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Three-body correlations for the ground-state decay of the lightest two-proton emitter 6Be are studied both
theoretically and experimentally. Theoretical studies are performed in a three-body hyperspherical-harmonics
cluster model. In the experimental studies, the ground state of 6Be was formed following the α decay of a 10C
beam inelastically excited through interactions with Be and C targets. Excellent agreement between theory and
experiment is obtained demonstrating the existence of complicated correlation patterns that can elucidate the
structure of 6Be and, possibly, of the A = 6 isobars.
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I. INTRODUCTION

Two-proton (2p) radioactivity was predicted by V. I.
Goldansky in 1960 [1] as an exclusively quantum-mechanical
phenomenon. True three-body decay, in his terms, is a situation
where the sequential emission of the particles is energetically
prohibited and all the final-state fragments are emitted si-
multaneously. These energy conditions are illustrated for 6Be
in Fig. 1 that shows that the 5Li ground state (g.s.) is not
fully accessible for sequential decay. Because the experimental
discovery of 45Fe two-proton radioactivity in 2002 [2,3], this
field has made fast progress. New cases of 2p radioactivity
were found for 54Zn [4], 19Mg [5], and, maybe, 48Ni [6].
The 2p correlations were recently measured in 45Fe [7],
19Mg [5,8], 16Ne [8], and 10C [9]. An interesting [10], but
controversial [11,12], case is the possibility of 2p emission
from the deformed isomeric state in 94Ag. All these decays
exhibit complex correlation patterns. It is argued that studies
of these patterns could provide important information about
the structure of the decaying nuclei.

With this active research as the background, there is one
case that has been unduly forgotten. The 6Be nucleus is the
lightest true two-proton emitter in the sense of Goldansky.
As this is expected to be the simplest case (smallest Coulomb
interaction, expressed cluster structure with closed-shell core),
a full understanding of its physics would provide a reliable
basis for all future studies of 2p decay. However, until now,
theoretical work on 6Be was limited to predicting the energies
and widths of its states. In addition, precise experimental data
on correlations did not exist. The last experimental work ded-
icated to correlations in the 6Be g.s. is about 20 years old [13].

There is one more aspect that makes the 6Be case of special
interest. In the past decade, large efforts have been directed to
studies of 6He with special emphasis to the understanding of
the halo properties in this comparatively simple and accessible
case. The associated literature comprises hundreds of titles.

To deduce the correlations in the neutron halo in many cases,
one has to excite (e.g., Coulex) or destroy (e.g., knockout
reactions) this nucleus. Therefore, the interpretation of the
experimental data is influenced by the need to clarify details
of the reaction mechanism. However, information about the
mirror system can be obtained without all this “violence.” The
isobaric analog state in 6Be decays to the α + p + p channel
all by itself, providing the differential data on correlations.
These data can be used directly to elucidate the structure of
6Be and possibly of the whole A = 6 (T = 1) isobar. Thus an
important opportunity exists for a better understanding of 6He
properties through detailed studies of 6Be. This has not been
exploited previously.

In this work, we provide detailed theoretical calculations of
the three-body decay characteristics of 6Be in a three-body
cluster α + p + p model. We demonstrate that, in certain
aspects, 6Be may be a preferable tool for studies of the
A = 6 isobars, especially considering the high sensitivity
of observables to the details of the theoretical models. We
then discuss previous experimental and theoretical works on
6Be. Subsequently, we report on an experiment where 6Be
fragments are formed after the α decay of 10C projectiles
excited by inelastic scattering. These data cover the complete
kinematic space accessible for three-body decay and the
correlations are compared to the theoretical predictions. A
brief account of our results was provided in letter form [14],
where the 6Be data on complete 2p correlations were also
compared to analogous data from the 2p decay of 45Fe.

The h̄ = c = 1 system of units is used in this work. The
following notations are used: ET is the system energy and
E3r is the three-body resonance energy both relative to the
three-body α + p + p threshold.

II. THEORETICAL MODEL

The theoretical framework of this article is largely the
same as that developed for the two-proton radioactivity and
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FIG. 1. The energy levels and the decay scheme for 6Be [15]. The
6Be g.s. is a true two-proton emitter in the sense of Goldansky: the
sequential decay of this state is not possible as the lowest possible
intermediate, the 5Li g.s., is not energetically accessible.

three-body decay studies in Refs. [16–24]. It is based on the
three-body cluster model using the hyperspherical-harmonics
(HH) method. The predictions obtained with this approach
were found to be in very good agreement with experimental
widths and momentum distributions [5,7,8].

In this section, we sketch the necessary formalism empha-
sizing only the points that differ from previous treatments.

A. Hyperspherical harmonics method

For narrow states, the time-dependent wave function (WF)
in a finite domain can be parameterized as

�
(+)
3 (ρ,�ρ, t) = e− �

2 t−iEt �
(+)
3 (ρ,�ρ). (1)

The WF is a function of the hyper-radius ρ, the time t , and
�ρ that specifies all the orientation degrees of freedom. The
radial part of this WF can be obtained with good precision as
a solution of the inhomogeneous system of equations

(Ĥ − E3r )�(+)
E (ρ,�ρ) = −i (�/2) �box(ρ,�ρ), (2a)

Ĥ = T̂ + V̂cp(rcp1 ) + V̂cp(rcp2 ) + V̂pp(rp1p2 ). (2b)

Here �box and E3r are the eigenfunction and the eigenvalue of
the equation

(Ĥ − E)�box(ρ,�ρ) = 0, (3)

solved with a “box” boundary condition at large ρ. The
hyperspherical coordinates are defined via the Jacobi vectors

X = rp1 − rp2 , Y = (rp1 + rp2 )/2 − rc, (4a)

ρ2 = 2

3

(
r2
cp1

+ r2
cp2

) + 1

6
r2
p1p2

= 1

2
X2 + 4

3
Y 2, (4b)

�ρ = {θρ,�x,�y}, θρ = arctan

[√
3

8

X

Y

]
. (4c)

These Jacobi variables are given in the “T” Jacobi system (see
Fig. 2). The hyperradial components χ

(+)
Kγ (ρ) of the WF in

Eq. (2), possessing the pure outgoing asymptotic form

�
JM(+)
E (ρ,�ρ) = ρ−5/2

Kmax∑
Kγ

χ
(+)
Kγ (κρ)J JM

Kγ (�ρ), (5)

FIG. 2. Independent “T” and “Y” Jacobi systems for the core +
N + N three-body system in coordinate and momentum spaces.

are matched to approximate boundary conditions of the three-
body Coulomb problem obtained in Ref. [18]. The radial
components of this WF at large ρ values can be represented as

χ
(+)
Kγ (κρ) ∼ AJS

KLlx ly
(κ) H̃(+)

Kγ (κρ). (6)

In general, the functions H̃(+)
Kγ are some linear combinations

of Coulomb functions with the outgoing asymptotic form G +
iF . The functions J JM

Kγ (�ρ) are hyperspherical harmonics
(with total orbital momentum L) coupled with spin functions
of nucleons (with spin S) forming total angular momentum
J . The “multi-index” γ denotes the complete set of quantum
numbers except for the principal quantum number K: γ =
{L, S, lx, ly}. The value Kmax truncates the hyperspherical
expansion. The value κ (hypermoment) is expressed via the
energies of the subsystems Ex and Ey or via the Jacobi
momenta kx and ky conjugate to Jacobi coordinates X and
Y :

kx = 1
2

(
kp1 − kp2

)
, (7a)

ky = 2
3

(
kp1 + kp2

) − 1
3 kc, (7b)

κ
2 = 2MET = 2M(Ex + Ey) = 2k2

x + 3
4 k2

y, (7c)

�κ = {θκ,�kx
,�ky

}, θκ = arctan[
√

Ex/Ey]. (7d)

A more detailed picture of the “T” and “Y” Jacobi systems
in coordinate and momentum spaces can be found in Fig. 2.

The set of coupled equations for the functions χ (+) has the
form[

d2

dρ2
− L(L + 1)

ρ2
+ 2M{E − VKγ,Kγ (ρ)}

]
χ

(+)
Kγ (ρ)

= 2M
∑

K ′γ ′ �=Kγ

VKγ,K ′γ ′(ρ)χ (+)
K ′γ ′(ρ) + i �M χKγ (ρ), (8)

where L = K + 3/2 is the “effective angular momentum” and
VKγ,K ′γ ′(ρ) are “three-body potentials” (matrix elements of the
pairwise potentials);

VKγ,K ′γ ′(ρ) =
∫

d�ρ J JM∗
K ′γ ′ (�ρ)

∑
i<j

Vij (rij )J JM
Kγ (�ρ) (9)

and

�box(ρ,�ρ) = ρ−5/2
∑
Kγ

χKγ (ρ)J JM
Kγ (�ρ). (10)
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B. Width and momentum distribution

Equation (2) is first solved with an arbitrary value of � and
then the width is found according to the “natural” definition as
the flux j through a hypersphere with large radius ρmax divided
by the internal normalization N (“number of particles” inside
the sphere):

�nat = j/N, (11)

j =
∫

d�ρ

d j (ρmax,�ρ)

d �ρ

, (12)

N =
∑
Kγ

NKγ =
∑
Kγ

∫ ρint

0
dρ

∣∣χ (+)
Kγ (ρ)

∣∣2
. (13)

Equation (11) can be derived from the Schrödinger equation
in the complex-energy domain using Green’s theorem. This
theorem requires that ρint ≡ ρmax. However, for narrow states
(like the situation of radioactive decay) we can in practice limit
the integration range by some typical top-of-the-barrier radius
(ρint ∼ 10–20 fm) without introducing any uncertainties.
What is a reasonable choice of the ρint parameter for such
comparatively broad systems as 6Be appears to be a question
deserving special consideration (see Secs. II D and III A).

The differential flux through the hypersphere at ρmax is
defined as

dj (ρmax,�ρ)

d�ρ

= 1

M
Im

[
�

(+)†
3 ρ5/2 d

dρ
ρ5/2 �

(+)
3

]∣∣∣∣
ρ=ρmax

.(14)

If, for sufficiently large ρmax, the coefficients AKS
Llx ly

in
Eq. (6) become independent of ρ, then the coordinate distri-
bution becomes identical to the momentum distribution, i.e.,

dj (ρmax,�ρ)

d�ρ

→ dj (�κ)

d�κ

. (15)

Further discussions of the validity of this approximation
[Eq. (15)], and detailed expressions for the momentum
distributions, can be found in Ref. [18].

C. Potentials

The Coulomb potential of the homogeneously charged
sphere of radius rsph = 1.131 and 1.852 fm is used in the
p-p and α-p channels, respectively.

The nuclear NN potential is taken either as a simple s-wave
single-Gaussian form BJ (from the book of Brown and Jackson
[25])

V (r) = V0 exp
(−r2

/
r2

0

)
, (16)

with V0 = −31 MeV and r0 = 1.8 fm or the quasirealistic
“soft-core” potential GPT (Gogny-Pires-de Tourreil [26]).

In the core-p channel, we use an 	-dependent potential SBB
(Sack-Biedenharn-Breit [27])

V (r) = V (	)
c exp

(−r2/r2
0

) + (	 · s) V	s exp
(−r2

/
r2

0

)
, (17)

where r0 = 2.30 fm, V (0)
c = 50 MeV, V (1)

c = −47.32 MeV,
V (2)

c = −23 MeV, and Vls = −11.71 MeV. Historically, a
somewhat modified SBBM potential has been used in the
calculations of A = 6 isobars to better reproduce the binding
energies (e.g., Ref. [28]). Later it was realized that it is more

consistent to provide the phenomenological binding-energy
correction using an additional short-range three-body potential
(see, e.g., the discussion in Ref. [23]). In this work, we used a
short-range three-body potential of the form

V3(ρ) = δKγ,K ′γ ′V
(0)

3

/
[1 + exp ((ρ − ρ0)/d3)], (18)

where ρ0 = 2.5 fm and d3 = 0.4 fm. This “short-range” three-
body potential (note the small diffuseness) does not distort
the interactions in the sub-barrier region that was found to be
important for consistent studies of the decay properties.

Three sets of nuclear potentials are employed in this work.
They are denoted as P1 (SBB+BJ), P2 (SBB+GPT), and P3
(SBBM+GPT). The values of V

(0)
3 used with the potential

sets P1, P2, and P3 are −11.14,−13.22, and −0.64 MeV,
respectively. Throughout this article when the potential set is
not specified, the results of the calculations with the P2 set are
shown.

D. Model for charge-exchange reaction

In general, different definitions for the width of a decaying
state coincide only in the limit when the width is very small.
For the ground state of 6Be, the definition of Eq. (11) is not
very precise, as this state is comparatively broad (� = 92 ±
6 keV [15]) and thus the internal normalization N [Eq. (13)]
is sensitive to the integration limit ρint. For reasonable values
of ρint ranging from 10 to 20 fm, the uncertainty in the width
�nat is about 25% [see Sec. III C, Fig. 7(a)]. This problem does
not exist for narrow 2p emitters (� < 1 eV) where the WFs
χ

(+)
Kγ are vanishingly small as they tunnel under the Coulomb

barrier. The densities for the dominant components of the 6He
and 6Be WFs are shown in Fig. 3. For 6Be, it is clear that the
WFs under the barrier are not negligible.

For sufficiently broad states, there are alternative ways
to derive the width. These involve either the study of the
3 → 3 scattering or the study of a particular reaction. For
technical reasons, the latter is preferable for our application.
For example, to determine the population of 6Be in a charge-
exchange reaction on 6Li at zero angle, Eq. (2) can be

FIG. 3. (Color online) Densities |χKγ (ρ)|2 and |χ (+)
Kγ (ρ)|2 for the

largest components of the 6He and 6Be g.s. WFs.
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reformulated as

(Ĥ − ET )�(+)
6Be(ρ,�ρ) =

∑
i

τ−
i

∑
M

σ
(M)
i �JM

6Li (ρ,�ρ). (19)

This notation is based on the fact that for angles close to zero,
the transitions in charge-exchange reactions, in the limit of
high energies, are provided by the Gamow-Teller operator.

Using the source function of Eq. (19), the cross section for
the population of the three-body continuum is proportional to
the outgoing flux of the three particles on a hypersphere of
some large radius ρ = ρmax:

dσ (ET )/dET ∼ j (ρmax,�ρ). (20)

Differentials of this flux on the hypersphere provide angular
and energy distributions among the decay products at the given
decay energy ET in analogy with Eqs. (14) and (15).

For the derivation of the 6Be decay properties, we have
the general decay method of Eq. (11) which, however, is
sensitive to an ill-defined parameter. We also have introduced
the method of Eq. (20), which is relevant to certain reactions
but not to the one considered in the experimental part of this
work. The use of both of these methods in this work may be
confusing so it is important that we clearly outline our logic
in using them.

(i) For 6Be, the general decay approach of Eq. (11) has
insufficient precision because the result is sensitive to the
parameter ρint when it is varied by tens of percentages.
This means that we need a more specific formulation for
the decay properties incorporating a particular reaction
mechanism.

(ii) Charge-exchange reactions on 6Li allow the very simple
theoretical formulation given in Eq. (19) when restricted
to particular kinematical conditions.

(iii) It is possible to demonstrate that the decay characteristics
of the 6Be g.s. are stable with respect to the particular
choice of the right-hand side of Eq. (19) and thus to the
choice of reaction. Therefore Eq. (19) can also be used
when 6Be is created in other reactions.

(iv) The parameter ρint in Eq. (11) can be fine tuned
to reproduce the widths obtained with Eq. (20). It
can be checked that this fine tuning should be done
once and then the definitions of Eqs. (11) and (20)
provide equivalent results for calculations performed
with different model parameters.

(v) In this work we used both the approaches of Eqs. (11) and
(20). Equation (20) allows us to obtain energy profiles
of the g.s. population cross section while Eq. (11) is
effective as an “economic” method when massive calcu-
lations with different model parameters are performed.
In this case, the WF needs only to be calculated once (on
resonance), whereas calculations are needed for 10–20
points when Eq. (20) is used.

We should emphasize that the validity of the statements
given in items (iii) and (iv) is specific for the 6Be g.s. This was
not known in advance and was checked in this work.

E. “Feshbach” reduction

Although the HH calculations for 6Be can be performed
with Kmax = 22–26, these basis sizes may not be sufficient to
obtain good convergence for all observables. However, the
basis size can be effectively increased using the adiabatic
procedure based on the so-called Feshbach reduction (FR)
[23]. Feshbach reduction eliminates from the total WF, � =
�p + �q, an arbitrary subspace q using the Green’s function
of this subspace:

Hp = Tp + Vp − VpqGqVpq. (21)

In an adiabatic approximation, we can assume that the radial
part of the kinetic energy is small under the centrifugal
barrier in the channels where this barrier is large and can
be approximated as a constant. In this approximation, the FR
procedure is reduced to the construction of effective three-body
interactions V eff

Kγ,K ′γ ′ by the matrix operations

V eff
Kγ,K ′γ ′ = VKγ,K ′γ ′ −

∑
VKγ,K̄γ̄ GK̄γ̄ ,K̄ ′γ̄ ′VK̄ ′γ̄ ′,K ′γ ′ , (22)

where the approximate Green’s function is given by

G−1
Kγ,K ′γ ′ = (H − ET )Kγ,K ′γ ′ = VKγ,K ′γ ′

+
[
Ef − ET + (K + 3/2)(K + 5/2)

2Mρ2

]
δKγ,K ′γ ′ .

(23)

Summations over the indices with the bar are made for the
eliminated channels. We typically eliminate the channels with
K > KFR , where KFR provides the sector of the hyperspher-
ical basis where the calculations remains fully dynamical.
We take the “Feshbach energy” Ef in our calculations as
Ef ≡ ET .

There are two ways to control the reliability of the FR
procedure. (i) The “soft” method is to vary KFR from the
maximum attainable in the dynamic calculations downward for
fixed Kmax. The results, in principle, should coincide. (ii) The
“safe” method is to take Kmax in the range attainable for dy-
namic calculations and compare the “reduced” Kmax → KFR

calculations (with much smaller dynamic basis size KFR) with
completely dynamic calculations with Kmax. For 6Be, these
considerations show that we can safely use KFR = 14. How-
ever, the even safer value of KFR = 22 is used in this work.

III. RESULTS FOR GROUND STATE

There are several convergence characteristics that should
be understood before reliable results on 6Be can be obtained.
The convergence character is quite different for each of the
observables of interest and it also depends strongly on the
interaction in the p-p channel.

A. Convergence of energy and width

Because of the problem mentioned in Sec. II D, we need
to begin our studies with the energy dependence of the cross
section. The convergence of the cross-section energy profile
with increasing size of the basis is demonstrated in Fig. 4. The
main character of the convergence is clearly seen here; the
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FIG. 4. (Color online) The energy profile of the 6Be g.s. populated
in the charge-exchange reaction with 6Li. The results are shown as
a function of the basis size Kmax where KFR = 22. For Kmax � KFR ,
Feshbach reduction is not needed. Predictions were obtained with the
P1 potential set.

centroid energy decreases, while the width grows significantly.
The calculations shown in Fig. 4 are practically converged by
Kmax = 30 and further increases of the effective basis size up to
Kmax = 110 lead to only minor changes in the energy profile.

The cross section for the 6Be g.s. population, shown in
Fig. 4, clearly has a profile close to a slightly asymmetric
Lorentzian. Can the profile of this three-body resonance
be described by an appropriately-modified R-matrix-type
expression? A curious result is obtained here, the resonance
profile, shown in Fig. 4 by the solid curve, can be fit with
amazing precision by the following expression:

σ (ET ) ∼ �(ET )

(ET − E3r )2 + �(ET )2/4
, (24)

�(ET ) = �0

[
α

(
ET

E3r

)2

+ (1 − α)

(
ET

E3r

)4
]

, (25)

FIG. 5. (Color online) The dependence of the 6Be g.s. width on
the decay energy ET . Predications are shown for the three potential
sets P1–P3. The dotted curves show the approximation of Eq. (25).

where �0 = 98 keV and α = 0.65. Equation (24) is the
ordinary expression for the inelastic cross section of an
isolated resonance. The parametrization of Eq. (25) was
chosen because, for the single-channel penetration through
the hyperspherical barrier with K = 0, the energy dependence
of the width can be inferred as �(ET ) ∼ E2

T . For K = 2 one
has �(ET ) ∼ E4

T (see, e.g., Ref. [29]). It should be understood
that the K = 0 component is equivalent to a “phase volume”
with the characteristic energy behavior of ∼E2

T . The energy
dependence of the width obtained by Eq. (25) almost coincides
with the calculated dependence of this width in a reasonable
energy range, see Fig. 5. This figure shows also the comparison
for potentials P2 and P3 [one uses α = 0.63 and 0.52 in
Eq. (25), respectively]. If we take the actual calculated partial
widths for the K = 0 and 2 components from Table I, then the
value of α can be estimated as

α = �K=0/(�K=0 + �K=2) ≈ 0.58. (26)

TABLE I. Weights Ni of the dominating components of the 6He and 6Be g.s. WFs and the fractional partial widths of the 6Be g.s. WF
in percentages. The results are for the Jacobi “T” system. The normalizations of the 6Be components are found for the integration radius
ρint = 12.5 fm.

Quantum numbers Ni (6He) Ni (6Be) �i/� (6Be)

i K L S lx ly P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0 0 0 0 0 4.32 4.65 4.27 6.72 7.24 6.65 50.44 50.77 41.03
2 2 0 0 0 0 78.36 80.73 79.40 75.71 77.49 75.28 33.48 33.74 41.52
3 2 1 1 1 1 14.19 11.28 12.02 13.09 10.60 11.44 3.89 3.31 6.15
4 4 0 0 0 0 0.03 0.04 0.02 0.10 0.14 0.07 2.03 2.11 2.25
5 4 0 0 2 2 0.48 0.50 0.58 0.44 0.45 0.53 6.10 6.48 4.97
6 6 0 0 0 0 0.01 0.02 0.01 0.02 0.03 0.01 1.63 1.26 1.49
7 6 0 0 2 2 1.13 1.18 1.56 1.56 1.60 2.32 0.67 0.73 0.78
8 6 1 1 3 3 0.57 0.54 0.75 0.79 0.75 1.18 0.08 0.06 0.09
9 8 0 0 0 0 0.28 0.31 0.37 0.47 0.51 0.66 0.85 0.69 0.85

10 8 0 0 2 2 0.17 0.17 0.25 0.28 0.28 0.46 0.08 0.11 0.10
11 8 0 0 4 4 0.03 0.03 0.04 0.05 0.05 0.08 0.37 0.40 0.32

034602-5



L. V. GRIGORENKO et al. PHYSICAL REVIEW C 80, 034602 (2009)

This is quite close to the value 0.65 obtained by a fit. This is
true also for potentials P2 and P3, for which corresponding
values are 0.58 and 0.46.

The existence of this simple approximation, despite the
fact that there are Coulomb interactions and other numerous
channels involved, may demonstrate that the dynamics of
the 6Be g.s. decay is largely defined by the penetration
through the hyperspherical barriers. Possibly, this is due to the
comparatively large 6Be decay energy of E3r = 1.371 MeV.
Simple estimates show that this state has an energy close to
the value at the top of the Coulomb barrier.

It was found that the value of j (ET ) for the 6Be g.s. is
not sensitive to the particular choice of the source in Eq. (19).
For strong variations of the source term (e.g., ±50% in size or
arbitrary change of the relative weights of the components),
typical variations obtained from Fig. 4 are within the width
of the line and there are no noticeable differences in the
calculated momentum distributions (there are still some
exclusive situations, which we will discuss elsewhere). This
means that for observable properties of the 6Be g.s. there is no
sensitivity to the reaction mechanism and the width defined
by the procedure of Eqs. (24) and (25) is very reliable. This
absence of sensitivity to the reaction mechanism also means
that the general decay definition of Eq. (11) should provide
stable results and the difficulty connected with the poorly
defined parameter ρint can be overcome. We can fine tune
the value ρint in Eq. (13) so that the definition of the width in
Eq. (11) coincides with the definition in Eq. (24) and check that
the equivalence of the definitions does not depend on energy
and other model settings. We found that all the potential sets
P1-P3 need ρint ≈ 12.5 fm. Subsequently, we can reliably use
Eq. (11).

The convergences of the predicted resonance energy and
width as a function of the hyperspherical basis size are shown
in Fig. 6 for each of the potential sets. In all cases, our
calculations have fully converged. The resonance energies are
forced to approach the experimental value E3r = 1.371 MeV.
This is achieved by fine tuning the phenomenological potential
of Eq. (18). Keeping the calculated decay energy identical

FIG. 6. (Color online) The convergency of the resonance energy
E3r and the width � of the 6Be g.s. as a function of the basis size
Kmax. Note the change of the scale at the horizontal axis.

FIG. 7. (a) The sensitivity of the width as defined in Eq. (11) to
the size of the “internal region” ρint. The circle shows the value of ρint

at which this width coincides with that defined via the cross-section
profile in Eqs. (19), (20), (24), and (25). (b) Relative precision of the
width as a function of the matching radius ρmax.

to the experimental value is necessary to provide reasonable
predictions for the rest of the decay characteristics. We can
see that while the calculations with P1 and P2 (SBB potential
in the α-p channel) are in good agreement with each other
and with the experimental value, the width obtained with P3
(SBBM potential) is far too large.

An expected feature observed here is the much slower
convergence of the calculations with a quasirealistic potential
in the NN channel. An important, but often disregarded, fact,
which one can see in Fig. 6, is the much slower convergence
of the width as compared to the energy. This means that,
in general, an energy convergence does not guarantee the
convergence of other important characteristics. As we will
see in Sec. III C, the situation with momentum distributions is
even more complicated than it is for the widths.

The sensitivity of the width to a number of the other
parameters in the calculations is demonstrated in Fig. 7.
Figure 7(a) shows the sensitivity of the width defined by
Eq. (11) to the size ρint of the region where the internal
normalization is calculated. The stability of the calculations
to the dynamical range ρmax is demonstrated in Fig. 7(b). To
attain 1% numerical precision in the width calculations, one
needs to go beyond 60 fm in the hyperradius ρ.

B. Features of the momentum distributions from 6Be decay

The correlations in the decay of 6Be include both the
generic features of the 2p decays, as discussed earlier in
Refs. [14,18,22,23], and some peculiarities that we present
in more detail now. For nuclear states with J � 1/2 (as is
the case for the 6Be g.s. decay), the three-body momentum
correlations (averaged over the final-state spins) can be
completely described by two parameters. In total, there are
nine degrees of freedom for three particles in the final state.
Of these, three describe the center-of-mass motion, three
describe the Euler rotation of the decay plane (for J � 1/2
all its orientations are quantum-mechanically identical), and
the three-body decay energy is fixed. Thus we are left with
two parameters to describe the correlations. It is convenient to
choose the energy distribution parameter ε between any two
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FIG. 8. (Color online) Complete correlation
picture for the 6Be-g.s. decay, presented in the
“T” and “Y” Jacobi systems. Schematic dia-
grams (a-g) indicate the correlations associated
with selected regions of these plots.

of the particles and the angle θk between the Jacobi momenta:

ε = Ex/ET , cos(θk) = kx · ky

kx ky

. (27)

These parameters can be constructed in any Jacobi system and
for 6Be there are two “irreducible” Jacobi systems, called “T”
and “Y”, see Fig. 2. The distributions constructed in different
Jacobi systems are just different representations of the same
physical picture. However, different aspects of the correlations
may be better revealed in a particular Jacobi system.

Predictions for the complete correlation picture of 6Be
g.s. decay are shown in Fig. 8 for both the “T” and “Y”
Jacobi systems. Schematic diagrams are included in this
figure to help in visualizing the correlations associated with
different regions of the Jacobi plots. The main features of these

distributions are:

(i) The energy distribution in the “T” system has a double-
humped profile that is an indication of the [p2] config-
uration (two protons in the p shell) dominance that was
pointed out in very early articles on 6Be [13,30–32].
This double-humped configuration is expressed more
in coordinate space (the internal region of the 6He
and 6Be WFs can be seen in Fig. 9). However in the
asymptotic region, the double-humped structure only
marginally “survives.” The internal peaks in Fig. 9 have
the special names of “diproton” (protons are close to each
other) and “cigar” (protons are in-line with α-particle)
configurations [28].

(ii) There are kinematic regions where the presence of
events is suppressed due to Coulomb repulsions. Strong

FIG. 9. Spatial correlation densities |�(X, Y )|2 for the 6He and 6Be g.s. WFs in the “T” system. For 6Be, two panels provide the view in
different radial ranges. Pay attention to difference in the scales. The variation from the top to the thick contour line in the 6He panel corresponds
to the whole scale variation in the two 6Be panels.
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FIG. 10. Sensitivity of the energy and angular distributions in the decay of the 6Be g.s. to the choice of the potential set. Results are shown
for both the “T” and “Y” Jacobi systems.

suppressions are predicted in the α-p channel in regions
labeled by the schematic diagrams (b) and (d) in Fig. 8.
A smaller suppression in the p-p channel in region (e)
is also predicted.

(iii) There are enhancements due to the p-p final-state
interaction in regions (a) and (f). The 5Li g.s. resonance
in the α-p channel is not accessible for decay. However,
some hint of its presence can be obtained from the
enhancement in region (g). This is a “back-to-back”
configuration, where protons fly in the opposite direc-
tions. However, the reason for the enhancement of such
a configuration is not fully understood.

(iv) The angular dependence in the “T” system almost
vanishes for regions (a) and (c) (Ex/ET ∼ 0 and
Ex/ET ∼ 1). It is clear that in the limit Ex/ET → 0 and
Ex/ET → 1 the dependence on the relative orientation
of kx and ky should become degenerate. However, at
intermediate values of Ex/ET , this dependence is very
pronounced.

(v) The energy distribution in the “Y” system is almost a
symmetric bell shape. This is most clearly seen in the
projected distribution of Fig. 10. This energy distribution
is between the core and one of the protons and its
symmetry reflects the symmetry between protons. In
heavy two-proton emitters this distribution becomes very
narrow and practically symmetric.

The predicted correlations shown in Fig. 8 are obtained on
resonance. The dependence of the energy correlation on the
decay energy of 6Be is displayed in Fig. 11. The double-
humped shape of this spectrum becomes less pronounced
with decreasing energy. With smaller energy, the relative
contribution of the [s2] configuration to the decay grows
compared to the [p2] configuration. The latter has an additional
centrifugal component to the barrier and its contribution to the
width should be suppressed at low energies. The pure [s2]
configuration should produce a featureless “phase-volume”
energy distribution

dj/dEx ∼
√

Ex(ET − Ex). (28)

The sensitivity of the projected distributions to the choice of
the potential set P1–P3 is demonstrated in Fig. 10. The angular
distribution in the “T” system and the energy distribution in
“Y” systems are practically insensitive to this choice. The other
projected distributions demonstrate sensitivity on the level
of 10–15%. However, local differences in certain kinematic
regions are much larger.

Figures 10 and 11 demonstrate what we call the “softness”
of the 6Be system: minor variations in the conditions or
computational details lead to noticeable variations in the
observable properties. Heavier 2p emitters appear to be much
“stiffer” in this respect.

C. Convergence of the momentum distributions

In our calculations there are two projected distributions
which are practically insensitive to convergence issues (the an-
gular distribution in the “T” system and the energy distribution

FIG. 11. (Color online) The dependence of energy distribution
between the proton (“T” system) in the decay of the 6Be g.s. on the
decay energy ET .
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FIG. 12. (Color online) Convergency of the “T” energy distribu-
tion in the decay of the 6Be g.s. as a function of the basis size Kmax.

in the “Y” system). The other two distributions (the angular
distribution in the “Y” system and the energy distribution in the
“T” system) demonstrate strong sensitivity. The convergence
of the energy distributions are illustrated in Figs. 12 and 13.

The convergence of the energy distribution between protons
has a very curious character, see Fig. 12. From Kmax = 8
to Kmax = 22 this distribution is very stable [several curves
almost coincide, see Fig. 12(a)]. Then from Kmax = 24 to
Kmax ∼ 70, the distribution changes qualitatively, and up to
Kmax ∼ 100 there is still a noticeable variation [Fig. 12(b)].

FIG. 13. (Color online) Dependence of energy distribution in the
decay of the 6Be g.s. on the maximal dynamic range of the calculation
ρmax. For the “T” Jacobi system, Ex is the energy between two protons,
and in the “Y” Jacobi system, Ex is the energy between core and one
of the protons.

Hopefully with Kmax = 110, we have a well converged dis-
tribution. Calculations with small basis sizes (e.g., Kmax � 70)
for 6Be provide a qualitatively wrong energy distribution in the
“T” system. The situation is similar for the angular distribution
in the “Y” system.

This “softness” of the 6Be system makes it a very compli-
cated object to study. The basis sizes that provide convergence
for the energy and width are far from sufficient for calculations
of momentum distributions. This is a feature that we probably
do not face in heavier 2p emitters as the Coulomb interaction
in the core-p channel plays a more dominant role in the decay
dynamics.

The radial convergence of the energy distributions is illus-
trated in Fig. 13. Calculations with ρmax < 300 fm are clearly
insufficient to stabilize the distribution. However, by ρmax =
800 fm, the distributions seem to be well converged. Could
there be some noticeable modifications of the distributions
due to further propagation in the long-range Coulomb field?
This question was analyzed in Ref. [18] for 45Fe using the
classical trajectory approach. The complete stabilization takes
place in 45Fe at ρ ∼ (3 − 6) × 104 fm, with a major part of the
effect originating at ρ <∼ 1 × 104 fm. The decay energies of 6Be
and 45Fe g.s. are similar and the core-p Coulomb interaction
is ∼12 times weaker in 6Be. Therefore, the majority of the
long-range effects should be taken into account in calculations
with ρmax ∼ 1000 fm. The 6Be calculations of this work were
typically done with ρmax = 1200 fm.

D. Structure of the 6He and 6Be g.s.

From another point of view, the “softness” of 6Be system
can be seen as a benefit. The high sensitivity of the observables
to the details of the model ingredients increase our ability to
discriminate these features and hence improve our ability to
elucidate the details of the nuclear structure.

Detailed information about the 6He and 6Be g.s. WFs is
provided in Table I. In general, there is a high degree of isobaric
symmetry between the 6He and 6Be WFs in the internal
region. However, this is not true for the K = 0 component,
which differs the most. The reason for this is shown in Fig. 3
where the magnitude of the K = 0 WF component in 6Be in
the asymptotic region is comparable to its magnitude in the
nuclear interior. Hence the nuclear boundary is not defined
for this component in 6Be. This is also seen in Table VI,
which provides the information about the WF in approximate
“shell model” terms. After looking at the radial behavior of
the WFs’ components in Fig. 3, we find that the concept of
isobaric symmetry is relevant here strictly speaking only for
the most interior region of the WF (ρ < 4–5 fm). Beyond
this point the radial behaviors of the 6He and 6B WF’s differ
drastically.

The weights of the components in Tables I and VI are in
very good relative agreement for the different potential sets
P1–P3. Evidently these major features of the structure are not
that sensitive to the fine details of the interactions.

It can be seen that the fractional partial widths �i/� of
the 6Be WF components in Table I are drastically different
as compared to weights Ni in the internal region. This is
a reflection of the complicated dynamics in 2p decays, the
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TABLE II. Radial properties of the 6He-g.s. WF and some
observables obtained for the 6He and the 6Be g.s. with potentials
P1, P2, and P3.

Value P1 P2 P3 Exp.

〈ρ〉 (fm) 5.088 5.156 5.491
〈rNN 〉 (fm) 4.482 4.502 4.884
〈rcN 〉 (fm) 4.113 4.172 4.430
〈rN 〉 (fm) 3.211 3.248 3.469
〈rc〉 (fm) 1.321 1.171 1.232
rmat (fm) 2.396 2.421 2.540 2.30 ± 0.07 [33]

2.48 ± 0.03 [34]
rch

a (fm) 2.103 2.012 2.048 2.054 ± 0.014 [35]
rch

b (fm) 2.113 2.043 2.079 2.068 ± 0.011 [36]
BGT (6He →6Li) 5.004 5.058 4.930 4.745 ± 0.009 [15]
�Ecoul (MeV) 2.351 2.302 2.111 2.344 [15]
�(6Beg.s.) (keV) 98 112 154 92 ± 6 [15]

aTheoretical values in this row are obtained using the generally
accepted value for the neutron charge radius r2

ch(n) = −0.1161 fm2.
bTheoretical values in this row are obtained using r2

ch(n) = 0.012 fm2

[36].

WFs are strongly “rearranged” in the sub-barrier region by
the long-range Coulomb pairwise fields. The 6He and 6Be
spatial correlation densities are shown in Fig. 9. The behavior
of the correlation densities is nearly identical in the internal
region, while in the asymptotic region for 6Be, we can clearly
see how this “rearrangement” is taking place. Comparing the
different potential sets P1–P3 in Table I, we see that P1 and
P2 calculations are almost identical, while the major partial
widths in P3 case differ strongly. We conclude that the decay
dynamics is mainly defined by the core-p interaction.

Geometric properties of the 6He g.s. WF and several
observables obtained for the 6He and 6Be g.s. are shown
in Table II. The root-mean-square values are given for
ρ, rNN (distance between the valence nucleons), rcN (distance
between the nucleon and core), rN (distance between the
valence nucleon and center-of-mass), rc (distance between
the core and center-of-mass). The differences between these
geometric characteristics for P1 and P2 are typically around
1%. In the case of P3, the differences are significantly larger.
The BGT values for 6He(g.s.)→6Li(g.s.) β-decay obtained with
P1–P3 also agree within 1.5%, but all differ more from the
experimental value. Here, the “experimental” BGT values are
obtained using the 6He lifetime τ1/2 = 806.7 ± 1.5 ms [15]
and with the β-decay constants of f t(0+ → 0+) = 3072.40 s
and λ = 1.268. It has already been discussed in the literature
that the 4–7% disagreement here could be connected with
both the WF quality and the renormalization of the weak
constant [28]. Therefore, we can give no definite conclusion
about the quality of the models here.

The next most precisely known characteristic for 6He is its
charge radius. Recent studies have defined rch with increasing
precision [35,36]. The relative uncertainty of this value is
now about 0.5%, while variations in the calculated values are
around 4% for P1–P3. However, comparisons of our theoretical
values to experiment are not completely model independent.
The calculated charge radius of 6He is noticeably sensitive to

the neutron charge radius:

r2
ch(6He) = r2

ch(α) + r2
ch(n) + 〈rc〉2. (29)

As the r2
ch(n) value is inferred theoretically, rather than mea-

sured experimentally, this means that there exists considerable
theoretical uncertainty in the determination of the charge radii
that is not connected with the quality of the 6He WF itself.
According to our estimates, this uncertainty can be as large
as 2%. This fact somewhat relieves the constraints on the WF
connected with this observable. One can see in Table II that
the P2 and P3 calculations, containing realistic NN potentials
can be regarded as consistent with the experiment.

The matter radius of 6He is defined in the cluster model
using the matter radius of the α particle:

6 r2
mat(

6He) = 4 r2
mat(α) + 〈ρ〉2. (30)

The value rmat(α) = 1.464 fm is derived from the charge radius
rch(α) = 1.671 using the neutron and proton charge radii;
r2

ch(n) = −0.1161 fm2, rch(p) = 0.875 fm. The experimental
data on matter radii have a large systematic uncertainty. This
is probably the reason for the controversial signal obtained
in different experiments (see two examples in Table II). This
observable thus far does not seem to be able to discriminate
between theoretical models.

The Coulomb shift �Ecoul and the 6Be g.s. width obtained
with P1 and P2 are in a good agreement with experiment. Some
overestimation of the width in the three-body cluster model can
be expected due to the admixture of different (not belonging
to the three-cluster model space) configurations in 6Be WF.
The weight of such admixtures can be estimated as 6–14%,
based on the P1 and P2 widths. However, the Coulomb shift
and width obtained with P3 are clearly not acceptable. Our
overall feeling is that the cumulative information on the 6He
and 6Be g.s. is sufficient to choose P2 as the only acceptable
potential set.

IV. THEORETICAL DISCUSSION

As we have already mentioned, most of the attention
in the studies of the A = 6 isobars has been paid to 6He.
Even in the studies of 6Be, there are only a few works that
studied its width. In addition, there has been only limited
studies of the 6Be g.s. decay correlations. The first consistent
calculations of the 6Be three-body decay width were performed
in Ref. [37] using the integral formalism. In Refs. [16,17], the
quantum-mechanical formalism for two-proton radioactivity
and Coulombic three-body decay studies was developed.
In these articles, the integral formalism was criticized in
application to the decays of systems with strong three-body
Coulomb interactions and a more preferable way to calculate
widths was proposed [see, Eq. (11)]. The value � = 90 keV
was obtained in Ref. [16] with the P1 potential (Kmax = 20),
which as we can see in Fig. 6, is reasonably well converged.

In our approach, the effects of antisymmetrization are
taken into account in a simplified way. However, there are
studies that treated the 6Be decay as a six-body problem.
In resonating-group-method calculations [38], the 6Be width
of � = 160 keV for E3r = 1.52 MeV was found using the
complex scaling method. Scaling this value to the experi-
mental 2p decay energy, with the help of Fig. 5, we obtain
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� = 125 keV, which is considerably larger than the experi-
mental value. An interesting algebraic method was developed
for studies of 6Be decay in Ref. [39]. Here, the hyperspherical
decomposition is used for the WF both in the internal region
(six-body HHs) and in the asymptotic region (three-body clus-
ter HHs). A calculated width of � = 72 keV was obtained for
E3r = 1.172 MeV that scales to � = 110 keV at the experi-
mental 2p decay energy. In addition, we can expect a 10–15%
reduction due to the absence of the S = 1 component in
these calculations. This component is important in the internal
region but does not contribute to the width significantly. In
addition, we can also expect roughly a factor of 2 increase due
to the small basis size (Kmax = 10) used in the asymptotic
region in Ref. [39]. According to Fig. 6, with Kmax = 10
we can expect to find at most 60% of the width. It seems
that Ref. [39] is more a concept demonstration rather than a
realistic calculation. Therefore at present, it is not possible to
draw any conclusions about importance of six-body effects in
calculations of the 6Be decay properties.

The width of the 6Be g.s. was calculated in Ref. [40] via
a method analogous to ours (hyperspherical harmonics), but
having certain technical differences. An approximate treatment
of the 3 → 3 scattering is introduced in this work and the width
is extracted from the energy behavior of the phase shifts. The
width obtained was � = 65 keV for E3r = 1.26 MeV that
scales to � = 84 keV at the experimental 2p decay energy. It
can be found in Ref. [40] that the calculation does not seem to
have converged. If we extrapolate from � = 84 keV using the
convergence curves for P2 and P3 (see Fig. 5), then the value
� = 110 keV is obtained, which is in a good agreement with
our P2 result.

An important result of the present work is a clear demon-
stration that any approach purporting to give satisfactory
description of the 6Be g.s. decay properties should have a
large enough “dynamic range” both in radial and functional
spaces (see Table III).

Our calculations demonstrate a noticeable sensitivity of the
observables in the decay of the 6Be g.s. to the ingredients of the
model. Table II demonstrates that this sensitivity is enhanced in
6Be compared to 6He. Typical variations of the observables for
6He are 0.5–4%, while in 6Be there is about a 60% difference
between the widths calculated with P1 and P3. The tunneling
process can be seen as a kind of a “quantum amplifier,” which
strongly emphasizes minor features in the structure. For that
reason, it is possible that the indirect experimental probe of
the 6Be decay is a more sensitive tool to get access to the halo
properties of 6He than direct investigations of the 6He itself.

TABLE III. Minimal dynamical ranges of calculations required to
provide reasonably converged different observables for 6Be. Different
basis sizes are required for simplistic BJ and realistic GPT potentials
in the p-p channel.

Value E3r � Distributions

ρmax (fm) 20 60 300
Kmax (SBB+BJ) 16 30 80
Kmax (SBB+GPT) 40 70 110

We are referring to precision measurements of the correlations
in 6Be decay that are discriminative with respect to the fine
details of the momentum distributions. The quality of the new
experimental results, reported on in Sec. VI, approach that
required to make this discrimination.

V. EXISTING EXPERIMENTAL KNOWLEDGE ABOUT 6Be

Very precise results about the energy and width of the
6Be g.s. were obtained already in the early studies: ET =
1383(40) keV, � = 140(40) keV [41], ET = 1371(6) keV,
� = 89(6) keV [42], and ET = 1372(9) keV, � =
95(28) keV [43]. The currently accepted value of the width
� = 92(6) keV [15] is based on the above results and it has
not changed since the early 1970s.

The first measurements of 6Be decay correlations were
made in Ref. [44], see Fig. 14(a). They determined the
energy spectrum of α particles reconstructed in the 6Be
center-of-mass frame. For the 6Be g.s. events, this spectrum
can also be presented as the correlation spectrum between two
protons. The authors could not fit the data using simplistic
decay scenarios (phase volume, diproton decay, simultaneous
emission of p-wave protons) and concluded: “. . .no incoherent
sum of the processes considered here will fit the data. Perhaps
a full three-body computation is necessary to understand the
energy spectrum.” We think that this point of Ref. [44] is very
important and it finds confirmation in our work on the new
level of sophistication (see, e.g., discussion in Sec. VIII).

This ground-state decay, as well as decays of the 2+, T = 0
states of the A = 6 isobars, were further investigated in the
series of works by the Kurchatov Institute group ([13,30,31]
and Refs. therein), see Fig. 14(b). They developed a method

FIG. 14. Experimental energy distributions between the protons
in the decay of 6Be measured in (a) Ref. [44] and (b) Ref. [31]. The
theoretical prediction (P1) is provided only to guide the eye, as the
required experimental corrections are not known.

034602-11



L. V. GRIGORENKO et al. PHYSICAL REVIEW C 80, 034602 (2009)

of analyzing the p-p correlations in the framework of a
three-body partial-wave decomposition and applied this to
the three-body decays of light nuclei [31,32]. In particular,
the first kinematically complete study of 6Be proved the
existence of three-particle p + p + α correlations with total
spin of the proton-proton subsystem of S(p-p) = 1 and
S(p-p) = 0 [13,31] that matched the three-body components
found theoretically in the p-shell structure of 6Be [28]. One of
the important results for the 6Be g.s. was the realization that
S(p-p) = 0 and S(p-p) = 1 components of the WF should
produce very different correlation patterns. The presence
of an “admixture” of S(p-p) = 1 component to the WF
was demonstrated by an experiment performed with special
kinematics. In these works, the concept of “democratic decay”
was coined. This describes the specific decay mode for three-
body systems, when the events are not highly focused in narrow
kinematic regions but are distributed broadly (“democracy”
among different kinematic regions). “Democratic decay” is
now a popular term for this class of phenomena, but the
correlations in 6Be decay have never been studied since that
time. The spectra shown in Figs. 14(a) and 14(b) are not in
complete agreement with each other. Furthermore, there are
large statistical uncertainties and the geometry of experiments
may cause cuts in kinematic space that make comparison with
the theory difficult. It is clear that better experimental data on
6Be decay are needed.

VI. NEW EXPERIMENT

A. Experimental method

The Texas A&M University K500 cyclotron facility was
used to produce a 200-pnA beam of 10B at E/A = 15.0 MeV.
This primary beam impinged on a hydrogen gas cell held at
a pressure of 2 atm and kept at liquid-nitrogen temperature.
A secondary beam of E/A = 10.7 MeV 10C was produced
through the 10B(p, n)10C reaction and separated from other
reaction products using the MARS spectrometer [45]. This sec-
ondary beam, with intensity of 2 × 105 s−1, purity of 99.5%,
an energy spread of 3%, and a spot size of 3.5 × 3.5 mm
was inelastically excited due to interactions with 14.1 mg/cm2

Be and 13.4 mg/cm2 C targets. Ground-state 6Be fragments
were created from the α decay of these excited 10C particles.
Following the decay of the 6Be g.s. fragment, the final exit
channel is 2p + 2α.

The four decay products were detected in an array of four
Si E-�E telescopes located in a plane 14 cm downstream
of the target. The telescopes, part of the HiRA array [46],
consisted of a 65-µm-thick, single-sided Si-strip �E detector
followed by a 1.5-mm-thick, double-sided Si strip E detector.
All Si detectors were 6.4 × 6.4 cm in area with their position-
sensitive faces divided into 32 strips. The telescopes were
positioned in a square arrangement with each telescope
offset from its neighbor to produce a small, central, square
hole through which the unscattered beam passed. With this
arrangement, the angular range from θ = 1.3 to 7.7◦ was
covered. More details of the experimental arrangement can
be found in Ref. [9].

B. Monte Carlo simulations

Monte Carlo simulations of the experiment were performed
to determine the experimental bias and to understand the
effects of the gates applied to remove unwanted 2p + 2α

events. The simulations included the α decay of the parent 10C
fragments and the 6Be ground-state energy and width were
taken from Ref. [15]. The correlations between the 6Be decay
products were sampled according to the theory of Sec. III B.
The effects of energy loss and small-angle scattering of all the
decay products were considered following Refs. [47,48].

Simulated events were passed through a detector filter
and the effects of the position and energy resolution of the
detector were added. The “detected” simulated events were
subsequently analyzed in the same manner as the experimental
data. The velocity, excitation-energy, and angular distributions
of the parent 10C states were chosen such that the secondary
distributions that passed the detector filter were consistent with
the experimental results. Similar simulations for other decay
modes were found to reproduce the experimental resolution
[9].

C. Event selection

Apart from α-6Be g.s. decay, there are many other 10C
decay modes that lead to the 2p + 2α exit channel and thus
the detected events must be suitably gated to remove these
unwanted decays. Of particular importance is the rejection of
the large yield of decays where the 10C fragment undergoes
two-proton decay (either sequential through 9B or prompt)
leading to the creation of an 8Be g.s. [10]. These events can
readily be identified from the correlations between the two α

particles. The distribution of relative energy (Eαα
rel ) between the

two α particles contains a strong, narrow peak corresponding to
8Be-g.s. decay [9]. This peak has a full width at half maximum
(FWHM) of 38 keV and sits on a negligible background [9],
thus allowing for a clean rejection of these events with the
gate Eαα

rel < 0.2 MeV. Our Monte Carlo simulations suggests
this gate has essentially no significant effect on true α-6Be g.s.
decays with only 0.01% of detected events being rejected.

The remaining events have contributions from α-6Be g.s.
and p−9B (E∗ = 2.43 MeV) decays [9]. The latter 9B
excited state does not decay through 8Be g.s. but undergoes
a three-body decay like the 6Be ground state. For both of
these decays modes, there is a difficultly in trying to find the
intermediate state (either 6Be or 9B) as there are two possible
ways to construct this fragment from the detected 2p + 2α

exit channel. Let us concentrate on the 6Be g.s. fragments first
where we must determine which of the two detected α particles
was the one initially emitted from the 10C parent and which was
produced in the decay of 6Be. To this end, the 6Be excitation
energy for the two ways of constructing the 6Be fragment
are determined and ordered according to their maximum
and minimum values; E∗(6Be)max and E∗(6Be)min. A two
dimensional plot of these two excitation energies is shown
in Fig. 15. A prominent ridge centered around E∗(6Be)min = 0
corresponding to 6Be g.s. decay is clearly visible. For those
events in this ridge structure, the identification of which α

particle was produced in 6Be decay is clearly the one associated
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FIG. 15. (Color online) Contour plot showing the distribution of
the two possible 6Be excitation energies that can be associated with
the two 2p + α subevents ordered by their maximum and minimum
values. The dashed line indicates the threshold for which correct
identification of the 2p + α subevent associated with 6Be decay is
achieved in the simulations. The ridge associated with the 6Be g.s.
decay is indicated by the arrow.

with E∗(6Be)min when E∗(6Be)max � E∗(6Be)min. However
when E∗(6Be)max ∼ E∗(6Be)min the Monte Carlo simulations
indicate that misidentifications will occur. These simulations
suggests that for E∗(6Be)max − E∗(6Be)min = 0.5 MeV, the
probability of misidentifying the α particles is 0.03%. This
condition is indicated in Fig. 15 by the dashed line and only
events above this line were used in the subsequent analysis
of the experimental data. One can see from Fig. 15 that this
condition does not significantly cut into the ridge structure
and the Monte Carlo simulations suggests we lose 4.7% of the
remaining α-6Be g.s. events with this gate.

The remaining ridge structure still sits on a background.
Part of this background can be traced to 10C → p + 9B(E∗ =
2.43 MeV) decays. These events can be identified from
E∗(9B)max and E∗(9B)min information in a manner similar to
the α-6Be g.s. events. A ridge structure also is evident in this
case and it also sits on an non-negligible background, which
in turn has contributions from α-6Be g.s. decay. Although one
cannot completely separate all p-9B and α-6Be events, we do
reject events in the E∗(9B)min ridge structure. This results in
a slightly diminished yield of true α-6Be g.s. events, but more
importantly, it reduces the relative background under the 6Be
ridge structure shown in Fig. 15. The Monte Carlo simulations
suggests only 2.7% of the remaining true α-6Be g.s. events
were rejected by this condition.

The distribution of ET for the final selection of events
is shown in Fig. 16 by the data points. The FWHM width
of the peak associated with the 6Be g.s. is 220 keV, which
is larger than the intrinsic value of � = 92 keV due to the
detector resolution. The solid curve indicates the simulated
distribution after a smooth background contribution (dashed
curve) is added. This simulated distribution reproduces the
experimental results quite well, confirming that the Monte
Carlo simulations correctly model the experimental resolution.
Figure 16 also shows the gate G6 used to select 6Be g.s. frag-
ments and the two gates, GB1 and GB2 that, when combined,
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FIG. 16. (Color online) The experimental distribution of ET for
selected events is shown by the data points. The solid curve indicates
the distribution predicted by the Monte Carlo simulation with the
addition of a smooth background (dashed curve). The G6 gate used
to select 6Be g.s. events and the two gates (GB1, GB2), used to estimate
the background under the peak, are indicated.

were used to estimate the background in the G6 gate. In all
subsequent results, this background has been subtracted.

The excitation-energy distribution of 10C fragments asso-
ciated with the selected events is shown in Fig. 17. There is
localized strength around E∗(10C) = 7 MeV and a continuous
distribution up to approximately 15 MeV. Thus many 10C
excited states are contributing to the detected 6Be g.s. yield.

VII. COMPARISON OF THEORY AND EXPERIMENT

Comparisons of experimental and predicted correlations in
both the “T” and “Y” Jacobi systems are shown in Fig. 18.
The experimental results [Figs. 18(a) and 18(c)] have been
background subtracted and, for the predicted distributions
[Figs. 18(b) and 18(d)], the effects of the detector resolu-
tion and bias have been incorporated via the Monte Carlo
simulations. In subsequent plots, the simulated results have
been normalized to the same number of counts as for the
experimental data. In determining the Jacobi coordinates,
there are two ways of choosing the order of the proton. For
the experimental events, Jacobi coordinates were determined
for both of these ways and thus each event contributes two
counts to the spectra. For “T” system, this forces the cos(θk)
distribution to be symmetrized around cos(θk) = 0. General
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FIG. 17. (Color online) Experimental distribution of 10C excita-
tion energy for α-6Be g.s. events selected in this study.
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FIG. 18. Comparison of (a and c) experimen-
tal (exp) and (b and d) theoretical correlations for
the 6Be g.s. decay presented in both the (a and
b) “T” and (c and d) “Y” Jacobi systems. The
theoretical distributions include the effects of the
detector bias and resolution via the Monte Carlo
simulations.

overall agreement between theory and experiment is found,
although statistical fluctuations are the limiting factor for the
experimental data.

To allow for a more detailed comparison, we compare
projections of the correlations on both the Ex/ET and cos(θk)
axes in Fig 19. The experimental data are indicated by
the data points while the dashed and solid curves show
the predictions before and after the simulated bias of the
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FIG. 19. (Color online) Comparison of the experimental (data
points) and predicted (curves) distributions of cos(θk) and Ex/ET

in the (c and d) “T” and (a and b) “Y” Jacobi systems. The blue
dashed curves show the primary predicted distributions while the red
solid curves include the effect of the detector bias and resolution. The
theoretical results were obtained with the P2 potential.

experimental apparatus is included. Interestingly, the “soft”
observables (energy distribution in the “T” system and the
angular distribution in the “Y” system) that have the most
sensitivity to the ingredients of the theoretical calculations and
its numerical implementation also have the largest bias induced
by the detector apparatus. The other projected distributions
(angular distribution in “T” and energy distribution in “Y”)
are practically unaffected by the detector response.

The same comparison of theory and data for all three
potentials P1–P3 is shown in Fig. 20. All three sets of
predictions reproduce the experimental data reasonably well.
To highlight more details of the correlations, we show the
cos(θk) distributions gated on three equal regions of Ex/ET

in Fig. 21 for the “T” and “Y” Jacobi systems. Reasonable
agreement between the experiment (data points) and the three
calculations (curves) is also found, although the P1 and P2
calculation are somewhat better. To quantify this, we determine
the χ2 per degree of freedom (χ2/ν) of the theoretical fit to
the two-dimensional data of Fig. 18. These values are listed in
Table IV for both the “T” and “Y” systems. For a good fit we

TABLE IV. χ 2 per degree of freedom for fits to the
complete correlations data in the “T” and “Y” system with
the three assumed potentials

System P1 P2 P3

“T” 1.29 1.17 1.58
“Y” 1.25 1.14 1.45
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FIG. 20. (Color online) Comparison of the experimental (data
points) and predicted (curves) distributions of cos(θk) and Ex/ET

in the (c and d) “T” and (a and b) “Y” Jacobi systems. The solid
(green), dashed (red), and dotted (blue) curves correspond to P1, P2,
and P3 potential sets, respectively. The effect of the detector bias and
resolution is included for the theoretical curves.

need χ2/ν ∼1 and clearly both P1 and P2 satisfy this criteria.
Again we find the P3 calculation is somewhat worse.
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FIG. 21. (Color online) Comparison of experimental (data points)
and predicted (curves) cos(θk) distributions in the “T” (left) and “Y”
(right) Jacobi systems for the indicated gates on Ex/ET parameter.
The solid (green), dashed (red), and dotted (glue) curves correspond
to P1, P2, and P3 potential sets, respectively. The effect of the detector
bias and resolution is included.

VIII. DISCUSSION OF EXPERIMENTAL DATA

A. General notes

An important task of this work is to demonstrate a
conceptual possibility of using 2p correlations as a sensitive
structure research tool. What do we mean here? First, data
with high statistical accuracy (hundreds of events per bin in
kinematic space), high acceptance, and sufficient resolution
(to have minimal distortions for all parts of kinematic space)
should be accessible. There have been very limited number
of studies of this class for three-body decays. Second, to
bridge from the internal part of our WF to the asymptotic
region, we need an appropriate theoretical model. This model
should be sufficiently precise to provide the quantitative
description of correlations in the complete kinematic range.
It was not clear in advance whether the available theoretical
model provided the required precision. In this work, we
have found that all reasonable potential sets P1–P3 give a
good fit to the data with χ2/ν ∼1. Strictly speaking, this
means that with the present statistical errors, we cannot make
reliable discrimination among the P1–P3 cases. Nevertheless,
we find it very encouraging that the χ2/ν is minimal for
potential set P2, which provides the optimal agreement with
the remaining data for 6He and 6Be (see Sec. III D). We have
clearly demonstrated, at least by this one example, that there
is a sensitivity of decay correlations to the minor details of
interactions and consequently to details of the structure. The
present experimental precision is already sufficient to become
sensitive to such minor details. It is clear that with increased
experimental precision, the real discriminative power of such
measurements will be attained.

Important qualitative insights can also be obtained using the
present experimental data and two simplistic quasiclassical
models of 2p emission. This is done in the next two
subsections.

B. On the applicability of diproton model

The first notions about 2p decay were the simplistic
“diproton” picture [1,49] that is still popular [50–54]. Here
the two protons are traveling under the barrier in the S = 0
state and can be considered as a single “diproton” particle. In
this model, the differential width in the “T” system is

d�

dε
= 2 γ 2

ppρ(εET ) P0
(
ET (1 − ε), r (dp)

ch , 2Zcore
)
. (31)

This is a quasiclassical (QC) approach as it assumes that the
“rigid” diproton propagates under the barrier along a classical
trajectory. The function Pl is a standard penetrability factor
depending on the energy, channel radius, and charges and
ρ(εET ) is the “density of diproton states.” This density has
been approximated as either a “fixed-energy diproton,” i.e.,
ρ(E) = δ(E − E0) with E0 ≈ 50 keV or alternatively for a
“Coulomb-corrected phase volume,” ρ(E) = P0(E, r

(pp)
ch , 1).

Finally, a treatment of this density in the spirit of the Migdal-
Watson approximation can be found in Ref. [50].

It should be noted that in the diproton picture, the informa-
tion about the nuclear interior is lost (except the spectroscopic
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information contained in γpp) and we can obtain information
only about the peculiarities of the final-state interaction from
measurements of the proton correlations.

From the theoretical side it was demonstrated in Ref. [23]
that the diproton model is typically used in an inconsistent
way in terms of the accepted parametrizations for the diproton
channel radius r

(dp)
ch . Correctly applied, the diproton model

provides unrealistically small values of the width.
From the experimental side, one can see that Eq. (31)

provides a single broad peak in the energy distribution in the
“T” system, while double-hump structure is present in the data.
This problem of the diproton model has been pointed already in
Ref. [44]. Moreover, Eq. (31) provides an angular-independent
decay probability in the “T” system. The observed angular
distributions in the “T” system [Fig. 18(a), Fig. 21 (left
column)] thus demonstrate one more time that the 2p decay
process cannot be reasonably approximated as a diproton
decay.

C. Quasiclassical-simultaneous-emission model

Another frequently used approximation for 2p decays is
the simultaneous-emission model, which neglects the p-p
interaction and considers the decay via the low-energy tails
of the resonances in the core-p subsystem. The formula for
the width (including preexponent) in this approximation was
derived in Ref. [55] and then in more details in Ref. [24]:

d�

dε
= ET 〈V3〉2

2π

�p1 (εET )

(εET − Ep1 )2 + �p1 (εET )2/4

× �p2 ((1 − ε)ET )

((1 − ε)ET − Ep2 )2 + �p2 ((1 − ε)ET )2/4
,

�pi
(Ei) = 2

θ2
i

2Mir
2
chi

Pli (Ei,rchi ,Zi).

〈V3〉2 = D3(ET − Ep1 − Ep2)2, (32)

In this equation, Epi
and �pi

are parameters of the ground-
state resonance in the core+pi subsystem and D3 ≈ 1. In the
literature (e.g., Refs. [56,57]) a version of Eq. (32) is used that
can be obtained by letting one of the resonance energies Epi

tend to infinity. This is not a reasonable assumption as, for 0+

FIG. 22. (Color online) The energy distribution for 6Be in the
“Y” system compared with quasiclassical predictions [Eq. (32)].

TABLE V. Widths of the 6Be g.s. calculated in the simultaneous
emission model [Eq. (32)].

Model rch1 (fm) θ2
1 rch2 (fm) θ2

2 �

(keV)

No p-p 2.39 1.585 2.39 1.585 20.4
No p-p 4.0 1.305 4.0 1.305 35.1
Effective 2.39 1.585 2.39 1.945 14.7
Effective 4.0 1.305 4.0 1.505 25.9

ground-state decays, both of the lowest resonances Epi
in the

subsystems have the same energy.
In the derivation of Eq. (32) in Ref. [24], two reasonable

assumptions about subsystems were considered. (i) We can
neglect the interaction between protons. Then, the “charges”
for both subsystems should be taken as Zi = Zcore. This is
the “no p-p interaction” case in Fig. 22 where the predicted
Ex/ET profile in the “Y” system does not reproduce the visible
shift of the experimental profile to the left. (ii) We can consider
one of the subsystems as an effective particle with charge Z2 =
Zcore + 1 (while Z1 = Zcore). In this “effective Coulomb” case,
the shift of the profile to the left is reproduced correctly, but
the wings of the distribution are still wrong.

The results of the width calculations are provided in
Table V. The dimensionless reduced widths θ2 are fitted in
such a way that they provide reasonable properties for the
5Li subsystem. The 3/2− ground state is located at E2r =
2.08 MeV with � = 2.11 MeV [15]. The calculated widths
are 2.5–6 times smaller than the experimental value. There is a
considerable “unphysical” sensitivity of the width, defined by
Eq. (32), to the channel radius, but even this is not sufficient
to obtain a reasonable value by fine tuning rchi .

The reason for disagreement between the quasiclassical
predictions and the experiment is the same for both the width
and for the energy distributions. This can be demonstrated
with the help of Table I. One can readily see that in the interior
of 6Be, the [p2] configuration is dominating (its weight is
provided with a good accuracy by the weights Ni of the K =
2, S = 0, 1 configurations). However, in the asymptotic region,
the [s2] configuration becomes very important (its contribution
corresponds to the partial width of the K = 0 configuration).
The influence of this configuration increases the 2p penetration
rate (due to the lower centrifugal barrier) and simultaneously
provides somewhat broader energy distributions in the “Y”

TABLE VI. Weights of the shell-model-like configurations [	2]
in the 6He and 6Be g.s. WFs in percentages for the Jacobi “Y”
system. The normalizations of the 6Be components are found for
integration radius ρint = 12.5 fm.

[	2] 6He 6Be

P1 P2 P3 P1 P2 P3

[s2] 8.11 8.58 8.35 10.54 11.15 10.84
[p2] 90.91 90.30 90.37 87.98 87.18 87.17
[d2] 0.47 0.53 0.61 0.69 0.77 0.95
[f 2] 0.41 0.43 0.50 0.60 0.65 0.77
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system. There is no way to consider the contribution of the
[s2] configuration within approximation of Eq. (32), which
presumes resonant continuum in both core-p subsystems.

The three-body calculations of Sec. II provide a perfect
fit to the experimental data in Fig. 22. The quasiclassical
estimates can successfully mimic the overall picture (namely
the width can be predicted within an order of the magnitude
and the profile of the energy distribution in “Y” system can be
reasonable) but fails when high-quality data are available.

IX. CONCLUSIONS

The first detailed studies of the correlations from the
decay of the 6Be g.s. are performed both experimentally and
theoretically. We have found that certain correlations (namely
energy correlation between two protons in the “T” system and
angular correlations in “Y” Jacobi system) are quite sensitive
to the details of the structure and interactions.

Experimentally 6Be fragments are produced from the α

decay of 10C excited states formed by inelastically scattering a
10C beam off of Be and C targets. The α + 2p decay products
as well as the initially emitted α particle were detected in
a Si array with good position and energy resolution. The

experimentally measured correlations between the 6Be g.s.
decay products and the theoretical predictions were found to
be in good agreement.

We have demonstrated that the relative sensitivity of the
continuum observables (including correlation patterns) to
the details of the interactions is higher in the decay of
6Be compared to the corresponding sensitivity of typical
observables in 6He. We argue that further highly detailed
studies of the correlations in the decay of 6Be could provide
better access to the properties of the A = 6 isobars (and thus to
the halo properties of the 6He nucleus) than the direct studies
of 6He halo properties.
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