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Capture process in nuclear reactions with a quantum master equation

V. V. Sargsyan,1,2 Z. Kanokov,1,3 G. G. Adamian,1,4 N. V. Antonenko,1 and W. Scheid5

1Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
2Yerevan State University, 0025 Yerevan, Armenia

3National University, 700174 Tashkent, Uzbekistan
4Institute of Nuclear Physics, 702132 Tashkent, Uzbekistan

5Institute für Theoretische Physik der Justus-Liebig Universität, D-35392 Giessen, Germany
(Received 20 May 2009; published 10 September 2009)

Projectile-nucleus capture by a target nucleus at bombarding energies in the vicinity of the Coulomb barrier
is treated with the reduced-density-matrix formalism. The effects of dissipation and fluctuations on the capture
process are taken self-consistently into account within the quantum model suggested. The excitation functions
for the capture in the reactions 16O, 19F, 26Mg, 28Si, 32,34,36,38S, 40,48Ca, 50Ti, 52Cr + 208Pb with spherical nuclei
are calculated and compared with the experimental data. At bombarding energies about (15–25) MeV above the
Coulomb barrier the maximum of capture cross section is revealed for the 58Ni + 208Pb reaction.
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I. INTRODUCTION

The dynamics of interaction between two heavy ions at
bombarding energies in the vicinity of the Coulomb barrier
has been the subject of intensive theoretical and experimental
investigations [1–13]. In recent years, these investigations
have been motivated by successes of the synthesis of new
superheavy elements in cold- and hot-fusion reactions [7–9].
The process of projectile-nucleus capture by a target nucleus
is an important stage of fusion reactions. At energies near
the Coulomb barrier, the evaporation residue cross sections
crucially depend on the capture cross sections. The classical
deterministic Newton equation with a friction force for the
relative distance between the centers of mass of colliding
nuclei has been often used to describe the capture process
[6]. The diffusion Fokker-Planck equation and the stochastic
Langevin equation have been also used to describe this process
[2,3,14].

Many studies based on the transport models ignore the
quantum-mechanical statistical effects and employ a classical
description where the coefficient of friction is related to the
diffusion coefficient by the classical fluctuation-dissipation
relation. The description of fluctuations and dissipation is
usually restricted to the Markov limit even in the case of
low temperatures and strong coupling between the collective
and internal subsystems for the processes as fast as heavy-ion
collisions [15]. So far, no model that would take into account
all quantum-mechanical effects and non-Markovian effects
accompanying the passage through the potential barrier has
been developed. Because the Coulomb barrier frequency is
higher than the temperature of a dinuclear system at the
instant of its formation, the quantum fluctuations about the
mean value of the trajectory of colliding nuclei may affect
the evaporation residue cross section through the capture
probability. It should be noted that the passage through
the Coulomb barrier approximated by a parabola has been
previously studied in the Refs. [15–18].

The objective of the present study is to include the
quantum-mechanical fluctuation and dissipation effects in the

description of the capture process within the reduced-density-
matrix formalism [16]. The non-Markovian quantum diffusion
coefficients are used in the master equation for the density
matrix. With the aid of the proposed quantum-mechanical
formalism we study the capture probability as a function of
the potential pocket depth, collision energy, and magnitude
of angular momentum. The respective calculations are used
to determine the capture cross sections in asymmetric fusion
reactions with spherical nuclei at energies near the Coulomb
barrier and higher. The results obtained in this way are com-
pared with the available experimental data. New experiments
are suggested to observe the interesting phenomena in the
capture process.

II. MASTER EQUATION FOR THE REDUCED
DENSITY MATRIX

The effect of internal degrees of freedom on the evolution of
a quantum-mechanical system along the collective coordinate
R (the relative distance between the centers of mass of
interacting nuclei) can be described in terms of the reduced
density matrix. The reduced density matrix ρ for the collective
subsystem satisfies the equation [19–23]:

d

dt
ρ = − i

h̄
[Hc, ρ] − iλP

2h̄
[R,{P, ρ}+]

− DPP

h̄2 [R,[R, ρ]] + DRP

h̄2 [P, [R,ρ]]

+ [R,[P,ρ]]
DRP

h̄2 , (1)

where Hc = 1
2µ

P 2 + V is the collective Hamiltonian of the
radial motion and µ is the reduced mass. The potential V is
the renormalized (because of the coupling to internal degrees
of freedom) collective potential; DPP ,DRP , and λP are,
respectively, the coefficient of diffusion in momentum, the
mixed diffusion coefficient, and the coefficient of friction. If
the coupling between the collective and internal subsystems

0556-2813/2009/80(3)/034606(13) 034606-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.034606


SARGSYAN, KANOKOV, ADAMIAN, ANTONENKO, AND SCHEID PHYSICAL REVIEW C 80, 034606 (2009)

is in the coordinate, the coefficients of diffusion and friction
in coordinate vanish [16]. Based on the results of Ref. [23],
the asymptotic values of friction and diffusion coefficients are
used in Eq. (1).

The friction coefficient λP depends on R for the coupling
type being considered. We use a well-known phenomenologi-
cal formula [1,2]

λP (R) = α

∣∣∣∣ ∂

∂R
Vnuc(R)

∣∣∣∣
2

, (2)

where Vnuc(R) is the nuclear part of the nucleus-nucleus
potential V and the parameter α is a constant to fix the certain
value of λP (Rb) on the top of the Coulomb barrier at R = Rb.

If the potential V is an oscillator potential and if the
coupling of the collective subsystem to the internal subsystem
is linear in R, then the diffusion coefficients in Eq. (1) are
independent of R [16,21,22]. In this case, DPP and DRP are
functions of the oscillator frequency [16]. By means of an
expansion in a Taylor series to the second-order inclusive,
one can approximate a more complicated potential V at each
point R by a local harmonic or inverted oscillator. Because the
local-oscillator frequency

ω(R) =
√

1

µ

∣∣∣∣∂2V

∂R2

∣∣∣∣
and friction coefficient λp(R) depend on the coordinate, the
asymptotic diffusion coefficients (see Appendix)

DPP = T µγ 2λP

γ (γ + λP ) ± ω2

×
{

1 + 2
∞∑

k=1

νkγ λP ± ω2(γ + νk)

(γ + νk)[νk(νk + λP ) ± ω2]

}
, (3)

DRP = T γλP

2[γ (γ + λP ) ± ω2]

×
{

1 + 2γ

∞∑
k=1

−νkγ ± ω2

(γ + νk)[νk(νk + λP ) ± ω2]

}
(4)

also become coordinate-dependent quantities [23]. Here, νk =
2πT k/h̄,T is the temperature of the internal subsystem, and
the upper and lower signs refer to a harmonic and an inverted
oscillators, respectively. Non-Markovian effects appear in the
diffusion coefficients and, accordingly, in the master Eq. (1)
through the internal-excitation width of h̄γ = 12 MeV. The
relaxation time for the internal subsystem is much shorter
than the characteristic time of collective motion. For an
anharmonic potential V , the use of independent of R diffusion
coefficients seems to be a good approximation only in the
case of a weak dissipation and high temperature [19,21,22].
However, in many applications, for example, in the decay
from a moderately shallow potential well, one should take into
account higher-order fluctuations [23]. The use of asymptotic
diffusion coefficients in our calculations is well justified
because the interaction between two nuclei starts well before
the Coulomb barrier and these asymptotics are established for
the underdamped motion in R much faster than the capture
occurs.

Rewriting Eq. (1) for the reduced density matrix ρ in the
coordinate representation (ρ(t,x,y) = 〈x|ρ|y〉), transforming
the coordinates as x = R + z/2 and y = R − z/2, and ex-
panding the potential in z to the third-order terms inclusive,
we reduce the equation for the density matrix ρ(t,R,z) [23] to
the form

d

dt
ρ(t,R,z) = L(R,z)ρ(t,R,z),

L(R,z) = i
h̄

µ

∂2

∂R∂z
− iz

∂V

∂R
− i

1

24
z3 ∂3V

∂R3
− λP z

∂

∂z

− DPP

h̄2 z2 − i

h̄

(
zDRP

∂

∂R
+ ∂

∂R
zDRP

)
.

(5)

To solve Eq. (5) numerically, we use a harmonic-oscillator
basis:

ρ(t,R,z) =
n∑

k=0

fk(t,R)Bk(σ,z),

(6)

Bk(σ, z) = ik

k!

(
k

2

)
!e− z2

8σ2 Hk

( z

2σ

)
.

Here, Bk(σ, 0) = 1 and 0 for, respectively, even and odd values
of k. We found that the diffusion coefficient DPP in the
minimum of the potential, to which the capture is treated,
and the optimal basis parameter σ are related: 4σ 2DPP =
h̄2λP . The proposed method makes it possible to obtain ρ

for a potential of any degree of intricacy and for any set
of coefficients of friction and diffusion. The microscopic
diffusion coefficients used ensure that the density matrix is
positive at any instant and that

Trρ =
∑

k=0,2,4,...

∫ ∞

−∞
fk(t,R)dR = 1. (7)

III. CAPTURE PROCESS

The potential describing the interaction of two nuclei can
be represented in the form

V (R,L) = Vnuc(R) + VCoul(R) + Vrot(R,L), (8)

where Vnuc, VCoul, and Vrot stand for, respectively, the nuclear,
the Coulomb, and the centrifugal potentials. The nuclei are
proposed spherical and the potential depends on the distance
R between the center of mass of two interacting nuclei and
angular momentum L. For the nuclear part of the nucleus-
nucleus potential, we use the double-folding formalism [24],
taking it in the form

Vnuc =
∫

ρ1(r1)ρ2(R − r2)F (r1 − r2)dr1dr2, (9)

where F (r1 − r2) = C0[Fin
ρ0(r1)
ρ00

+ Fex(1 − ρ0(r1)
ρ00

)]δ(r1 − r2)
is the density-depending effective nucleon-nucleon in-
teraction and ρ0(r) = ρ1(r) + ρ2(R − r), Fin,ex = fin,ex +
f

′
in,ex

(N1−Z1)(N2−Z2)
(N1+Z1)(N2+Z2) , ρ1(r1), N1, Z1 and ρ2(r2), N2, Z2 are the

nucleon densities, neutron numbers, and charge numbers of,
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respectively, the projectile and the target nucleus. Our calcu-
lations were performed with the following set of parameters:
C0 = 300 MeV fm3, fin = 0.09, fex = −2.59, f ′

in = 0.42,
f ′

ex = 0.54, and ρ00 = 0.17 fm−3. To calculate the Coulomb
and centrifugal potentials, we use the formulas

VCoul = e2
∫

ρz
1(r1)ρz

2(R − r2)

|r1 − r2| dr1dr2 (10)

and

Vrot = h̄2L(L + 1)

2µR2
, (11)

respectively. Here, ρz
1 and ρz

2 are the nuclear charge densities.
The nuclear densities are specified in the form of the Woods-
Saxon parametrization, where the nuclear radius parameter is
r0 = 1.15 fm and the diffuseness parameter is a = 0.55 fm
[24]. We used a = 0.53 fm only for the lighter nuclei 16O and
19F. Figure 1 shows the nucleus-nucleus interaction potential
calculated for the 16O + 208Pb and 48Ca + 208Pb systems at
various values of the orbital angular momentum L. As the
centrifugal part of the potential grows, the pocket depth
becomes smaller, while the position of the pocket minimum
moves toward the barrier at R = Rb. The value of Rb is
approximately equal to R1 + R2 + 2 fm where R1 and R2

are the radii of colliding nuclei.
Here, we restrict our consideration to the one-dimensional

problem of radial motion. In addition to the dissipation of
kinetic energy of the radial motion there is dissipation of
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FIG. 1. Nucleus-nucleus interaction potentials as functions of the
relative distance R between the centers of mass of the spherical
nuclei in the 16O, 48Ca + 208Pb reactions at various values of the
orbital angular momentum L = 0 (solid curve), 30 (dashed curve),
60 (dotted curve), and 90 (dash-dotted curve).
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FIG. 2. Diffusion and friction coefficients versus the relative
distance R at L = 0 for the 48Ca + 208Pb system whose nucleus-
nucleus interaction potential is presented in Fig. 1. The parameter α

is chosen from the condition h̄λP (Rb) = 2 MeV.

angular momentum, i.e., the approach of the sticking limit
[1,2]. Because the dissipation of angular momentum mainly
occurs behind the barrier, for simplicity, it can be disregarded
to treat the passage of the Coulomb barrier. As follows from
our calculations, the dissipation of orbital angular momentum
causes the decrease of the value of potential V (R). However,
the value of ∂V (R)/∂R is only slightly changed in the reactions
considered. Thus, considering the decay or reflection from the
region behind the barrier, one can use the potential at fixed
angular momentum for bombarding energies of interest.

One can visualize a capture as a process in which the part
of the initial Gaussian wave packet that is to the right of the
barrier populates the left potential pocket (see Fig. 1). The
capture probability is defined with the ratio

P (t,Ec.m.,L) =
∫ Rb

−∞ ρ(t,R)dR∫ ∞
Rb

ρ(t = 0, R)dR
(12)

at t = τ , i.e., Pcap(Ec.m., L) = P (τ, Ec.m., L). The value of
τ determines the time of capture. When the trajectory (the
mean value of the relative distance) does not cross the top of
the barrier, the τ is defined as the time of returning back to
starting point of the wave packet taken at R = Rb + 1 fm. At
this R the overlap of nucleon densities is quite small and the
nuclear force play a role at smaller R. For the trajectory above
the Coulomb barrier, a quasi-steady-state inverse flux from the
left hand potential pocket is formed in due course of time and
τ is defined as the time, within which the quasi-steady-state
regime sets in.
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FIG. 3. The value P as a function of time at bombarding energies
of �E = Ec.m. − V (R = Rb, L) = 5 and 15 MeV for the 48Ca +
208Pb system. The energies �E are reckoned from the Coulomb
barrier height at a given orbital angular momentum L = 0 (solid
curve), 30 (dashed curve), 60 (dotted curve), and 90 (dash-dotted
curve). The parameter α is chosen from the condition h̄λP (Rb) =
2 MeV.
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FIG. 4. Capture probability Pcap as a function of the friction
parameter h̄λP (Rb) at indicated energies for h̄γ = 12 MeV (solid
curve) and 20 MeV (dashed curve) for the 48Ca + 208Pb reaction.
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FIG. 5. Capture probability Pcap as a function of the bombarding
energy �E = Ec.m. − V (R = Rb, L) reckoned from the Coulomb
barrier height at L = 0 (solid curve) and 60 (dashed curve) for the
48Ca + 208Pb reaction.

The partial-wave capture cross section (cross section for
the formation of a dinuclear system) is given by

σc(Ec.m.,L) = πλ-2(2L + 1)Pcap(Ec.m.,L), (13)

where λ-2 = h̄2/(2µEc.m.) is the reduced de Broglie wave-
length. As follows, the total capture cross section has the form

σc(Ec.m.) =
∑
L

σc(Ec.m., L)

= πλ-2
∑
L

(2L + 1)Pcap(Ec.m., L). (14)

Here, the summation is in possible values of L at given Ec.m..
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FIG. 6. Capture probability Pcap as a function of the orbital
angular momentum at �E(0) = 5 MeV (solid curve), 15 MeV
(dashed curve), and 30 MeV (dotted curve) for the 48Ca + 208Pb
reaction. The energies �E(0) are reckoned from the Coulomb barrier
at L = 0.
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FIG. 7. Calculated capture cross sections
for the indicated reactions. The experimental
data for the 16O + 208Pb reaction are borrowed
from Ref. [26]. The experimental data for the
19F + 208Pb reaction are borrowed from Refs.
[27] (closed symbols) and [28] (open sym-
bols). The experimental data for the 26Mg +
208Pb reaction are borrowed from Ref. [29].
The experimental data for the 28Si + 208Pb
reaction are borrowed from Refs. [30] (closed
symbols) and [28] (open symbols). For the
16O + 208Pb reaction, the capture cross section
calculated with the Wong formula (15) is
presented by dashed curve.

IV. RESULTS AND DISCUSSION

Solving the master Eq. (5), we find the diagonal elements
ρ(t,R,z = 0) of the density matrix in the coordinate rep-
resentation. In all calculations, the Gaussian wave packet
is characterized by mean coordinate R(0) = Rb + 1.0 fm
and variances σRP (0) = 0, σRR(0) = 0.25 fm2, and σPP (0) =
1.0 h̄2 fm−2. The mean initial momentum P (0) depends on the
initial energy Ec.m..

The diffusion and friction coefficients in the master
equation were calculated by formulas (2), (3), and (4). For
the system 48Ca + 208Pb, Fig. 2 shows the dependence of
the diffusion coefficients on the coordinate R at L = 0 and
T = 1.2 MeV. The coordinate dependence of the diffusion
coefficients in the vicinity of the barrier is rather weak. A weak
temperature dependence of the capture probability is worthy
of special note [25]. A weak dependence of the diffusion
coefficients on L is taken into account in our calculations.
In the potential pocket region, DPP and DRP increases rather
slowly with orbital angular momentum that is an additional
argument to reduce the problem to the one-dimensional one.

Figure 3 displays the calculated time dependence of P .
One can see from this figure that the time within which the
quasi-steady-state flow rate sets in is τ ≈ 2.0 h̄/MeV. At t > τ

the value of P exponentially decreases. A slump of the flux
at large angular momentum (L = 90, dash-dotted lines) is
observed because of small depth of the potential pocket. At
small angular momentum the value of capture probability at
t = τ is closed to the maximum value of P (t) (see Fig. 3).

Figure 4 shows the capture probability Pcap as a function of
the friction parameter h̄λP (Rb) [see Eq. (2)] at the bombarding
energy values of �E(0) = Ec.m. − V (R = Rb,L = 0) = 5
and 15 MeV for two different internal-excitation width h̄γ =
12 and 20 MeV. The dependence of Pcap on γ is quite weak.
One can see from this figure that, as the friction becomes larger,
the capture probability firstly increases but then decreases. At
�E(0) = 5 MeV (15 MeV), Pcap takes a maximum value at
h̄λP (Rb) ≈ 1.5 MeV (2 MeV). This behavior is dictated by
the interplay of two factors as the wave packet traverses the
potential barrier. Specifically, there are friction, which impedes
this process, and diffusion, which, on the contrary, facilitates
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FIG. 8. Calculated capture cross sections
for the indicated reactions. The experimental
data for the 32S + 208Pb reaction are borrowed
from Refs. [31] (closed symbols), [32] (star
symbols), and [33] (circles). The experimental
data for the 34S + 208Pb reaction are borrowed
from Ref. [32]. The experimental data for
the 36S + 208Pb reaction are borrowed from
Refs. [32] (closed symbols) and [33] (star and
open symbols). The experimental data for the
38S + 208Pb reaction are borrowed from Ref.
[33] (closed squares and star symbols).

it. As the friction becomes larger, the diffusion grows that
explains the growth of the capture probability at small friction.
However, the further increasing friction leads to a decrease in
the capture probability. We note that diffusion is a consequence
of quantum statistical effects and vanishes in purely classical
treatments of the capture process. The most realistic friction
coefficients in the range of h̄λP ≈ 1 − 2 MeV were suggested
from the study of deep inelastic reactions [5]. In this range
of h̄λP (Rb) the value of Pcap is changed rather weakly, within
20%. In all our calculations below the parameter α is chosen
from the condition h̄λP (Rb) = 2 MeV.

Figure 5 shows the capture probability Pcap as a function of
the initial bombarding energy �E = Ec.m. − V (R = Rb,L)
reckoned from the Coulomb barrier height at given L. The
capture probability initially grows with energy, but a further
increase of �E leads to a decrease in the probability, since, at
energies considerably exceeding the barrier height, the motion
of the wave packet becomes virtually free and insensitive
to the presence of the potential pocket. For the angular
momentum L = 0, the capture probability is maximal at

�E ≈ 30 MeV. At L = 60, the maximum of Pcap is reached
at �E ≈ 20 MeV. Note that, with increasing energy, the ratio
Pcap(Ec.m., L = 0)/Pcap(Ec.m., L = 60) grows, because, at the
initial instant before the onset of the quasi-steady-state regime,
the dissipation of energy is larger at L = 0 than at L = 60.

In Fig. 6 the capture probability Pcap is shown as a function
of the orbital angular momentum at �E(0) = Ec.m. − V (R =
Rb,L = 0) = 5, 15, and 30 MeV. With increasing L the
capture probability decreases because the potential pocket
becomes shallower. The rate of this decrease depends on the
collision energy. Because the collective energy of the relative
motion of nuclei is dissipated more vigorously with increasing
initial kinetic energy, the decrease in the capture probability
with increasing L is more pronounced at large positive values
of �E(0). Note, that the dependence of Pcap on L is rather
weak at L < 60.

The calculated capture cross sections are compared with
the available experimental data [26–37] in Figs. 7–9. Our
results agree well with the experimental data almost for all
reactions in the large interval of bombarding energies: from
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FIG. 9. Calculated capture cross sections
for the indicated reactions. The experimental
data for the 40Ca + 208Pb reaction are borrowed
from Ref. [34]. The experimental data for
the 48Ca + 208Pb reaction are borrowed from
Refs. [34] (closed symbols) and [35] (open
symbols). The experimental data for the 50Ti +
208Pb reaction are borrowed from Refs. [36]
(closed squares), [29] (open squares), and [37]
(star symbols). The experimental data the for
52Cr + 208Pb reaction are borrowed from Ref.
[29]. For the 48Ca + 208Pb reaction, the capture
cross section calculated with the Wong formula
(15) is presented by the dashed curve.

about 4 MeV below the Coulomb barrier to about 70 MeV
above the Coulomb barrier. The discrepancy between the
theory and experiment for the 52Cr + 208Pb reaction can be
explained as follows. The experimental capture cross section
σ (ex)

c is the sum of quasifission σqf , fusion-fission σff , and
fusion-evaporation residue σER cross sections. The two last
cross sections σff and σER are quite small (because of
very small fusion probability or strong fusion hindrance)
for the 52Cr + 208Pb reaction and can be disregarded. So,
the question arises how accurately the quasifission products
are separated from the elastic and deep inelastic products in
the experiment. The system 52Cr + 208Pb is hindered by the
potential minimum in charge (mass) asymmetry against fast
sliding to more symmetric configurations and, thus, it has a
large probability to decay by the quasifission. So, the products
with charge (mass) asymmetries near the entrance channel
give the main contributions to the distribution of quasifission
products [38]. However, it is very difficult to separate in the
experiment these products from the products of elastic and
deep inelastic processes. One can suppose that in Ref. [29]

the contribution of quasifission products near the entrance
channel was underestimated. With increasing bombarding
energy and, correspondingly, the excitation energy of the
entrance channel configuration the probability of transition to
more symmetric configurations increases and the contribution
of quasifission near the entrance channel decreases (but still
remains considerable). Indeed, one can see that the difference
between the theory and experiment decreases with increasing
bombarding energy.

One of the main criterion of validity of the measured capture
cross section is the dependence σcEc.m./(πR2

b h̄ωb) on (Ec.m. −
Vb)/(h̄ωb) [39]. One can see this dependence for experimental
and theoretical σc in Fig. 10. The entrance channel effect
creates the difference in the absolute value of capture cross
sections. As seen in Fig. 10, the reactions with lighter projectile
has a larger value of σcEc.m./(πR2

b h̄ωb). The reason is that
the pocket of the nucleus-nucleus interaction potential is
deeper and wider in these reactions. For the reactions with
relatively light nuclei 16O, 19F, 26Mg, 28Si, 32,34,36S, and
40,48Ca, the experimental points at given (Ec.m. − Vb)/(h̄ωb)
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FIG. 10. The dependence of calculated (upper
part) and experimental (lower part) values of
σcEc.m./(πR2

b h̄ωb) on (Ec.m. − Vb)/(h̄ωb) for the
reactions with 208Pb target and various indicated
projectiles. Here, Vb = V (R = Rb, L = 0).

are distributed in quite narrow region. So, the dependence
of σcEc.m./(πR2

b h̄ωb) on (Ec.m. − Vb)/(h̄ωb) seems to be
universal for all reactions at Ec.m. � Vb. For comparatively
heavy systems 50Ti, 52Cr + 208Pb, where the complete fusion
process is strongly suppressed but the quasifission is strongly
enhanced near the entrance channel, the experimental points
strongly deflect from this narrow region. As mentioned
above, it can be related to the problems of the separation of
quasifission near the entrance channel.

It should be noted that the experimental σc for the
52Cr + 208Pb reaction [29] can be reproduced if the static
Coulomb barrier is effectively replaced with the dynamical
barrier [3]. The shift of static barrier is the so-called extra-push
effect. However, the experimental results on the cold fusion
reactions with 208Pb and 209Bi targets showed that there is
no extra-push effect in the entrance channel [7]. Therefore,

the use of the barrier shift would underestimate the real value
of σc.

For the reactions considered, the capture cross sections
initially increase with Ec.m. but then decrease proportionally
to 1/Ec.m.. In our model the capture is assumed to occur for
all L values from L = 0 to L = Lcrit for which a pocket of
nucleus-nucleus potential exists in the sticking limit. When
Lcrit becomes less then the maximal angular momentum Lmax

at given bombarding energy, the capture cross section can
decrease at large Ec.m.. So there is limitation of capture due
to the entrance channel effects. At L � Lcrit, the sum of
centrifugal and Coulomb forces overcompensates the nuclear
attraction. At L < Lcrit, the decay products near the entrance
channel would have mainly a quasifission origin. For the
reactions 54Fe + 208Pb and 58Ni + 208Pb, the capture cross
section reaches the maximum value at Ec.m. ≈ 250 and
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FIG. 11. Calculated capture cross sections
for the 54Fe + 208Pb and 58Ni + 208Pb reac-
tions. For the 58Ni + 208Pb reaction, the capture
cross sections calculated with the Wong for-
mula (15) are presented by the dashed curve.
The calculated σc in the case of the increase of
potential well depth by 0.5 MeV is presented
by the dash-dotted curve.

260 MeV, respectively, i.e., at energies not far above of the
Coulomb barriers (Fig. 11). The sensitivity of the position of
this maximum to the depth of potential pocket is demonstrated
in Fig. 11. For the 58Ni + 208Pb reaction, the absolute value of
σc slightly increases and the maximum is shifted by 10 MeV
toward higher energies with increasing the depth by 0.5 MeV. It
will be interesting to measure such dependence of the capture
cross section on bombarding energy for the 58Ni + 208Pb
reaction. This will give us an opportunity to draw a conclusion
about the depth of the potential pocket in the entrance channel.
One can also answer the question whether adiabatic or diabatic
regime is realized in the capture process because the potential
is sensitive to that.

For the reactions 16O, 48Ca, 58Ni + 208Pb, we compared our
results with the capture cross sections obtained with the Wong

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

S

t (  / MeV)

FIG. 12. The linear entropy (16) as a function of time at �E(0) =
−2 MeV (solid curve), 5 MeV (dashed curve), and 15 MeV (dotted
curve).

formula [3]

σc(Ec.m.) = h̄ωbR
2
b

2Ec.m.

ln

{
1 + exp

[
2π (Ec.m. − Vb)

h̄ωb

]}
, (15)

where the nucleus-nucleus interaction potential is approx-
imated by the inverted oscillator with the frequency ω =
ω(R = Rb) at L = 0 and the barrier height Vb = V (R =
Rb,L = 0). One has to note that Eq. (15) does not impose
the limitation by angular momentum. This can lead to
overprediction of the capture cross section at large bombarding
energies (Figs. 6, 7, 9, and 11).

Figure 12 shows the time dependence of linear entropy

S(t) = 1 − Tr [ρ2(t)] (16)

for the 48Ca + 208Pb reaction at �E(0) = −2, 5, and 15 MeV.
At �E(0) = 5 MeV the entropy has a maximum value at
t ≈ 0.8 h̄/MeV, which corresponds to the time passage over
the potential barrier. When the pocket reaches the potential
well, the entropy takes the minimal value. This means that the
minimal and maximal values of the entropy determine the more
stable and unstable points of potential energy of the system,
respectively. Note that the decrease of the linear entropy is
connected with the decoherence phenomenon. So, the value of
decoherence increases with Ec.m..

V. SUMMARY

The reduced-density-matrix formalism has been applied
for describing the process of projectile-nucleus capture by
a target nucleus. The calculated capture cross sections for the
reactions 16O, 19F, 26Mg, 28Si, 32,34,36,38S, 40,48Ca, 50Ti + 208Pb
are in a good agreement with available experimental data. This
supports the use of the formalism suggested to calculate the
capture cross sections. The calculated values of σc strongly
deviate from the experimental data in the case of the 52Cr +
208Pb reaction with very small (large) fusion (quasifission)
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probability. We would argue that the reason creating such
deviation is due to some drawback of our model but rather the
system may decay by quasifission from configurations near
the entrance channel that is not taken into consideration in the
measurements. Note that the decay products near the entrance
channel are mainly the quasifission products if L � Lcrit.

When the maximum angular momentum is equal to the
highest trapped L wave, the capture cross section reaches
the maximum value. The bombarding energy corresponding
to the maximum of capture cross section decreases with
increasing Coulomb repulsion (Z1 × Z2) in the entrance
channel configuration. We predict that for the 58Ni + 208Pb
reaction the maximum of capture cross section is placed at
bombarding energies about 15–25 MeV above the Coulomb
barrier. The experimental verification of this effect would allow
us to discriminate between adiabatic and diabatic regimes of
nucleus-nucleus interaction potential and determine the depth
of the potential pocket.

The universal nature of the dependence σcEc.m./(πR2
b h̄ωb)

on (Ec.m. − Vb)/(h̄ωb) is shown for the heavy systems at
bombarding energies Ec.m. � Vb leading to angular momenta
smaller than the highest trapped L wave. Using this depen-
dence and the calculated Rb, Vb, and h̄ωb, one can predict the
dependence of σc on Ec.m..
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APPENDIX

The Hamiltonian H of the total system is written as
[16,21,22,40]

H = H 0
c + Hb + Hcb, (A1)

where H 0
c is the Hamiltonian of the relevant collective

subsystem with the pure collective potential, Hb describes
the environment of the phonons, and Hcb describes the linear
coupling between collective subsystem and environment.
Eliminating the bath variables from the equations of motion
of the collective subsystem and assuming the Markovian
approximation for the dissipative kernel, we obtain a set of
stochastic dissipative equations for harmonic (upper sign) or
inverted (lower sign) oscillator

Ṙ(t) = P (t)

µ
,

(A2)
Ṗ (t) = ∓µω2R(t) − λP P (t) + FP (t),

where

FP (t) =
∑

ν

F ν
P (t) = −

∑
ν

αν[f +
ν (t) + fν(t)]

is the random force. Here, αν is real coupling constant. We
identify the operators Fν

P (t) as fluctuations because of the
uncertainty in the initial conditions for the bath operators
[16,19,22,40–42]. To specify the statistical properties of the
fluctuations, we consider an ensemble of initial states in which

the fluctuations have a Gaussian distribution with zero average
value 〈〈

Fν
P (t)

〉〉 = 0. (A3)

Here, the symbol 〈〈. . .〉〉 denotes the average over the bath. To
calculate the correlation functions of the fluctuations, we use
the statistics〈〈f +

ν (t)f +
ν ′ (t ′)〉〉 = 〈〈fν(t)fν ′(t ′)〉〉 = 0,

〈〈f +
ν (t)fν ′(t ′)〉〉 = δν,ν ′nνe

iwν [t−t ′], (A4)

〈〈fν(t)f +
ν ′ (t ′)〉〉 = δν,ν ′(nν + 1)e−iwν [t−t ′],

where the occupation numbers for phonons depending on
temperature T are given by nν = [exp(h̄wν/T ) − 1]−1 and ων

are the frequencies of the heat bath phonons. It is convenient
to introduce the spectral density D(w) of the heat bath
excitations, which allows us to replace the sum over different
oscillators, ν, by an integral over the frequency:

∑
ν . . . →∫ ∞

0 dwD(w) . . . . This replacement is accompanied by the
following replacements: αν → αw,wν → w, nν → nw. The
use of the following spectral function [42]

D(w)
|αw|2
h̄w

= λP

π

γ 2

γ 2 + w2
, (A5)

means the Ohmic dissipation with the Lorentian cutoff (Drude
dissipation) [19,41].

Using Eqs. (A2) and the solutions of Eqs. (A2),

R(t) = A(t)R(0) + B(t)P (0) +
∫ t

0
dτB(τ )FP (t − τ ),

(A6)

P (t) = M(t)R(0) + N (t)P (0) +
∫ t

0
dτN(τ )FP (t − τ ),

where

A(t) = s2e
s1t − s1e

s2t

s2 − s1
, B(t) = es2t − es1t

µ(s2 − s1)
,

M(t) = ∓(µω)2B(t), N (t) = µḂ(t),

and s1 = − λP /2 −
√
∓ω2 + λ2

P /4, s2 = −λP /2 +√
∓ω2 + λ2

P /4 are the roots of seqular equation s2 + λP s ±
ω2 = 0, one can obtain the equations of motion for the second
moments [σRR(t) = 〈R2(t)〉 − 〈R(t)〉2, σPP (t) = 〈P 2(t)〉−
〈P (t)〉2, σRP (t)= 1

2 〈P (t)R(t) + R(t)P (t)〉 − 〈P (t)〉〈R(t)〉]

σ̇RR(t) = 2

µ
σRP (t),

σ̇PP (t) = −2λP σPP (t) ∓ 2µω2σRP (t) + 2DPP (t), (A7)

σ̇RP (t) = −λP σRP (t) ∓ µω2σRR(t) + 1

µ
σPP (t) + 2DRP (t),

with the diffusion coefficients in momentum

DPP (t) = 1

2
〈P (t)FP (t) + FP (t)P (t)〉

= µh̄λP γ 2

π (s2 − s1)

∫ t

0
dte−λP τ/2(s2e

s2τ − s1e
s1τ )

×
∫ ∞

0
dw cos(wτ )

w coth[h̄w/2T ]

γ 2 + w2
(A8)
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and in coordinate-momentum

DRP (t) = 1

4
〈R(t)FP (t) + FP (t)R(t)〉

= h̄λP γ 2

2π (s2 − s1)

∫ t

0
dτe−λP τ/2(es2τ − es1τ )

×
∫ ∞

0
dw cos(wτ )

w coth[h̄w/2T ]

γ 2 + w2
. (A9)

Here, 〈. . .〉 means an average over the whole system. Using
the expantion coth[x] = 1/x + 2

∑∞
k=1 x/(x2 + π2k2) and

integrating over w and τ , we obtain from Eqs. (A8) and (A9)
the explicit expressions of diffusion coefficients:

DPP (t)

= DPP (∞)

+ γµλP T

s2 − s1

(
s2(s1 − γ )e(s2−γ )t − s1(s2 − γ )e(s1−γ )t

γ (γ + λP ) ± ω2

+ 2γ

∞∑
k=1

{
γ
[
s2(s1 − γ )e(s2−γ )t − s1(s2 − γ )e(s1−γ )t

]
(
γ 2 − ν2

k

)
[γ (γ + λP ) ± ω2]

+ νk[s2(s1 − νk)e(s2−νk )t − s1(s2 − νk)e(s1−νk )t ](
ν2

k − γ 2
)
[νk(νk + λP ) ± ω2]

})
,

(A10)

DRP (t)

= DRP (∞) + γ λP T

s2 − s1

(
(s1 − γ )e(s2−γ )t − (s2 − γ )e(s1−γ )t

2[γ (γ + λP ) ± ω2]

+ γ

∞∑
k=1

{
γ [(s1 − γ )e(s2−γ )t − (s2 − γ )e(s1−γ )t ](

γ 2 − ν2
k

)
[γ (γ + λP ) ± ω2]

+ νk[(s1 − νk)e(s2−νk )t − (s2 − νk)e(s1−νk )t ](
ν2

k − γ 2
)
[νk(νk + λP ) ± ω2]

})
, (A11)

where the asymptotic diffusion coefficients DPP (∞) and
DRP (∞) are defined by Eqs. (3) and (4), respectively. The
upper (lower) sign is for the harmonic (inverted) oscillator in
all expressions of this Appendix. In the case of an inverted
oscillator, there is a constraint in calculating the diffusion co-
efficients with formulas (A10) and (A11) at low temperatures
T � Tcr = h̄s2/(2π ), where Tcr is the critical temperature of
the transition from the regime of thermal activation to the
regime of macroscopic quantum tunneling through a parabolic
barrier (s2 is a real positive root of secular equation) [13,15,18].
At T � Tcr,DPP and DRP show no asymptotic behavior and
diverge as functions of time. The reason of the difficulty at
T � Tcr is that the collective subsystem becomes faster than
the heat bath [13].

Using the representation of the digamma function ψ(z) =

′(z)/
(z) in the infinite sum, the Eqs. (3) and (4) are written
as follows:

DPP (∞)

= − µT γ 2λP

γ (γ + λP ) ± ω2
+ µγ 4h̄λ2

P ψ
(

h̄γ

2πT

)
π

[
(γ 2 ± ω2)2 − γ 2λ2

P

]
− µω4γ 2h̄λP ψ

(−h̄s2
2πT

)
πs1(s2 − s1)

(
s2

2 − γ 2
) − µω4γ 2h̄λP ψ

(−h̄s1
2πT

)
πs2(s1 − s2)

(
s2

1 − γ 2
) ,

(A12)

DRP (∞)

= − T γλP

2[γ (γ + λP ) ± ω2]
− γ 2(γ 2 ± ω2)h̄λP ψ

(
h̄γ

2πT

)
2π

[
(γ 2 ± ω2)2 − γ 2λ2

P

]
− ±ω2γ 2h̄λP ψ

(−h̄s2
2πT

)
2πs1(s2 − s1)

(
s2

2 − γ 2
) − ±ω2γ 2h̄λP ψ

(−h̄s1
2πT

)
2πs2(s1 − s2)

(
s2

1 − γ 2
) .

(A13)

For the harmonic and inverted (at T > Tcr) oscillators, in the
quantum regime, h̄ω 	 2T , we have

DPP (∞) = µγ 2h̄λ2
P

[
s2

1

(
s2

2 − γ 2
)

ln
(
s2

1

/
γ 2

) + s2
2

(
γ 2 − s2

1

)
ln

(
s2

2

/
γ 2

)]
2π

(
s2

1 − s2
2

)(
s2

1 − γ 2
)(

s2
2 − γ 2

) + πµλ2
P γ 4T 2

(
λ2

P ∓ 2ω2
)

3h̄ω4
[
γ 2λ2

P − (γ 2 ± ω2)2
]

+ δ−,±
µh̄λP γ 2ω4 cot[h̄s2/(2T )]

s2
1 (s1 − s2)

(
s2

2 − γ 2
) , (A14)

DRP (∞) = γ 2h̄λP

[(
s2

1 ± ω2
)(

γ 2 − s2
2

)
ln

(
s2

1

/
γ 2

) + (
s2

2 ± ω2
)(

s2
1 − γ 2

)
ln

(
s2

2

/
γ 2

)]
4π

(
s2

1 − s2
2

)(
s2

1 − γ 2
)(

s2
2 − γ 2

) + πλP T 2
(
γ 4λ2

P ∓ ω2(γ 2 ± ω2)2
)

6h̄ω4
[
γ 2λ2

P − (γ 2 ± ω2)2
]

− δ−,±
h̄λP γ 2ω2 cot[h̄s2/(2T )]

2s1(s1 − s2)
(
s2

2 − γ 2
) . (A15)
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Here, δ−,− = 1 and δ−,+ = 0. At T �0 for a harmonic oscil-
lator and at T > Tcr for an inverted oscillator, the asymptotic
diffusion coefficients have the finite values and satisfy the
fluctuation-dissipation relation. The values of DPP (t) and
DRP (t) reach their asymptotic values in time considerable
shorter than the time of capture process. We start the
calculation of capture probability at R where one can assume
T > Tcr <∼ 0.5 MeV and, thus, the diffusion coefficients used
ensure that the density matrix is positive and normalized to
unity at any instant.

If λP � ω � γ (the Markovian and underdamped limits),
the Eq. (3) leads to the well-known fluctuation-dissipation

theorem [13,15,18]

DPP (∞) = µλP T ∗

with effective temperatures T ∗ = h̄ω
2 coth[h̄ω/(2T )] and

T ∗ = h̄ω
2 cot[h̄ω/(2T )] for the harmonic and inverted oscilla-

tors, respectively. At ω � T this relation leads to DPP (∞) =
µλP T . At T → 0, the asymptotic DPP for a harmonic
oscillator has the finite value: DPP (∞) = µλP

h̄ω
2 . In the

case of an inverted oscillator, we encounter a constraint at
T � Tcr = h̄ω/(2π ) discussed above.
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