoretical development of the global optical model
potential to a new level.

A goal of the MD OMP [2] is to describe the elastic
scattering data sets using fewer parameters. It uses constants,
linear, and the occasional quadratic forms to describe all of
its Woods-Saxon parameters. It is quite impressive that a high
quality isospin dependent potential was produced with so few
parameters.

In contrast this work (WP OMP) uses quadratic, cubic,
and occasionally quartic polynomials that have no direct
relationship to formal scattering theory. It has the highest
amount of adjustable parameters of the three potentials. What
it achieves is ease of use, good asymmetry and mirror nuclei
analysis, and complete separability between the nucleon (A)
and energy (E) parameters. This WP potential also includes
a direct imaginary vector isospin asymmetry (N − Z) terms
which neither of the other potentials have. In Sec. V a detailed
comparison of the isovector differences of these three optical
potentials will ensue.

III. PROCEDURE

This research tried ambitiously to minimize a χ2 (propor-
tional to the square of the difference between the theoretical
fit and the experimental data). On over 300 different nucleon-
nucleus experiments by adjusting the polynomial fit to the
23 parameters given in Table I. To attempt to decouple the
terms from each other, the 23 values were varied using a
systematic method detailed below. A listing and discussion
of the experimental data set used to constrict the variables
then follows.

A. Calculation techniques

The fitting elastic nucleon-nucleus scattering code was
developed by two of the authors (S.W. and R.P.). A Numerov
routine found in Ref. [12] was used to solve the nonrelativistic
position space Schrödinger equation in a Coulomb basis with
a relativistic correction found in Ref. [5]. The routine which
produced the Coulomb wave functions was found in Ref. [16].
A Powell routine, adopted from Numerical Recipes [17], was
used to minimize a weighted χ2.

The code was developed to run on a multiprocessor
parallel system. Each processor was assigned at least one
nucleon-nucleus experimental data set at a given energy
(E) and nucleon number (A). This data set could be as
simple as one experiment or many experiments including the
observables of total neutron cross section, total reaction cross
section, differential cross section, and polarization. Each set
contained, if available, both proton and neutron observables
and varying target proton numbers that all shared a common
target nucleon number and projectile energy. For example
A = 40, E = 40 MeV experimental data exists for a proton
striking 40Ca and producing a total reaction cross section
observable, a differential cross section, and polarization. These
were fit simultaneously with data that exists for a neutron
striking 40Ca and producing a differential cross section, a total
reaction cross section, a total cross section, and finally also

including a proton at 40 MeV striking 40Ar and producing
a reaction and differential cross section. All eight of these
experiments made a complete working data set in which the
parameters were varied and the minimization routine for the
weighted χ2 was executed. By analyzing many different data
sets together at the same energy and nucleon number it was
intended to reduce systematic error and ultimately derive a
better global fit among chains of target nuclei.

Each fitting cycle was comprised of a three step process.
First all parameters were adjusted except three [the two magic
number and the asymmetry Coulomb parameters: Eqs. (7),
(10), (27) were held fixed]. Since the other 20 parameters were
being adjusted simultaneously it was important to analyze only
a subset of the entire experimental data set to avoid ambiguities
within the parameter space. The data sets used encompassed
either only N = Z targets or certain sets in which a variety
of different Z targets existed for a fixed nucleon number and
fixed projectile energy or certain sets in which both neutron
and proton projectile observables existed for that fixed A and
fixed projectile energy E. These sets therefore either had zero
N − Z dependence or this dependence was clearly delineated
by including a variety of elements as targets and/or projectiles.
There were 115 data sets of fixed E and A experiments
on which these 20 parameters were allowed to vary while
searching for a minimum weighted χ2. The best values for the
parameters were then fit to the polynomials of A and E listed
in Eqs. (5)–(27).

Second all data sets with nonzero (N − Z) dependence
were used to adjust 13 parameters. There were thus ten
parameters held fixed which were the nonasymmetric potential
parameters that had other asymmetric terms within the same
Woods-Saxon potential term [Eqs. (5), (8), (12), (14), (16),
(19), (23), (26) and the magic number terms Eqs. (7), (10)
were held fixed], the other 13 terms were varied. There were
90 experiment data sets (each data set might contain more
than one experiment as detailed above) with some N − Z

dependences that were used for this task. The best values for
the parameters were then fit to the polynomials in A and E.
The parameters that were free to be modified in both of these
steps were deduced using an average of both values which
produced the minimum weighted χ2 results.

Lastly, the magic number terms were adjusted [Eqs. (7),
(10) were varied] to find the minimum weighted χ2 keeping all
other parameters fixed. For the magic numbers the traditional
2, 8, 20, and 28 were used. There were 40 data sets which
contained at least one target magic nuclei experiment which
were used to constrain these last two parameters.

The variances in the parameters were minimized to a
weighted χ2 which favored forward angles over backward
angles (in the χ calculation there was a square root relationship
such that the 50th forward angle point in a differential cross
section was weighted only about one-seventh that of the
extreme forward point following Ref. [3]). Differential cross
sections were favored over polarizations by a factor of 1.5 and
in general neutron total cross section point were favored to be
approximately equal to half of a complete typical differential
cross section. Used, but favored at half the weighting of
the total neutron cross section, were the neutron and proton
reaction cross sections. Choosing the correct weightings was
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TABLE II. This is a partial listing of the proton-nucleus experimental data used in the fitting process of this work, the remainder is
located in Table 7 of Ref. [1]. The references are listed followed by the laboratory energy of the projectile and the observables found in
the reference article (rcs—total reaction cross section, dcs—differential cross section, pol—analyzing power). The data has an energy range
from 30 MeV to 160 MeV, and a nucleon number, 12 � A � 60 as required by the calculation. Table 7 of Ref. [1] contains∗ a substantial
listing of experimental data references primarily for the 27Al, 28Si, 40Ca, 54Fe, 56Fe, 58Ni, and 60Ni, all those experimental references were
also used in this work if they were within this optical potentials applicable energy range.

Proton-Nucleus Experimental Elastic and Total Reaction Data References

Nucl. [Ref] (Energies (MeV); Nucl. [Ref] (Energies (MeV); Nucl. [Ref] (Energies (MeV);
Observables) Observables) Observables)

12Be [19](55;dcs) 12C [20](20-84;dcs,pol) [21](30;dcs,pol) 13C [21](30;dcs,pol) [22](35;dcs)
14N [23](30;dcs) [22](35;dcs) [24](30-60;rcs) [22](35;dcs) [25](35;dcs,pol)

[23,26](50;dcs,pol) [27](35;rcs) [28](35;dcs) [29](40;dcs) [30,31](72;dcs,pol)
[32](122;dcs) [33](142;dcs) [34](49;dcs) [35](50;dcs) [36](135;dcs,pol)

15N [22](35;dcs) [37](39,44;dcs) [38](61;dcs) [39](65;dcs,pol) 16O [21](30;dcs,pol) [40](35;dcs,pol)
[41](42,44;dcs) [31](65;dcs,pol) [42](65;rcs) [43](75,150;dcs,pol) [22,37](35;dcs) [44](30-47;rcs)

17O [22](35;dcs) [45](66;dcs) [46](81-180;rcs) [47](96,dcs) [48](43,46;dcs)
18O [22](35;dcs) [41](42,44;dcs) [49](122,160;dcs,pol) [26,35](49;dcs,pol)

[50](43;dcs) [45](67;dcs) [51](135;dcs,pol,rcs) [52](65;dcs,pol) [42](65;rcs)
20O [53](30;dcs) [50](43;dcs) [54](142;dcs) [55](145;dcs,pol) [56](135;dcs,pol)
20Ne [22](35;dcs) [27](35;rcs) [31](150;dcs pol) 22O [57](47;dcs)

[52](65;dcs,pol) [58](156;dcs,pol) 22Ne [22,37](35;dcs)
24Mg [59](30-45;dcs) [60](50;dcs,pol) 28Si∗ [61](52;dcs) 29Si [30](72;dcs,pol)

[39,52](65;dcs,pol) 30Si [62](52;dcs) 31P [30](72;dcs,pol)
[63](80;dcs,pol) [64](135;dcs,pol) 32Si [65](42;dcs) 32S [66](53;dcs) [39](65;dcs,pol)

34S [67](30;dcs) 34Ar [66](47;dcs) 36Ar [68](33;dcs)
37Cl [22,37](35;dcs) 39K [22,37](35;dcs) 40Ar [69](30,33,37,41;dcs,pol)
40Ca∗ [46](80-180;rcs) [70](30-48;dcs) 42Ar [68](33;dcs) [22,23,37](30-50;dcs,pol)
42Ca [70](30-48;dcs) [71](30-48;rcs) 44Ar [68](33;dcs) [27](36-47;rcs) [52](65;dcs,pol)

[22](35;dcs) [72](49;dcs) 44Ca [70](30-48;dcs) [71](30-48;rcs) 45Sc [37](35;dcs) [72](50;dcs,pol)
[73](65;dcs,pol) [72](49;dcs) [52,74](65;dcs,pol) 46Ti [52,73](65;dcs,pol) [75](100;dcs)

48Ca [70](30-48;dcs) [71](30-48;rcs) 48Ti [76](30-48;rcs) 50Ti [73](65;dcs,pol) [75](100;dcs)
[52,73,74](65;dcs,pol) [52,73](65;dcs,pol) [75](100;dcs) 50Cr [61](52;dcs) [73]

52Cr [73](65;dcs;pol) [77](100;rcs) 54Cr [22](35;dcs) [73](65;dcs;pol)
54Fe∗ [78](30,40,62;dcs) [58](156;dcs) 56Fe∗ [24](40,60;rcs) [79](65;dcs,pol)

[80](30-48;rcs) [81](40;dcs,pol) 58Fe [22](35;dcs) 59Co [82](30;dcs) [83](40;dcs)
[80](30,40;rcs) [84](65;dcs,pol)

found to be an art form where a balance tenuously existed in
which every reaction was regarded but certain reactions were
strengthened so that the χ2 parameter space contained large
relative minima which the search functions could find easily.

To find these minima a Monte Carlo preliminary gross
search was done using a Sobol [18] number generator. Since
the parameter space was often twenty dimensions this might
include up to 3 × 105 vectors in which weighted χ2 were first
calculated by solving the Schrödinger equation for the given
potential. The lowest ten vectors were analyzed in finer detail
by seeking the local minima in their vicinity within the χ2

parameter space. The χ2 minimization program sought the
steepest derivative in the multidimensional parameter space
[17]. Although the overall quality of the fits were examined
occasionally, the entire process was close to automatic.

At first the 23 parameters had large variances which were
slowly reduced following the three steps described as the
weighted normalized per point chi-squared was reduced and
approached a global minimum gracefully. The highest 5% of
the χ2 were thrown out after each fit (which routinely were the

same sets) and then each parameter was fit originally to a cubic
polynomial in A (nucleon number) and E (projectile energy).
Eventually many of the cubics were reduced to quadratics if
warranted and in the asymmetry terms the A polynomial was
increased to fourth order to give a better fit over the entire
nucleon target atomic number range.

B. Experimental data sets

This work strived for a comprehensive collection of exper-
imental data sets. As a starting point the excellent summary of
elastic data found in Ref. [1] was used, the product of the KD
optical potential group. This was supplemented with new data
and also nuclei outside the assumed range of the KD potential.
These additional data sets were either nuclei lighter than 27Al
or those nuclei which are nonspherical and were not considered
in that article, there were also a few additional data sets that
were discovered and added to our database. All proton-nucleus
data sets used that were not in Ref. [1] are listed in Table II.
The smaller set of neutron-nucleus data sets used here and
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TABLE III. This is a partial listing of the neutron-nucleus experimental data used in the fitting process of this work, the
remainder is located in Table 1 of Ref. [1]. The references are listed followed by the laboratory energy of the projectile and the
observables found in the reference article (rcs—total reaction cross section, dcs—differential cross section). The data has an energy
range from 30 MeV to 160 MeV, and a nucleon number, 12 � A � 60 as required by the calculation. Table 1 of Ref. [1] contains∗

a substantial listing of experimental data references primarily for 24Mg, 27Al, 28Si, 32S, 40Ca, and 56Fe, all those experimental
references were also used in this work if they were within this optical potentials applicable energy range. The neutron total cross
section data sets of Refs. [92,93] were also extensively used.

Neutron-Nucleus Experimental Elastic and Total Reaction Data References

Nucl. [Ref] (Energies (MeV); Nucl. [Ref] (Energies (MeV); Nucl. [Ref] (Energies; (MeV)
Observables) Observables) Observables)

12C [85](30-49;rcs) [86](35;dcs) 14N [85](30-49;rcs) 16O [85](30-49;rcs) [56](35;dcs)
[87](55-75;dcs) [88](65-156;dcs) 27Al∗ [85](30-49;rcs) 28Si∗ [89](misc.;rcs)
[90](96;dcs) [89,91](misc.;rcs) 40Ca∗ [85](30-49;rcs) [88](65-156;dcs) 56Fe∗ [89](misc.;rcs)

not cited in Ref. [1] are listed in Table III. A reader of this
work, Ref. [1], and the growing EXFOR/CSISRS database at
the National Nuclear Data Center [94] have a near complete
compilation of elastic nucleon-nucleus and total cross section
experimental data listings at intermediate energies.

Not all the experimental data were used to help constrain
this OMP. Some data, usually published before 1960, had
large systematic differences with later reactions and were
disregarded. Also, as mentioned in Sec. III, calculations were
only done if angular differential data existed at a given
energy and nucleon number. It was established for this fitting
procedure that total cross section data did not have enough
information (only one data point) to constrain the parameters
adequately so it was only used in conjunction with differential
experimental data. Occasionally if the energy of a total reaction
cross section was close to an energy where differential data
existed, the total reaction cross section data was adjusted
following the forms given in Refs. [95,96]. This procedure
was not needed for the total neutron cross section data of
Refs. [92,93] since the energy coverage was substantial for
these data sets.

IV. RESULTS

To produce the calculations shown in this section the
DWBA scattering code TALYS [13,14] was used for consis-
tency. All experimental data are shown as black circles, the
new results of this work are depicted as light solid green lines
(WP OMP), the calculations of Koning and Delaroche [1]
(KD OMP) are shown using dark blue dashed lines and
the calculations of Madland [2] (MD OMP) are depicted
using a medium red dot-dashed lines. The motivation is not
to be exhaustive but to give a fair representative overview
of the features of these three modern optical potentials. As
a global summary it can be concluded that that all three
potentials do a fairly good job fitting the presently available
elastic scattering data and dramatic contrasts are not proffered
until Sec. V. The details of this section do illustrate some
minor differences and so first their will be an examination
of the neutron-nucleus observables then following with the
proton-nucleus observables.

A. Neutron-nucleus observables

In Figs. 1–4 the calculations of total neutron cross section
results to the comprehensive data sets of Refs. [92,93] are
compared. Overall the calculations of the KD OMP of Ref. [1]
do the best job at reproducing the experimental data, usually
within a remarkable 1%. The potential of this work (WP OMP)
is usually within 5% of the experimental data sets and that of
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FIG. 1. (Color online) The experimental total cross section for
neutrons scattering from 27Al [92], 28Si [92], 40Ca [93], and 56Fe [93]
from 20 MeV to 160 MeV for the laboratory energy of the neutron.
They are fit to three different optical potential calculations (KD [1],
MD [2], and to this work: WP) which are described in the legend. The
experimental data and theory have been offset by constant amounts
for multiple comparisons on one graph. The WP and MD calculations
have a minimum energy limit of 30 and 50 MeV respectively.
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FIG. 2. (Color online) The experimental total cross section for
neutrons scattering from the light nuclei of 12C [93], 14N [92], 16O
[92], and 19F [93] from 20 MeV to 160 MeV for the laboratory
energy of the neutron. They are fit to two different optical potential
calculations (MD [2], and to this work: WP) which are described
in the legend. The experimental data and theory have been offset
by constant amounts for multiple comparisons on one graph. The
WP and MD calculations have a minimum energy limit of 30 and
50 MeV respectively. The KD calculation is not applicable for these
light nuclei.

the MD OMP is usually within 10%. These are plotted on an
elongated linear scale to accentuate the disparity but it should
be recognized that even a 10% difference between theory
and experiment is extraordinary for most nuclear scattering
observables.

The remarkable fit by the KD OMP calculation is justified,
the authors considered these data important and thus weighted
them accordingly. They also had, as discussed in Sec. II,
a separate proton nucleus and neutron nucleus potential.
At energies greater than 50 MeV, where neutron-nucleus
elastic scattering data are scarce, this was one of the few
observables used to fit their neutron optical potential. With
fewer constraints this observable, with its high caliber of
data [92,93], was easier to fit. Conversely the optical potential
of this work and the optical potential of the MD OMP had to
continually compromise by both fitting neutron-nucleus and
proton-nucleus observables simultaneously.

In Fig. 1 the calculations are fit to four standard nuclei.
As in all these calculations the WP calculation of this work
(solid green line) was not tested below 30 MeV and the MD
calculation was not used below 50 MeV. Likewise the KD
calculation is not applicable to the lighter nuclei (A < 27)
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FIG. 3. (Color online) The experimental total cross section for
neutrons scattering from 31P [93], 32S [93], 39K [93], and 48Ti [93]
from 20 MeV to 160 MeV for the laboratory energy of the neutron.
They are fit to three different optical potential calculations (KD [1],
MD [2], and to this work: WP) which are described in the legend. The
experimental data and theory have been offset by constant amounts
for multiple comparisons on one graph. The WP and MD calculations
have a minimum energy limit of 30 and 50 MeV respectively.

targets. Systematic trends emerge where the KD calculation
runs lower and closer to the experimental results than the
other two calculations for the neutron-nucleus total cross
section. The WP calculation is also systematically lower and
closer than the MD calculation for the neutron total cross
section observables as typified in this figure. There is a
small kink in the MD results at E = 130 MeV, this is a real
discontinuity in the Woods-Saxon function form parameters
for this potential at both 130 MeV and 140 MeV. The history of
the phenomenological fitting endeavor shows that researchers
have struggled to fit these higher energies well, the present
works are no exception.

Figure 2 contains the lighter targets which follow the same
trends as described for Fig. 1. Of the two applicable optical
potential calculations (the KD OMP is defined only when
A � 24) the WP OMP of this work does better in all cases
except for neutron scattering from 19F. The odd nuclei have
nonzero spin forces which are not included in the solution
technique which in part may explain the anomaly.

Concluding the results of neutron-nucleus total cross
section calculations are Figs. 3 and 4 which contain a variety
of less common nuclei and odd spin nuclei neutron total
cross sections. The KD optical potential of Ref. [1] which
was explicitly not fit to these nonspherical nuclei still does
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FIG. 4. (Color online) The experimental total cross section for
neutrons scattering from 51V [93], 52Cr [93], 55Mn [93], and 59Co [93]
from 20 MeV to 160 MeV for the laboratory energy of the neutron.
They are fit to three different optical potential calculations (KD [1],
MD [2], and to this work: WP) which are described in the legend. The
experimental data and theory have been offset by constant amounts
for multiple comparisons on one graph. The WP and MD calculations
have a minimum energy limit of 30 and 50 MeV respectively.

remarkably well, the same trends discussed in the earlier
figures still hold. What becomes apparent in the heavier nuclei
(50 � A � 60) calculations of this work (WP OMP—solid
light green line) is that there seems to be a systematic energy
shift; the shape of the curve is good, but it seems to contain a
small shift toward higher energies, a possible explanation will
be proffered in Sec. V B.

The neutron-nucleus differential experimental data are
scarce above 30 MeV (see Table III and Ref. [1]). A represen-
tative sample of the data with calculations is shown in Fig. 5.
Overall, all three potentials describe the experimental data
adequately, most impressive are the results of the calculation
of the MD potential which simultaneously fits both proton-
nucleus and neutron-nucleus data while also using the fewest
terms and parameters of the three optical potentials examined.
Systematically the WP potential of this work has the weakest
results, especially when the scattering angle is greater than
45 degrees. This implies that to improve these results the WP
potential would need to give more weighting to higher angle
results than was determined (see Sec. III which discusses the
weightings chosen). To adequately measure the effects and
form of the isospin dependent and asymmetry terms in the
optical potential which is used by the WP and MD OMPs
more high energy neutron-nucleus differential and reaction
data are sorely needed [101,102].

Overall the best optical potential calculation for neutron-
nucleus scattering is the work of Koning and Delaroche
(KD OMP) [1]. It has the best fit to the total cross section
observables (even the nonspherical and odd nuclei which
were not used to constrain that potential) and it also does
an admirable job with the differential observables. It has
a wide energy range and is thus suitable for systematic
neutron-nucleus studies. Its largest deficit is that it is not
applicable to light nuclei (A < 24) which are important in
astrophysics and biological physics.

B. Proton-nucleus scattering observables

The proton-nucleus elastic scattering observables will now
be considered. The potential used by the MD and WP
calculations remains the same while the KD potential uses
a different optical potential to calculate the proton-nucleus
observables.

A representative sample of the inelastic or reaction total
cross section data is shown in Fig. 6 with projectile energies
ranging from 30 MeV to 160 MeV. The calculations in this
case are not as close to the experimental data, and the data
are much sparser and more unsure than the earlier neutron
total cross section data. More accurate high energy data are
needed in this observable to better constrain the optical model
theory (it plays a significant role in determining the absorptive
strength [46,103]), an example will be proffered to illustrate
this in Sec. V. All three global optical potentials do well but
are not excellent. As with the neutron total cross sections the
legend is the same and the figure is elongated and plotted on a
linear scale to emphasis the differences.

There is a much more substantial amount of experimental
data for the proton-nucleus differential cross section and the
spin observable analyzing power and a representative sample
is contained in Figs. 7–13. In Fig. 7 there is a comparison
of some of the common nuclei targets, 27Al, 28Si, and 40Ca
for the differential cross section normalized to the Coulomb
Rutherford differential cross section. Then an examination of
the heavier common target subset (54,56Fe and 58N) transpires
in Fig. 8. All these nuclei were calculated in Ref. [1] by the
KD calculation and in this work are compared with the MD
and WP potentials (in the applicable energy ranges, an MD
calculation is not created for an energy of the projectile of less
than 50 MeV). Overall, all three calculations do well. Some
systematic trends become apparent: the WP OMP struggles at
the higher angles to reproduce the experimental data (as it did
with the neutron-nucleus observables). The disappointing fit
at larger angles insinuates that the balance of the weighting
functions for the WP OMP favored the forward angles too
much. The KD OMP often exaggerates the minimum which
probably signifies that the Coulomb strength is slightly weak
short range as prescribed in that potential (in general the
long term Coulomb force mildly obscures the diffraction
effect generated by the short term forces). Because these are
plotted on a logarithmic scale the percent difference between
the theory and experiment is often larger than it appears
(sometimes as much as 50% compared to 10% for the total
cross sections). The quality of fit, as ascertained by an analysis
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FIG. 5. (Color online) Neutron-nucleus elastic differential cross section experimental data for the target nuclei of 28Si [87,97,98], 40Ca
[88,98,99], 56Fe [87,97,98,100] at a variety of incident laboratory energies. They are fit to three different optical potential calculations (KD [1],
MD [2], and to this work: WP). As in all figures, KD OMP is a blue dashed line, MD OMP is a red dot-dashed line and WP OMP is a green
solid line. The experimental data and theory have been offset by constant amounts for multiple comparisons on one graph. The target labels at
the top read left to right correspond to the calculations and experimental data read top to bottom. The MD calculations has a minimum energy
limit of 50 MeV and is therefore missing from calculations below that energy.

of the χ2 in Ref. [1], is not as good as with the neutron
observables, yet it is still quite impressive for all three optical
potentials.

The next two figures (Figs. 9 and 10) examine the
reduced differential cross section of target nuclei which are
nonspherical and farther from the line of stability than fit
in Ref. [1] using the KD potential. Many of these examples
are odd nonspin zero nuclei. Overall the three potentials do
surprisingly well with the same systematic problem as with
the more popular and common nuclear targets, however some
aspects are dissatisfying. In Fig. 9 the results of the proton-
nucleus reduced differential cross section of the calcium and
chromium isotopes are shown and none of the calculations
do extremely well describing all four isotopes simultaneously.
The research of this work focused on trying to find the strength
of the isovector antisymmetry term by simultaneously fitting
these isotopes’ observables together. The resulting calculation
(the solid green line) fit 40Ca and 44Ca isotopes comfortably
but struggle with the two other isotopes, the other calculations
are in similar predicaments. The general shape is correct but
the minima and maxima are often missed by over 25%. It
seems that a asymmetry term which is linear and has mirror
symmetry evades accurate discovery. The same difficulties
with describing the calcium isotopes were recently discussed
in Ref. [101]. These same arguments can be made, to a lesser
extent, with chromium as shown in Fig. 9. The failure to
create an excellent isovector asymmetry term is the motivation

for the analysis of Sec. V. It also must be recognized that
these potentials are often also missing a general spin-spin
term which may be important for nonspin zero targets. As
this potential was being developed a spin-spin term was used
but the results had a substantial amount of noise and it was
eventually removed. A competent analysis of the validity and
strength of this spin-spin term would be a worthy endeavor for
future work.

Figure 10 contains the reduced differential cross section
of some lighter targets (if A < 27 the KD calculation is not
applicable). This figure shows the struggles the calculations
have to fit at higher energies which has been a common
problem with an optical model calculation [49]. Likewise the
back angles continually cause difficulty in the lighter targets.
Recently there has been success in fitting these back angles
by adding terms which add nonlocal approaches to these local
OMPs [111,112] by adding angular momentum and parity
dependencies to the potential.

In the center panel are highlighted some newer differential
cross section data of the oxygen isotopes. The WP calculation
(which is the only one applicable) does well in describing
the general trend of the first diffraction minimum shifting as
the neutron number increases. The mirror nuclei of calcium
and argon are the targets in the right most panel. A recurring
disappointment is not being able to fit all the isotopes with
the same excellent quality of fit, an important motivation for
this work. However, for those working with exotic beams,
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FIG. 6. (Color online) Proton-nucleus total inelastic cross section
data for the targets 12C, 16O, 27Al, 40Ca, 56Fe, and 58Ni from 20 MeV
to 160 MeV for the laboratory energy of the projectile proton. The
experimental data comes from a variety of sources and are compiled
and discussed in Refs. [1,77,95]. There are also new higher energy
measurements for 12C and 40Ca found in Ref. [46]. They are fit to
three different optical potential calculations (KD [1], MD [2], and to
this work: WP) which are described in the legend. The experimental
data and theory have been offset by constant amounts for multiple
comparisons on one graph. The WP and MD calculations have a
minimum energy limit of 30 and 50 MeV respectively.

this potential does give a good starting basis for continuing
research.

In Figs. 11–13 are plotted a representative sample
of the proton-nucleus spin analyzing power (polarization)
observables using the same legend as in all earlier figures.
In Fig. 11 which examines tradition nuclear targets, all the
calculations do well. The fitting of the polarization variable
simultaneously with the differential cross section involved
an interesting tension between the relative weight of the χ2

of both observables since the polarization is normalized by
the differential cross section. The results show that in many
instances this work (the WP OMP) fit the polarization better
than it did with the differential cross section. In all three
polarization figures the major difficulty was again with the
lighter nuclei, specifically the carbon isotopes [49,117] as
depicted in Figs. 12 and 13.

The global optical potential of this work is the best in
reproducing this spin observable over a wide range of targets
and chains of nuclei. Additional polarization experimental data
are always welcome because they measure the interference
between the central and spin-orbit terms and therefore is a

good constraint on their relative strengths. The present data
set has a satisfactory amount of these reactions at projectile
energies lower than 100 MeV but additional higher energy
polarization experiments would be appreciated.

C. Isoscalar strength

To analyze optical potentials it has often been instructive to
calculate the volume integrals of the various terms to further
illicit theoretical comparison. In Fig. 14 the central real and
imaginary isoscalar volume integral components at 50 MeV
and 150 MeV projectile energy are reproduced. There is some
ambiguity in determining the isoscalar component for the
OMPs discussed here so the technique used was the average
between the proton-nucleus and the neutron-nucleus central
volume integrals. Using this definition the central potential
of all traditional OMPs can be split into the isoscalar and
isovector integrals, respectively,

VV (E) = V0(E) + I(E), (28)

where I(E), the isovector component, has its sign dependent
on the isospin projection of the projectile and V0(E) is the
isoscalar term. For Fig. 14 a representative sample of nuclei
was chosen that is on or near the line of stability, the explicit list
of nuclei used in the calculations is listed in the figure caption.
The green, red, and blue lines are the WP, KD, and MD OMPs
volume integrals of the isoscalar term (V0(E)), respectively,
and they have broad agreement which is encouraging. All three
potentials, fit independently to experimental data, developed
roughly the same strength for the isoscalar central component.
The only large discrepancy is the MD OMP at low energy has
a much smaller imaginary component because it is missing
a surface term. The other two OMPs at this energy (KD and
WP) have a significant imaginary surface term which adds
to the strength of the attractive central potential. Incidentally
if the WP OMP of this work is examined closely in Fig. 14
protrusions are seen, especially in the imaginary panels. These
are due to the new magic number term that the potential has
included [Eqs. (7), (10)]. The ramifications of this inclusion
are not readily apparent in comparisons with the reaction data,
future studies on the effect of closed shells on optical potential
behavior would be fruitful.

To elicit further insight the volume integrals created from
microscopic Watson t − ρ (nucleon-nucleon scattering matrix
folded with target density) potentials [118–120] are plotted in
light gray in Fig. 14. The specific apparatus was developed, in
part, by the earlier work of one of the present authors (S.P.W.)
and detailed in Refs. [121–123]. In brief, the light gray shaded
regions use a variety of nucleon-nucleon potentials [124–126]
folded with theoretical densities [127,128] using a variety of
techniques. These microscopic optical potentials have been
satisfactory in reproducing experiment at the lower energies
and better at the higher energies. Rarely do the microscopic
potentials, which have different fundamental motivations,
match the quality of these three phenomenological poten-
tials in reproducing these observables. Significant systematic
differences are recognized in the isoscalar volume integrals
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FIG. 7. (Color online) Proton-nucleus elastic Rutherford reduced differential cross section experimental data for the target nuclei of 27Al
[37,38,58,104,105], 28Si [42,106], 40Ca [5,38,70], at varying proton laboratory energies. Refer to Fig. 5 for details of the legend for the
theoretical calculations.

especially in the light nuclei and the imaginary term but there
are also regions of general agreement.

In summary, these three OMPs describe the known elastic
scattering data well and have similar isoscalar magnitudes.
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FIG. 8. (Color online) Proton-nucleus elastic Rutherford reduced differential cross section experimental data for the target nuclei of
54Fe [21,72,74,81], 56Fe [8,72,82,84], 58Ni [84,107–109], at varying proton laboratory energies. Refer to Fig. 5 for details of the legend for the
theoretical calculations.
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FIG. 9. (Color online) Proton-nucleus elastic Rutherford reduced differential cross section experimental data for the target nuclei of 34Ar
[66,110], 30S [110], 40Ar [74], 45Sr [72], 40,42,44,48Ca [71,74], 50,52,54Cr [71], at varying proton laboratory energies. The target labels at the top
read left to right correspond to the calculations and experimental data read top to bottom for the two rightmost panels. Refer to Fig. 5 for details
of the legend for the theoretical calculations.

Detailing their advantages; the KD OMP is well suited for
neutron projectile projects, the MD OMP, in its simplicity,

does well with differential cross sections, and the WP OMP
has strengths in the exotic nuclei and in the spin observables.

0 30 60 90
Θ

c.m.
(deg)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

σ(
Θ

)/
σ R

ut
h

0 30 60 90 120 150
Θ

c.m.
(deg)

0 30 60 90 120 150
Θ

c.m.
(deg)

12
C,

13
C,

16
O,

28
Si(p,p) 16,18,20,22

O(p,p)
135 MeV

43 MeV

40
Ca(p,p)

30 MeV

30 MeV

30 MeV

33 MeV

43 MeV

43  MeV

47 MeV

40
Ar(p,p)

42
Ca(p,p)

42
Ar(p,p)

44
Ar(p,p)

33 MeV

FIG. 10. (Color online) Proton-nucleus elastic Rutherford reduced differential cross section experimental data for the target nuclei of 12,13C
[36,51], 16O [48,56], 18,20,22O [50,57,110], 28Si [106], 40,42Ca [70,82], 40,42,44Ar [68,69], at varying proton laboratory energies. The target labels
at the top read left to right correspond to the calculations and experimental data read top to bottom for the two leftmost panels. Refer to Fig. 5
for details of the legend for the theoretical calculations.
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FIG. 11. (Color online) Proton-nucleus elastic analyzing power spin observable experimental data for the target nuclei of 28Si [74,106],
40Ca [43,74,113,114], 54,56Fe [21,74,84,115], at varying proton laboratory energies. Refer to Fig. 5 for details of the theoretical calculations.

In the next section larger theoretical differences will be
proffered, while examining the isovector components, that

will eventually lead to quite disparate scattering observable
results.
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FIG. 12. (Color online) Proton-nucleus elastic analyzing power spin observable experimental data for the target nuclei of 12,13C [36,51],
16O [56], 28Si [106], 40,42,44,48Ca [73,74], 40Ar [52], 48,50Ti [52], 50,52,54Cr [73], at varying proton laboratory energies. The target labels at the
top read left to right correspond to the calculations and experimental data read top to bottom. Refer to Fig. 5 for details of the theoretical
calculations.
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FIG. 13. (Color online) Proton-nucleus elastic analyzing power spin observable experimental data for the target nuclei of 12,13C [20,20,25,
30], 58Ni [84,107,116], 59Co [83,84,115], at varying proton laboratory energies. Refer to Fig. 5 for details of the theoretical calculations.

FIG. 14. (Color online) A figure of theoretical comparisons.
Plotted are the isoscalar volume real and imaginary space integrals
between the three potentials that are under examination at 50 MeV
and 150 MeV projectile energy. The light green, medium blue, and
dark red lines represent the WP, KD, and MD OMPs respectively.
The light gray shaded area represents typical volume integrals for
microscopic t − ρ potentials (as detailed in the text). Each atomic
number has a sample nuclei attache to it. These nuclei are: 13C, 14C,
15N, 16N, 17O, 18O, 19F, 20F, 21Ne, 22Ne, 23Na, 24Na, 25Mg, 26Mg, 27Al,
28Al, 29Si, 30Si, 31P, 32P, 33S, 34S, 35Cl, 36Cl, 37Cl, 38Ar, 39K, 40Ar, 41K,
42Ca, 43Ca, 44Ca, 45Sc, 46Ti, 47Ti, 48Ti, 49Ti, 50V, 51V, 52Cr, 53Mn, 54Fe,
55Mn, 56Fe, 57Co, 58Ni, 59Co, 60Ni. These same nuclei will be used in
many of the remaining figures.

V. ISOVECTOR TERM ANALYSIS

The asymmetry isovector term, which measures target
neutron and proton imbalance, is a point of illustrative
comparison and will be the focus of this section. This research
attempted to develop an isospin consistent potential solely by
fitting to elastic experimental reaction data, here the success
of this effort will be assessed. First the historical ansatz of
a simple linear N − Z dependence for this potential term
will be examined, then a Lane analysis check of the isospin
character of this OMP will be proffered. Finally a detailed
comparison of the isovector volume integral of the three OMPs
alongside microscopic optical potential results will occur with
connections to experiment established.

A. Validity of N − Z

Recently the simple linear N − Z dependence of the
asymmetric potential has been called to question [9]. All
three phenomenological potentials, following tradition, have
used this standard so it is informative to use microscopic
techniques to develop the optical potential from the nucleon-
nucleon potential to gain insight into the origin of this N − Z

term (following Refs. [129–131]). The potential between two
nucleons usually contains isospin vector components (usually
a spin dependent and a spin independent piece, for simplifi-
cation here they are combined). Assuming the valid impulse
approximation at high energies, the techniques of Kerman,
McManus, and Thaler [132] and Watson [118,119,121,122]
can be used to construct the nucleon-nucleus optical potential
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from a sum of nucleon-nucleon potentials:

Vasym ≈
A∑
i

Viso NN (τproj · τi), (29)

switching over to raising and lowering operators

Vasym ≈
A∑
i

Viso NN

1

2
(τproj+τi− + τproj−τi+ + 2τprojz τiz ).

(30)

If the difference of the asymmetry piece between the proton
projectile and neutron projectile on the same target is calcu-
lated then microscopically it has this format:

Vasym

(
tproj = +1

2

)
− Vasym

(
tproj = −1

2

)

≈ Viso NN

(
N

2
τproj− − Z

2
τproj+

)

−Viso NN

(
N − Z

4

(
τprojz

(
+1

2

)
+ τprojz

(
−1

2

)))
. (31)

The first two terms are the simplest inelastic charge-exchange
terms, often referred to as quasi-elastic charge-exchange [130]
because they do not involve the direct exchange of nucleons
and they are between isobaric analog states. The first inelastic
term is exclusively nonzero for the proton projectile, the second
inelastic term is nonzero exclusively for the neutron projectile
and the last two terms are the elastic contributions (the same
contribution occurs for both the proton or neutron projectile).
A direct N − Z factor is derived directly from the elastic
scattering component, the inelastic term does not contain
the equivalent proportionality (the proton potential contains
a nonzero N and the neutron potential contains a nonzero
negative Z however these potentials are not implemented
simultaneously). This is the first affirmation that a linear
N − Z term in the optical potential, which by definition
is both refractive (elastic) and absorptive (inelastic), is to
first order valid but somewhat simplistic. The imbalance of
neutrons to protons does control the physical mechanisms of
the elastic isovector piece whereas the number of absolute
neutrons (for proton scattering) or the number of absolute
protons (for neutron scattering) are the source of strength for
the inelastic component. Although this type of impulse micro-
scopic approximation does not intrinsically contain multiple
scattering, correlations, exchange, or coupled channels, it is a
good approximation at higher energies (it has been shown to
work adequately at projectile energies of 150 MeV [120]) and
it signifies that beyond first order the asymmetry term needs a
theoretical re-evaluation.

Writing the asymmetric potential in macroscopic nucleon-
nucleus optical potential form is also illuminating:

Vasym = Viso NA(τproj · τtarg)

= Viso NA(τproj+τtarg− + τproj−τtarg+ + τprojz τtargz
),

(32)

and likewise the difference equation subtracting neutron
scattering from proton scattering is

Vasym
(
tproj = + 1

2

) − Vasym
(
tproj = − 1

2

)
≈ Viso NA(τproj−τtarg+ − τproj+τtarg− + τtargz

). (33)

This form again demonstrates a direct connection to both
elastic scattering and inelastic charge-exchange. The elastic
z component piece is proportional to τtargz

= N − Z, which
confirms the earlier microscopic results. Similarly the inelastic
piece is again ambiguous. In many nuclei the ground state has
an isospin vector designation such that τtargz

is the maximum
value and thus |τtarg−| = |τtarg+| ∝ √

N − Z but with unstable
deformed nuclei this is not always the case [133] and therefore
a general rule about the strength of the inelastic piece should
be treated with apprehension, especially at higher energy [130,
134]. Both the microscopic and macroscopic formulations
of the optical potential lead to a differentiation between the
elastic and inelastic charge-exchange component’s constant of
proportionality as seen in previous work [129–131,134–136].

All the global optical potentials, perhaps because of the
linear N − Z term, have trouble giving excellent results
for the calcium and chromium isotopes (Figs. 9 and 10).
Similarly, as exploration further from the line of stability
occurs, it is realized that using a stark absolute linear term
leads to erroneous results. For example using a 100 MeV
neutron projectile gives physical results when scattering from
12,13,14,15C using the WP OMP but it begins to give negative
total cross sections for the same scattering observables if the
target is 16C. Obviously all elements will return nonphysical
results when the asymmetric term allows for unimpeded linear
growth as the neutron-proton imbalance gets larger (especially
if this term is large as is the case for carbon for the WP
OMP). In general the linear N − Z structure is a good first
approximation but a better formulation should be developed
for exotic nuclei optical potentials far from the line of stability.

B. Lane analysis

A Lane consistent potential [3,129,134–137] guarantees a
near equivalent isoscalar and isovector nuclear potential for
proton and neutron projectiles at the same initial projectile
bombarding energies and thus the measure of Lane consistency
is a good check on the integrity of the isovector term.

As discussed in Sec. IV C, the volume potential of all
traditional OMPs can be split into the isoscalar and isovector
parts, respectively,

VV (E) = V0(E) + I(E), (34)

where I(E), the isovector component, has its sign dependent
on the isospin projection of the projectile. Because the effective
short range projectile kinetic energy of the proton-nucleus
potential is different than in the corresponding neutron-nucleus
potential, a Lane consistent potential will add a Coulomb
correction term, �c to the traditional proton-nucleus OMP,

VV (E) = V0(E) + I(E) + �c, (35)

which adjusts the energy dependent proton-nucleus potential
to account for the lessening of the initial bombarding energy
of the charged projectile as it heads toward the target due to
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the long range Coulomb field [129]. To be all inclusive this
correction should be included for the complex volume and spin
orbit pieces, traditionally however it has only been applied to
the real central term (recent exceptions are Refs. [9,134]).

Using the notation of Eqs. (5)–(27) of this WP potential the
real central Coulomb correction, �c, can easily be derived as

VV (E) +VS(E)=VV (E − fcoul) +VS(E, − fcoul) + �c(E),

(36)

where E is the original projectile bombarding energy and the
volume, surface, and Coulomb potentials are defined using
Eqs. (3)–(4), (5)–(7), (11). This equation leads directly to a
solution as

�c = VV (E) + VS(E) − VV (E − fcoul) − VS(E − fcoul),

(37)

which is effectively the difference between the original and an
energy adjusted central volume term. All three of the OMPs
examined contain a Coulomb correction term.

Equation (37) represents the exact definition of the real
Coulomb correction. Historically, starting with Ref. [3], an
ansatz was made to use a Woods-Saxon potential form with
the strength proportional to the average Coulomb potential
in the short range to approximate this Coulomb correction, both
the KD and MD OMP take this approach. The WP OMP uses a
different approximate form, instead of attaching the Coulomb
correction term to the volume term (with Woods-Saxon shape)
it is combined with the Coulomb term by having the radius
of the short term Coulomb potential, Eq. (26), becomes
artificially larger and uncharacteristically energy and atomic
number dependent. The Coulomb correction of this work is
defined as

�c ≈ (fcoul(RC) − fcoul(RC0 = 1.20 × A
1
3 fm)), (38)

in which a literal addition to the Coulomb potential was devised
by extending RC beyond its traditional value. To extract this
Coulomb correction to the nuclear term we subtracted the
known short ranged Coulomb potential from the full-extended
fitted Coulomb potential of this work as Eq. (38) details.

This nontraditional approach has some advantages. First
it disentangles the unknown Coulomb correction from the
likewise unknown nuclear volume term and combines it to
the more apparent short range Coulomb force. Second, as
developed in Ref. [137], a Woods-Saxon shape is not an
excellent functional representation of the exact Coulomb
correction result (see Fig. 11 of Ref. [137] for example).
The approximate Coulomb correction of this work [Eq. (38)]
more satisfactorily represents the shape of the exact result.
Giving an example, in Fig. 15 are depicted two examples at the
commonly tested experimental projectile energy of 65 MeV.
The black line represents the calculation of the exact result,
the green line is the function which this research developed in
the process of fitting the Coulomb radius to the global data set
using Eq. (38). The thin dashed red line is the Woods-Saxon
shape normalized to this approximation added as a reference.
Although the green fit of this research does not always match
the exact result, its functional shape is closer to the exact result
specially in the important interior region. Another reason to
use this approximation is that this correction has an operational

0

1

2

3

4

0 1 2 3 4 5 6
r [fm]

0

1

2

3

4

40
Ca at 65 MeV

56
Fe at 65 MeV

C
ou

lo
m

b 
C

or
re

ct
io

n 
[M

eV
]

FIG. 15. (Color online) These are two example depictions at
65 MeV projectile energy of the functional coulomb correction
potential for the targets 40Ca and 56Fe respectively. The solid black
line is the magnitude of the exact calculation (the coulomb correction
is actually negative), for the potential of this work, using Eq. (37).
If the coulomb correction term is applied to the proton-nucleus
optical potential then the potential can be considered isovector
Lane consistent (described in the text). The solid green line is the
approximate function which was determined in this work by fitting
the global nucleon-nucleus data sets. This approximate form was
determined by Eq. (38). The thinner red dashed line is given as an
example Woods-Saxon functional form for comparison.

advantage that it can be easy be added to modern optical codes
like ECIS [15] by changing the value of the Coulomb radius.
The exact result of Eq. (37), which does not have a closed
analytical form, cannot be added neatly.

To examine if this inclusion of a Coulomb correction term
brings the WP OMP closer to Lane consistency the contour
graphs of Figs. 16 and 17 are introduced. They map over
the complete applicable projectile energy and atomic number
of target phase space for the WP OMP and the measure
of Lane inconsistency is normalized to the moduli of the
central potential. The figures have ranges between 4% and
10% Lane inconsistency. It is noted that of reactions in this
phase space the real central Coulomb correction is at worst
about a 12% correction. Figure 16, top panel, shows the level of
inconsistency without a Coulomb correction (with an average
inconsistency of 4.3%). The systematic need for a Coulomb
correction for the present potential is apparent especially
at lower energies and larger targets, these sensitivities are
congruent with the Coulomb correction term developed in the
KD OMP of Ref. [1] which increases linearly with Z and to
good approximation decreases linearly with E.

The real central Coulomb correction is inherently included
in this potential, as discussed above, and with it the WP
potential is substantially more Lane consistent as depicted
in Fig. 16, bottom panel. Much more of the phase space is
now below the 4% level and only in a few small regions does
the Coulomb correction addition make the potential less Lane
consistent (high A and high E and low A at midrange energies).
The areas where the Coulomb correction was substandard is
where the experimental data are sparse, especially lacking
neutron reactions. For example, two experimentally popular
projectile bombarding energies are at 65 MeV and 135 MeV.
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FIG. 16. This is a depiction in projectile energy-target atomic
number phase space of the real fraction Lane inconsistency relative
to the magnitude of the total moduli of the central potential for sample
nuclei. The top panel shows the optical potential of this work without
a coulomb correction term assuming only Rc = 1.20 × A

1
3 fm.

The bottom panel depicts the same but with a coulomb correction
term assuming a dynamic E and A dependent coulomb radius, R,
described in the text. The unweighted average for the whole phase
space of the top panel is 0.043 Lane inconsistency. The unweighted
average for the whole phase space of the bottom panel is 0.034 Lane
inconsistency. The fraction of 0.04 is assumed here to be a pragmatic
minimum and a measure of sufficient Lane isovector consistency.
The sample nuclei for each atomic number were near or on the line
of stability and are the same as those in Fig. 14.

Here, with the Coulomb correction included (as shown in the
bottom panel of Fig. 16), the Lane consistency is very good.
The energies between these guideposts are where the fit has
difficulties. The average value of Lane consistency with the
Coulomb correction is 3.4%. In our studies developing this
analysis it was found that using a constant energy independent
Rc between (1.1 × A

1
3 ) fm and (1.35 × A

1
3 ) fm to represent
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FIG. 17. This is a depiction in projectile energy-target atomic
number phase space of the imaginary fraction Lane inconsistency
relative to the magnitude of the total complex central force for sample
nuclei which are listed in Fig. 14. Overall the isospin inconsistencies
are smaller than its real counterpart until E > 140 MeV. The
unweighted average for the whole phase space is 0.025 Lane
inconsistency. The fraction of 0.04 is assumed here to be a pragmatic
minimum and a measure of sufficient Lane isovector consistency.

the fixed traditional short range Coulomb radius in Eq. (38)
produced the best results which is reassuring because it
matches the standard short range Coulomb potential found
in the literature.

The imaginary Coulomb correction term has been ignored
in the KD, MD, and this potential. It has been argued that it
can be neglected because it is small [136,138] or because of
lack of sufficient experimental data it will be ambiguous [1].
In performing this analysis we found it to be small at low
energy but unfortunately at high energy (greater than 120 MeV
projectile energy) it begins to be significant in contrast with the
real Coulomb correction term which diminishes as depicted
in Fig. 17. The average of the Lane inconsistency over
the entire phase space normalized to the magnitude of the
complex WP central potential measures 3.4% in the real term
and 2.5% for the imaginary term. However the imaginary
Lane inconsistency can run higher than 9% for A > 60 and
E > 160 MeV.

Examining the quality of the results in reproducing exper-
imental reactions in Sec. IV there is significant error in the
neutron total cross section calculation at high atomic number
and high energy as represented in Fig. 4. Since this potential fits
the proton and neutron observables simultaneously this could
be due to the lack of that imaginary Coulomb correction term.
In future high energy optical potential work this imaginary
correction should not be neglected.

The requirement that the optical potential of this work
be completely Lane consistent is not congruent with the
goals of this research or the general character of the nuclear
force. Charge-dependent (isospin symmetry breaking) discov-
eries [139,140], the uncertainty in the short range Coulomb
potential, and the approximate functional forms applied in
the phenomenological optical potentials all diminish the
importance of attaining perfect isospin nuclear symmetry and
a Lane potential. The goal of under 4% inconsistency seems to
be a reasonable pragmatic minimum giving these conditions.
This research aimed to be as pure a phenomenological fit as
possible letting the reproduction of experimental data confirm
what microscopic theory has shown elsewhere regarding the
Coulomb correction [134,137,141]. The conclusion is that
there is good agreement when there is a copious amount of
experimental data giving credence to the technique employed.

C. A comparison

A comparison of the three global optical potentials isovector
asymmetry terms, which use the traditional N − Z terms,
now follows. Here dramatic differences between the three
formulations can be isolated.

Starting from the simplest potential, the MD OMP has a
neutron excess asymmetric term for the real volume and the
real spin-orbit amplitude only [2]:

IMD = ±N − Z

A
16.5fWS(r,Ri ,Ai)

∓ N − Z

A
3.75

d

dr
fWS(r,RSO,ASO)(l · σ ), (39)
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which has no explicit energy dependence and has the standard
linear term of N−Z

A
. The difference between the proton

projectile and the neutron projectile is simply a sign change,
the internal geometry parameters have no isospin dependence.

The KD OMP has an explicit asymmetry term only for the
real volume component and the imaginary surface component
[1]

IKD = ±N − Z

A

(
21.0(1 − v2(E − Ef ) + v3(E − Ef )2

− 7.0 × 10−9(E − Ef )3)fWS(r,Riv,Aiv)
)

∓ i4Ad

N − Z

A

(
16

(E − Ef )2

(E − Ef )2 + d3
2

× exp (−d2(E − Ef ))
d

dr
(fWS(r,Rd ,Ad )

)
, (40)

where v2, v3, d2, and d3 are functions which depend on the
nucleon number of the target, and projectile energy and the
isospin character of the projectile. Likewise Ef represents
the Fermi energy of the target, extracted from mass excess
values [142], and is dependent on the isospin projection of
the projectile. The internal geometry parameters have no
explicit isospin dependence. Because of the separate functional
dependence on the projectile the asymmetry term, IKD of
Eq. (40), is not exactly linear and the isospin flip in the
projectile is not simply a sign change as with the IMD term
given by Eq. (39).

The optical potential of this work (WP OMP), outlined in
Sec. II A, has vector isospin asymmetry (N − Z) in five major
terms: real and imaginary volume, imaginary surface, and real
and imaginary spin orbit [Eqs. (6), (9), (13), (15), (17)]:

IWP = ±(N − Z)(VVi
+ iWVi

)fWS(r,Ri ,Ai)

∓ i4(N − Z)ASWSi

d

dr
fWS(r,RS,AS)

∓ (N − Z)(VSOi
+ iWSOi

)
d

dr
fWS(r,RSO,ASO ),

(41)

where VVi
,WVi

,WSi
, VSOi

, and WSOi
are separable polyno-

mial functions in terms of projectile energy and nucleon
number [Eqs. (5)–(27)]. There is no projectile isospin depen-
dence within the polynomials. This potential also enforces
the separability of E and A by using (N − Z) and not
N−Z

A
. There are some explicit asymmetry terms in the AV

[Eq. (20)] and RSO [Eq. (24)] geometry terms which also lead
to nonsymmetric neutron excess terms. This optical potential
has therefore attempted to fit the imaginary volume, surface,
and spin orbit asymmetry terms, the other contemporary global
OMPs discussed within have set their explicit imaginary
asymmetric terms to zero.

To explore the differences between the three OMPs further
let us again examine volume integrals which have been
illustrative in the past to help describe Gamow-Teller and
Fermi charge-exchange transitions [143] and to effectively
compare the strength of disparate shaped optical potentials.
Explicitly calculated are, using the notation of Eq. (2), the

following integrals:

JVV
/A = −4π

A

∫ ∞

0
r2(VV (E,A,N,Z,P,MN))

× fWS(r,RV ,AV ) dr, (42)

JWV
/A = −4π

A

∫ ∞

0
r2(WV (E,A,N,Z,P,MN))

× fWS(r,RV ,AV ) dr, (43)

JWS
/A = +4π

A
4AS

∫ ∞

0
r2(WD(E,A,N,Z,P))

× d

dr
fWS(r,RS,AS) dr. (44)

These equations will be used to calculate the differences in
volume integrals between a proton projectile and a neutron
projectile acting upon the same target nucleus (the isospin
asymmetry). The difference is emphasized, as it was in
the linear study of the N − Z term, because this is what
characterizes the isovector asymmetry term from the rest of the
dominating isoscalar nuclear potential; it does not disappear
upon subtraction of this isospin flip of the projectile. In the KD
potential, where there are two separate potentials with different
functions to differentiate proton and neutron scattering, this
definition of asymmetry is somewhat ambiguous, it is much
more enhanced than simply the N − Z term. So in this compar-
ison we will define isovector to be half the difference between
the proton-nucleus and neutron-nucleus potential. This will
include the addition of the nuclear Coulomb correction term
in the proton potential for all three of the OMPs. This seems
to be the best workable definition for isovector for these
three potentials especially in tandem comparisons with the
microscopic potential that follow.

In Fig. 18 the two panels contain results of the real volume,
surface, and Coulomb correction integral difference at 50 MeV
(left panel) and 150 MeV (right panel) energy between a
proton and a neutron projectile for the three global optical
potentials (approximately twice the isovector strength). This
volume integral difference is a direct measure of the change
in strength that the three potentials have for the dynamics of
a isospin flip of the projectile on the same N − Z �= 0 target.
For every nucleon number (13 � A � 60) there was chosen a
representative target that is stable or close to the line of stability
which are listed for Fig. 14. The calculation is explicitly of

(Re J/A)iso = (JVV
/A)proton − (JVV

/A)neutron + J�c
, (45)

using Eq. (42) and the integral of the Coulomb correction term,
JDeltac

, which for the WP OMP has the analytical form

J�c
= − 2

5πh̄ceZ
(
(RC)2 − (

1.20 × A
1
3 fm

)2)
, (46)

and for the KD and MD potential the Coulomb correction
integral calculation is similar to Eq. (42) because of its Woods-
Saxon functional form. Figure 18 shows some agreement at the
low energy (for 28 < A < 60) but it is more disparate at the
high energy. Likewise at A < 20 there is sharp disagreement
between the two applicable potentials (MD and WP) for these
light nuclei. The fine features are telling also, the wildly
oscillatory behavior of the MD and WP integrals are indicative
of the size of the neutron excess (this is to be expected because
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FIG. 18. (Color online) This is a calculation of the difference in
the real component of the nuclear central potential integrals (volume
and coulomb correction) between a proton and neutron projectile
(about twice the actual isovector volume integral) for a representative
selection of nuclei using three different global optical potentials.
The nuclei were chosen to have nonzero N − Z terms and to be close
or on the line of stability. The nuclei are the same as used in Fig. 14.
The dark blue semi-filled circular points are the calculation using the
KD optical potential [1], the red unfilled circular points use the MD
optical potential [2] and the light filled green circular data points are
calculated using the WP potential of this work. The lines connecting
the data points are there to make it easier for the eye to follow. The
left panel used a 50 MeV nucleon projectile and the right panel uses
a 150 MeV projectile where the differences in the three calculations
become more pronounced. The light gray shaded area is the range of
values for microscopic potentials which are described in the text in
Sec. IV C.

they are similar to Gamow-Teller and Fermi sum rules which
are proportional to N − Z [143]), in the KD integrals this
behavior has been quenched because the neutron and proton
potentials lack the requisite similarity.

Figure 18 also has a light gray shaded area depicting
a range of microscopic optical potentials isovector volume
integrals. These microscopic potentials have been described
in Sec. IV C and their isoscalar volume integrals depicted
in Fig. 14. Overall the microscopic optical potentials have a
systematically lower strength than the three OMPs, although it
is encouraging to see that at the lower 50 MeV projectile energy
there is a general agreement between all the potentials for
target nucleons with A > 28. Some features of the microscopic
potential isovector character are that it has a much smaller
width at higher energies because the impulse approximation,
where a free density-independent t-matrix is closer to being
realized. Likewise the microscopic potential also shows an
oscillatory N − Z behavior in the isovector volume strength,
for example the isovector character of 14C is almost twice as
big as 13C because it has twice the neutron excess. At high
energies the KD and WP isovector elements shrink and mimic
the microscopic result better than the MD OMP which grows;
this is deceiving, for the source of the magnitude shifts are not

substantially isovector in origin but are almost entirely due to
the Coulomb correction which is very much reduced in the
WP and KD optical potentials at high energies but is energy
independent in the MD optical potential.

The calculation of the explicit imaginary volume asymmet-
ric potential is a distinct attribute of the WP optical potential
described by this work. Calculating the isospin difference of
the imaginary term for this potential is executed by

(Im J/A)iso = (JWV
/A + JWS

/A)proton

− (JWV
/A + JWS

/A)neutron, (47)

where both the volume and surface terms are included as
described by Eqs. (42)–(44). In contrast the KD OMP only
has an implicit small imaginary asymmetric surface term
by subtracting a neutron projectile reaction from a proton
projectile reaction off the same target nucleus there is a
significant imaginary difference coming from the disparity
in isospin dependent volume strengths and Fermi energies.
The MD potential has an imaginary isovector strength of
zero. In Fig. 19 a plot of these imaginary volume integrals
are depicted at a range between 50 MeV and 150 MeV
projectile energies. The results are striking, this imaginary
volume integral is quite large, often the same size or larger than
the companion real piece. Having an imaginary asymmetry
term, as the WP and KD optic potentials have, allows for a
more nuanced optical potential which contains mechanisms

FIG. 19. (Color online) This is a calculation of the difference in
the imaginary component of the central volume integrals between a
proton and neutron projectile (about twice the isovector strength) for a
representative selection of nuclei using the WP and KD global optical
potential. The nuclei were chosen to have nonzero N − Z terms and
to be close or on the line of stability, the specific nuclei are listed in
Fig. 14. The light green fill represents the range possible for nucleon
projectile energies between 50 MeV and 150 MeV for the WP global
optical potential of this work. The KD global optical potential (dark
blue fill) is smaller and has a diminished range but its values are
comparable to its real counterpart. The light gray shaded area is the
range of values for microscopic potentials which are described in the
text in Sec. IV C.
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for charge-exchange resonances [143], important at these
energies. Again, for further comparison, the microscopic
optical potential range for the imaginary isovector element
is depicted in light gray. It is systematically lower than
the phenomenological optical potentials but is also is often
much stronger than its real counterpart, especially at higher
energies. The microscopic potential integral still carries large
remnants of the N − Z character in the results as does the
WP OMP. The KD OMP is greatly reduced reminiscent of
the real isovector volume element of Fig. 18. Incidentally, if
a realistic imaginary Coulomb correction is added it would
give a small positive volume element differential to the results
depicted in Fig. 19 thus leading to better agreement between
the phenomenological and microscopic potentials for this term.

A comparison of these asymmetric isovector volume
integrals differences can me made to experiment. It is well
understood that the asymmetry volume integral is tied to
Gamow-Teller transitions in charge-exchange reactions which
dominate at high energies [143]. The volume integral equations
of Eqs. (42)–(47) are equivalent to doing a Fourier transform
to momentum transfer (q) space set to zero. In this forward
scattering case the inelastic aspect of the asymmetry terms
dominates. This is because in the Coulomb distorted wave
basis the long range Coulomb potential, which dictates
extremely forward angle proton scattering, is external to the
optical potential so the magnitude of the elastic scattering
component is zero, likewise the neutron scattering elastic
forward amplitude is zero. This extreme scattering has been
recognized as being important in determining Gamow-Teller
strengths [144,145]. If the difference is taken between the
energy needed to initiate a proton-neutron charge-exchange
and a neutron-proton charge-exchange for the same target
nucleus (the difference in Q values derived from the mass
excess values for the resultant final nuclei) this can be
compared to the difference in the volume integrals which give
the minimum energy, zero momentum transfer, nuclear density
difference.

The volume integral for the Coulomb potential is infinite
but it can easily be defined within the traditional nuclear radius,
using the short range expression, used by all three OMPs under
examination, which states that when r < RC :

JC/A = 4π

A

∫ RV A
1
3

0
fcoul(r,RC,A,N,Z)r2dr. (48)

In the short range the Coulomb potential interferes with
the nuclear force and contributes to the overall strength of
the asymmetric volume element. The KD and MD optical
potentials also include a separate Coulomb correction term
while the potential of this work (WP) does not contain a
separate Coulomb correction term but is part of the original
short-range Coulomb term as detailed in Sec. V. These nuclear
corrections are significant in the short range and must be
included when illustrating short range differences between
neutron and proton scattering.

To calculate the difference per nucleon in potential energy
density at zero momentum transfer in the short range five terms

are calculated

Jiso = (Re J/A + Jcoul.corr./A)iso + (Im J/A)iso

+ JC/A − �Jsr, (49)

where the first line is the real nuclear potential energy density
difference with the Coulomb correction included (Fig. 18). The
second line is the imaginary nuclear potential energy density
difference (Fig. 19). The last line is the short range Coulomb
potential volume [Eq. (48)], up to the nuclear radius RV , and a
zero point correction, �Jsr. This correction is needed because
of the weakened short ranged Coulomb volume that is used by
all three potentials as dictated by Eq. (4). Since the Coulomb
distorted wave basis sets zero nuclear scattering as defined
by the traditional long range Coulomb form [Eq. (3)] and the
short range volume element form actually used is 20% weaker
then the traditional Coulomb potential, the true zero-scattering
point has been shifted in the distorted wave Coulomb basis
of neutron and proton scattering within the short range and
this modification has to be normalized accordingly. Thus the
correction is

�Jsr = (0.2)
4π

A

∫ RC A
1
3

0

Ze2

r
r2dr, (50)

which is applied to all the potentials consistently.
In Figs. 20 and 21 there are depicted Q value (mass excess)

differences for charge-exchange reactions (Q(n,p) − Q(p,n))
in black along with normalized volume integrals for the MD,
WP, KD, and a typical microscopic t − ρ optical potentials
[122] for the 48 different sample target nuclei at a projectile
energy of 150 MeV. The normalized optical potentials were
calculated by using Eq. (49) and then multiplying that result
by a constant density. The functional form results of the
optical potential volume integrals are in remarkable agreement
with the experimental Q value differences. Three of the
four optical potentials mimic the shape and structure of the
experimental mass excesses, following the global minimum at
13C, local maxima and minima at 39K and 40K (dictated by
factors of N − Z), and the general trends as nucleon number
increases. A natural consequence of fitting elastic scattering
data with a proton and neutron inclusive optical potential is
the ability to mimic the Q values of the charge-exchange
reactions at high energies given a simplistic constant density
normalization factor even without these data being used as
fitting constraints. This structure is remarkably also built
into the microscopic optical potential which is a sum of the
two-body nucleon-nucleon potentials [122]. The only optical
potential that does poorly is the KD potential which was
developed using separate potentials for proton and neutron
scattering. The general conclusion is that by simultaneously
fitting neutron and proton projectiles (or neutron-proton and
proton-proton phase shifts in the case of the microscopic
potentials) one automatically develops a potential which has
the correct target dependant relative moduli strengths for the
forward scattering volume integrals at high energy which are
tied directly to both the mass difference and Gamow-Teller
matrix elements.

The general systemic target shape is correct in Figs. 20,
21 for the MD, WP, and t − ρ potentials but the magnitude
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FIG. 20. (Color online) This plot depicts the total normalized
energy difference (Jisoρnuc) for the proton and neutron projectiles
on a representative selection of nuclei using two different global
optical potentials using potentials at projectile energy of 150 MeV.
The nuclei were chosen to have nonzero N − Z terms and to be close
or on the line of stability, the specific nuclei are listed in Fig. 14.
These calculations are compared to the difference in experimental
mass excess energies for the charge-exchange reactions, Q(n,p) −
Q(p,n) from the same targets, the experimental data (dark black
circles) are from Ref. [146]. The MD calculations, the unfilled red
circles, have multiplied the results of Eq. (49) by .38 fm−3, the WP
calculations, the light filled green circles, has been multiplied by
.16 fm−3. The experimental mass excess energies shown here were
not used to constrain the OMPs during the fitting procedure. Two other
potential calculations along with experiment are shown in Fig. 21.

differences are substantial. The constant density factor is
1.14 fm−3 for the microscopic potential, 0.38 fm−3 for the
MD calculation (the isovector volume strength is three times
the size of the microscopic calculation) and the WP OMP
has 0.16 fm−3 for the constant density (the isovector volume
strength is seven times the size of the microscopic). Addition-
ally the MD optical potential has all its strength in the real
component where the WP and microscopic potentials have
isovector character distributed in both the real and imaginary
term. Others have used charge-exchange differential cross
sections to constrain the nucleon-nucleus optical potential
asymmetric isovector term. Future work on this OMP could
take that direction following the procedures as outlined in
Refs. [134,147] which would help constrain these isovector
magnitudes further.

The ramifications of the large asymmetric potential differ-
ences can be ascertained also with reactions that the global
optical potentials are currently fitted to. Table IV examines the
differences between the 40Ar(n,∗) and 40Ca(n,∗) cross sections
with a 50 MeV and 150 MeV neutron projectile (calcium
subtracted from argon). The large differences generated in
the elastic and inelastic cross section predictions are highly
dependent on the contrasts in the antisymmetric isovector
term between the three potentials. This reaction was chosen

FIG. 21. (Color online) This plot depicts the total normalized
energy difference (Jisoρnuc) for the proton and neutron projectiles on
a representative selection of nuclei using two different global optical
potentials using potentials at projectile energy of 150 MeV. The nuclei
were chosen to have nonzero N − Z terms and to be close or on
the line of stability, the specific nuclei are listed in Fig. 14. These
calculations are compared to the difference in experimental mass
excess energies for the charge-exchange reactions, Q(n,p) − Q(p,n)
from the same targets, the experimental data (dark black circles) are
from Ref. [146]. The KD calculations, the filled blue circles, have
multiplied the results of Eq. (49) by .17 fm−3, the lighter gray circles
(following the technique described in Ref. [122]), has been multiplied
by 1.14 fm−3. The experimental mass excess energies shown here
were not used to constrain the OMPs during the fitting procedure.

because both A = 40 nuclei are stable and there are dramatic
differences between the potentials at A = 40 in the asymmetric
term. Using neutrons as projectiles also allows an ignorance

TABLE IV. This is a comparison of the strength of the
asymmetry term at A = 40. The calculation is the difference
between neutron-nucleus total cross section calculations from
scattering off of 40Ar and 40Ca at 50 MeV and 150 MeV
projectile energies (σAr − σCa). The differences between the three
optical potentials at high energies are mostly due to the isovector
asymmetric term and pronounced and easily separable. At lower
energies the differences fall within experimental deviation.

Energy Model �ReJ �ImJ �σelast �σreact �σtot

MeV MeV fm3 MeV fm3 mb mb mb

KD +1.8 +0.4 +14 −28 −14
50 MD +14.5 0.0 −36 −9 −45
MeV WP −10.8 +8.2 +68 −51 +17

t − ρ +14.0 +7.5 −18 −22 −40

KD +2.6 +0.5 −19 −4 −23
150 MD +18.2 0.0 −106 −5 −111
MeV WP +3.1 +16.8 +188 −287 −99

t − ρ +2.1 +5.8 −6 −15 −21
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of Coulomb effects and Coulomb correction terms. At the
50 MeV projectile energy the isovector differences are large
however the calculations fall within one or two standards
deviation of experimental error [93,148]. At the higher
projectile energy of 150 MeV, where it can be assumed that
the born and impulse approximations have validity, the effects
of correlations, coupled channels and potential distortions are
at a minimum. The extreme dramatic reduction in the inelastic
cross section and increase in the elastic cross section predicted
by the WP OMP differs wildly with the predicted large
decrease in the elastic cross section seen by the MD potential.
Likewise the KD and microscopic potentials offers a third very
realistic conclusion; that the differences between 40Ar(n,∗) and
40Ca(n,∗) cross sections with a 150 MeV neutron projectile are
relatively minor. There is at present no high energy 40Ar(n,∗)
data to confer which optical potential is closest to experiment.
Experiments calculating the 40Ar cross sections would be a
welcome addition as well as would other high energy neutron
reaction data like recent experiments detailed in Refs. [46,103]
which, if use N �= Z target nuclei, are sensitive to the isovector
term.

VI. CONCLUSION

The motivations for this work were to construct a phe-
nomenological nucleon-nucleus global optical potential that is
suited for a wide range of nuclei targets and projectile energies
which are within capacity of the exotic beam accelerators
presently running and under development. We have succeeded
in creating one isospin dependent potential which fits target
nuclei 12 � A � 60 and a projectile energy of 30 MeV �
E � 160 MeV. It compares well with two other recent global
optical potentials [1,2], its advantages are that it is one
continuous optical potential which is designed to do systematic
studies on mirror nuclei and chains of isotopes (a observable
calculator has also been made available to researchers to
quickly use this potential for their own research [11]). We have
also included an imaginary asymmetry term which is missing

from other recent global optical potentials and have given
comparative analysis on how the asymmetric potential terms
in the three potentials dramatically differ from each other,
microscopic potentials and the ramifications to experimentally
testable observables. It was also ascertained that a benefit of
fitting the proton and neutron observables simultaneously is the
ability to accurately define the structure of the mass excesses
for the charge-exchange reactions.

There also was a critical examination of the validity of
the traditional linear proportionality of N − Z applied in the
asymmetry term. An examination of the calculation of the
calcium and chromium experimental observables produced at
65 MeV projectile energy show a continuing failure to produce
great fits along the isotopic chain, indicative of a breakdown
of this linear asymmetry ansatz. Further low and high energy
experimental studies of chains of isotopes would help guide
future theoretical studies of the asymmetry term.

Future work could extend this potential to heavier targets,
test other forms of asymmetry potentials, examine spin-spin
terms, use charge-exchange information to constrain data, and
determine algorithms to better weight the scattering observ-
ables. To better constrain the terms more elastic scattering data
from traditional and exotic nuclei data are needed especially
at the higher energies.
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