
PHYSICAL REVIEW C 80, 034325 (2009)

Improved basis selection for the projected configuration interaction method
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In a previous paper, we proposed a projected configuration interaction method that uses sets of axially deformed
single-particle states to build up the many-body basis. We show that the choice of the basis set is essential to the
efficiency of the method, and we propose a newly improved algorithm for selecting the projected basis states.
We also extend our method to model spaces that can accommodate both parities and can include odd-multipole
terms in the effective interaction, such as the octupole contributions. Examples of 56Ni, 68Se, 70Se, and 76Se are
calculated showing good agreement with the full configuration interaction results.
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I. INTRODUCTION

The full configuration interaction (CI) method [1,2] using a
spherical single-particle (s.p.) basis and realistic Hamiltonians,
also known as the nuclear shell model, has been very successful
in describing various properties of the low-lying states in light
and medium nuclei. The main limitations of this method are
the exploding dimensions with the increase of the number
of valence nucleons and with the increase of the valence
space. Although, there are continuous improvements to the
CI codes [3,4] and computational resources, the exploding CI
dimensions significantly restrict the ability to investigate heavy
nuclei, especially those that exhibit strong collectivity. The
deformed mean-field approaches, however, have the ability to
incorporate the collective effects at the single-particle level.
The mean-field description in the intrinsic frame naturally
takes advantage of the spontaneous symmetry breaking. This
approach provides some physical insight, but the loss of good
angular momentum of the mean-field wave functions makes
the comparison with the experimental data difficult. The CI
calculations in the spherical basis provide the description in
the laboratory frame. The angular momentum is conserved,
but the physical insight associated with the existence of an
intrinsic state is lost. One important aspect of the CI approach
is its ability to use all components of effective interactions
compatible with a given symmetry, but restricted to a chosen
valence space. Examples of realistic Hamiltonians, such as
the USD [1,5] in the sd shell, the KB3 [6], FPD6 [7], and
GXPF1 [8] in the pf shell, have provided a very good base for
studying various nuclear structure problems microscopically.

The recent history of projection techniques combined
with CI particle-hole configurations includes the projected
shell model (PSM) [9,10] and the deformed shell model
(DSM) proposed in Ref. [11]. PSM uses a deformed intrinsic
Nilsson + BCS basis projected onto a good angular momentum
and a multipole-multipole Hamiltonian that is diagonalized
in the space spanned by the projected states. The Nilsson
model [12] has proven to be very successful in describing the
deformed intrinsic single-particle states, and the quadrupole
force was found to be essential for describing the rotational
motion [13]. PSM has proven to be a very efficient method in

analyzing the phenomena associated with the rotational states,
especially the high spin states, not only for axial quadrupole
deformation, but also for the octupole [10] and triaxial shapes
[14,15]. However, its predictive power is limited, because
the multipole-multipole plus pairing Hamiltonian has to be
tuned to a specific class of states, rather than a region of
the nuclear chart. The recently proposed DSM is using the
same realistic effective Hamiltonian as the full CI method
and a Hartree-Fock procedure to select the deformed basis.
One can only assume that this procedure would not be very
accurate for quasispherical nuclei. The main difficulties for all
these models is the proper selection of the deformed basis.
Their accuracy can only be assessed by comparison with
the exact results provided by the full CI method using the
same effective Hamiltonian, and not by direct comparison with
the experimental data. Other models using similar techniques
includes MONSTER, the family of VAMPIRs [16], and the
quantum Monte Carlo diagonalization (QMCD) method [17].

In a previous paper [18], we proposed a new method
of calculating the low-lying states in heavy nuclei using
many particle-hole configurations of spin-projected Slater
determinants built on multiple sets of deformed single-particle
orbitals. This projected configuration interaction (PCI) method
takes advantage of the inherent mixing induced by the
projected Slater determinants of varying deformations with
the many particle-hole mixing typical of CI techniques. Direct
comparison between PCI and CI results are always possible,
provided that the deformed s.p. states are always obtained
starting from a valence space of spherical orbitals. In Ref. [18],
we used a simple mechanism of selecting a number of basic
deformed Slater determinants in the sd and pf model space,
denoted |κj , 0〉, by searching for the minimum energy of
the fixed configuration of deformed s.p. orbitals. Starting
from each basic deformed Slater determinant, a number of
particle-hole excited configurations were considered under
some selection criteria [see Eq. (23) of Ref. [18]] to keep the
total number of basis states manageable. Having the deformed
basis of Slater determinants chosen, one can use standard
spin projection techniques to solve the associated eigenvalues
problem. The method proved to be very accurate in 0h̄ω model

0556-2813/2009/80(3)/034325(8) 034325-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.034325


ZAO-CHUN GAO, MIHAI HOROI, AND Y. S. CHEN PHYSICAL REVIEW C 80, 034325 (2009)

spaces, such as sd and pf , where one can easily keep track
of different deformed orbitals. The difficulties usually appear
for quasispherical nuclei, such as 56Ni, when special attention
has to be given to the selection of the basics states |κj , 0〉. A
similar problem arises for the case of mixed parity valence
space, such as f 5pg9 (see below), because of difficulties in
tracking the fixed configurations of nucleons filling the s.p.
orbitals around the level-crossing deformations.

The paper is organized as follows. Section II presents a brief
outline of the PCI formalism that was expanded in Ref. [18].
The new algorithm to select the PCI basis is discussed in
Sec. III. Section IV analyzes the efficiency of the new method
in the case of the quasispherical nucleus 56Ni. Section V is
devoted to the study of several nuclei that can be described
using the mixed parity valence space f 5pg9. Conclusions and
outlook are given in Sec. VI.

II. METHOD OF THE PROJECTED CONFIGURATION
INTERACTION (PCI)

The model Hamiltonian used in CI calculations can be
written as

H =
∑

i

eic
†
i ci +

∑
i>j,k>l

Vijklc
†
i c

†
j clck, (1)

where c
†
i and ci are creation and annihilation operators of the

spherical harmonic oscillator, and ei and Vijkl are one-body and
two-body matrix elements that can be obtained from effective
interaction theory, such as G matrix plus core polarization [19],
which can be further refined using the experimental data [8,20].

One can introduce the deformed s.p. basis, which can be
obtained from a constrained Hartree-Fock (HF) solution or
from the Nilsson s.p. Hamiltonian [18]. The deformed s.p.
creation operator is given by the transformation

b
†
k =

∑
i

Wkic
†
i , (2)

where the matrix elements Wki = 〈bk|ci〉 are real in our cal-
culation. The Slater determinant (SD) built with the deformed
single-particle states is given by

|κ〉 ≡ |s, ε〉 ≡ b
†
i1
b
†
i2

. . . b
†
in
|〉, (3)

where s refers to the Nilsson configuration, indicating the
pattern of the occupied orbits, and ε is the deformation
determined by not only the quadrupole ε2 and hexadecapole
ε4 as in Ref. [18] but also the octupole ε3, etc.

The general form of the nuclear wave function is taken as
a linear combination of the projected SDs (PSDs),

|�σ
IM〉 =

∑
Kκ

f σ
IKκP

I
MK |κ〉, (4)

where P̂ I
MK is the angular momentum projection operator.

The energies and the wave functions [given in terms of the
coefficients f σ

IKκ in Eq. (4)] are obtained by solving the
following eigenvalue equation:∑

K ′κ ′

(
HI

Kκ,K ′κ ′ − Eσ
I NI

Kκ,K ′κ ′
)
f σ

IKκ ′ = 0, (5)

where HI
Kκ,K ′κ ′ and NI

Kκ,K ′κ ′ are the matrix elements of the
Hamiltonian and of the norm, respectively,

HI
Kκ,K ′κ ′ = 〈κ|HP I

KK ′ |κ ′〉, (6)

NI
Kκ,K ′κ ′ = 〈κ|P I

KK ′ |κ ′〉. (7)

More details about the formalism can be found in Ref. [18].

III. CHOICE OF THE PCI BASIS

The analysis made in Ref. [18] indicated that one of the most
important problems of the PCI method is the proper selection
of the PCI basis. As introduced in our previous work [18], the
general structure of the PCI basis is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0p − 0h, np − nh

|κ1, 0〉, |κ1, j 〉, . . . ,
|κ2, 0〉, |κ2, j 〉, . . . ,
. . . . . . . . . . . . . . . . . .

|κN, 0〉, |κN, j 〉, . . .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (8)

where |κi, 0〉 (i = 1, . . . , N ) is a set of starting states of
different deformations. Assuming that we have found these
|κ, 0〉 SDs (skipping the subscript i to keep notation short),
relative np-nh SDs, |κ, j 〉, on top of each |κ, 0〉 are selected
using the constraint [18]

�E = 1

2

(
E0 − Ej +

√
(E0 − Ej )2 + 4|V |2

)
� Ecut,

(9)

where E0 =〈κ, 0|H |κ, 0〉, Ej = 〈κ, j |H |κ, j 〉, V = 〈κ ,
0|H |κ, j 〉, and Ecut is a parameter.

The |κ, 0〉 SDs need to be properly chosen to achieve good
accuracy. In our previous work [18], we chose the SDs with the
lowest unprojected expectation energy for each configuration,
and we used the same basis for all the spins. That approach
proved to work well for quite deformed nuclei, limiting its
range of application. For instance, the description of 56Ni
with GXPF1A [20] exhibits a spherical ground state minimum
which is selected as a basis SD. This spherical SD has a good
spin I = 0, which will not be useful if we calculate I �= 0
states. This example suggests that a more efficient method
may involve choosing different basis sets for different spins.
Another problem with this method of selecting the |κ, 0〉
basis states is that for each configuration, only one SD is
selected. Therefore some states, such as the β-vibrational
states, cannot be described unless two or more shapes for
the same configuration are artificially included outside of any
algorithm.

To address these problems, we developed a new method of
finding an efficient set of |κ, 0〉 states. The deformed single-
particle states are generated from the Nilsson Hamiltonian
shown in Eq. (2) of Ref. [18]. For simplicity, we set

Ei = ei . (10)

In a first step, at each deformation ε = (ε2,ε3,ε4), we build
many Slater determinants (SDs) denoted by |s,ε〉, where s

denotes a configuration of nucleons occupying the deformed
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single-particle orbitals. These SDs are projected onto good
angular momentum I , and the projected energy is calculated

Eexp(I,s,ε) = 〈s,ε|HP I
KK |s,ε〉

〈s,ε|P I
KK |s,ε〉 . (11)

We then identify the configuration sa which has the lowest
Eexp(I,s,ε) at each shape ε. Searching over all possible
deformations ε, we obtain the energy surface of Eexp(I,sa,ε) as
a function of ε. The SD |sa, εa〉 that has the lowest Eexp(I,sa,ε)
is chosen as the first |κ, 0〉 state denoted as

|κ1, 0〉 = |sa, εa〉. (12)

The next step is to find the second |κ, 0〉 state. We try all
possible |s, ε〉, and for each |s, ε〉, we build the 2 × 2 matrix
pair (A, B),

A =
(

H11 H12

H21 H22

)
, B =

(
N11 N12

N21 N22

)
,

where

Hij = 〈i|HP I
MK |j 〉, Nij = 〈i|P I

MK |j 〉, (13)

with

|i(j ) = 1〉 = |κ1, 0〉, |i(j ) = 2〉 = |s, ε〉. (14)

Solving the generalized eigenvalue problem

Ax = λBx, (15)

we get two eigenvalues, λ
(2)
1 and λ

(2)
2 , and their sum,

S2 = λ
(2)
1 + λ

(2)
2 . (16)

The SD |sb, εb〉 with the lowest S2 is selected as the second
|κ, 0〉 denoted as

|κ2, 0〉 = |sb, εb〉. (17)

The process of finding more |κ, 0〉 SDs can be continued
in a similar manner. Assuming that we have found the
(n − 1)th |κ, 0〉 SD, |κn−1, 0〉, then |κn, 0〉 is chosen as the
|sx, εx〉, corresponding to the lowest Sn. Here,

Sn = λ
(n)
1 + λ

(n)
2 + · · · + λ(n)

n , (18)

and λ
(n)
1 , λ

(n)
2 , . . . , λ(n)

n are eigenvalues of Eq. (15) with

A =

⎛
⎜⎜⎜⎝

H11 H12 . . . H1n

H21 H22 . . . H2n

. . . . . . . . . . . .

Hn1 Hn2 . . . Hnn

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

N11 N12 . . . N1n

N21 N22 . . . N2n

. . . . . . . . . . . .

Nn1 Nn2 . . . Nnn

⎞
⎟⎟⎟⎠ ,

and

Hij = 〈i|HP I
MK |j 〉, Nij = 〈i|P I

MK |j 〉, (19)

|i(j )〉 = |κi(j ), 0〉, if i(j ) = 1, 2, . . . , n − 1;

|i(j )〉 = |s, ε〉, if i(j ) = n. (20)

Sometimes we may only use part of the Sn sum over the
lowest λ

(n)
1 as a selection criteria, i.e.,

Sk
n = λ

(n)
1 + λ

(n)
2 + · · · + λ

(n)
k (1 � k � n), (21)

and Sn
n = Sn by definition.

Evaluating the projected energies for all SDs takes a long
time to calculate, and not all of them may be necessary.
Therefore, we enforce additional truncations. First, the HF
energy EHF is calculated. Next, at each shape ε, the SDs having
all particles occupying the lowest Nilsson orbits are considered
as the 0p-0h SDs. All particle-hole excitations up to 4p-4h built
on these 0p-0h SDs are created, and their expectation energies

Eexp(s, ε) = 〈s, ε|H |s, ε〉 (22)

are calculated. Those SDs satisfying Eexp(s,ε) − EHF <

Eexpup, where Eexpup is an input parameter, are saved.
Finally, the projected energies Eexp(I, s, ε) of the saved
SDs are evaluated and compared with the lowest projected
energy Eexp(I,sa,εa) available. We keep those SDs satisfying
Eexp(I,s,ε) − Eexp(I,sa,εa) < Epjup(I ), where Epjup(I ) is an
input parameter, and we discard the others. The values of the
parameters Eexpup and Epjup(I ) must be large enough so that
the |κ, 0〉 can be properly chosen, but too large Eexpup and
Epjup(I ) values may result in wasted computation without any
improvement in accuracy.

Here we summarize the advantages of the new method of
selecting the basis states |κ, 0〉. First, as already mentioned,
the method proposed in Ref. [18] uses the same |κ, 0〉 states
for all spins; however, certain |κ, 0〉 states may not bring any
contribution to certain spins. The new method improves the
efficiency of the PCI basis by choosing different |κ, 0〉 states
for different spins.

Second, the |κ, 0〉 chosen by the new method may include
two or more shapes for the same configuration s. Therefore,
the present method explicitly includes the idea embedded in
the generator coordinate method (GCM) [21] and may be used
to describe some collective vibrations, such as the β vibration.

Third, there are no limitations on the K values. In Ref. [18],
we only selected basis states with relatively small K values to
keep the basis dimensions manageable. This limitation could
be a problem in the case of the high spin states, for which
the high-K configurations could be close to the yrast line.
The new method described here selects basis states with all
possible SDs satisfying |K| � I .

Finally, and perhaps more importantly, the drawback of
getting large overlaps between different basis SDs, which is
typical for an uncorrelated selection of the basis, is avoided
by construction in the new method. Getting basis states with
large overlaps leads to many spurious states due to the zero
eigenmodes of the norm matrix. The significance of these
zero modes is that some of the basis states that exhibit
large overlaps bring insignificant contributions to the solutions
of the Hill-Wheeler Eq. (5), while unnecessarily increasing
the dimensions of the problem. Those useless SDs can be
automatically filtered out by the present method, because the
overlap problem has been fully considered step-by-step when
the generalized eigenvalue Eqs. (15) are solved.

It is worth noting that for some particular cases, the lowest
states of a given spin and parity could get significant contri-
butions from higher lying configurations that are not selected
by the present algorithm, e.g., Eqs. (18) or (21). Although
our investigations (below) do not reveal such cases, we are
considering this potential problem for further improvements
of the algorithm.
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IV. CALCULATIONS OF 56Ni

Using the new method, we recalculated the nuclei 56Ni
with the GXPF1A interaction [20]. Let us first consider the
case of I = 0. Both ε2 and ε4 span the interval from −0.45 to
0.45 in steps of 0.03. The first basis state, |κ1, 0〉, having the
lowest projected energy, corresponds to I = 0. In Fig. 1, the
surfaces of the Eexp(I, sa, ε) [see Eq. (11)] and Eexp(sa, ε) [see
Eq. (22)] are plotted as functions of ε2 and ε4. Our calculation
shows that the configuration sa has all 16 valence particles
in 56Ni occupying the orbits coming from the 1f7/2 subshell.
The unprojected minimum, Fig. 1(a), is at −203.800 MeV, and
its shape is spherical, consistent with the HF result. However,
the projected energy surface presents a quite different picture.
There are four minima around the spherical shape, the lowest
one has −204.473 MeV and a small oblate deformation, ε2 =
−0.09 and ε4 = −0.09. This energy is 673 keV lower than the
HF energy and 1.236 MeV above the exact CI ground state
energy of −205.709 MeV. This |κ, 0〉 state is a good candidate
for the ground state.

The second basis state, |κ2, 0〉, has the same configuration as
the first one but a different shape characterized by ε2 = −0.24
and ε4 = −0.15. Comparing with Fig. 1, this shape is quite
different from any of the remaining three minima. The reason
is that the SDs at those four minima are highly overlapping
each other after the angular momentum projection. Once the
lowest one is picked up, the others will automatically be filtered
out by the present method. The |κ2, 0〉 corresponds to the first
excited 0+ state, which might be called a β-vibrational state.

The third basis state, |κ3, 0〉, has a prolate shape with ε2 =
0.27 and ε4 = 0.06. Its configuration can be obtained starting
from |κ1, 0〉, but with four particles jumping from the |	| =
7/2 (1f7/2) orbits to the |	| = 1/2 (2p3/2) orbits. |κ3, 0〉 can
generate a deformed rotational band, which has been observed
in experiments [22]. Here, we only create the bandhead, which
is the third 0+ state. Information about higher |κ, 0〉 SDs is
shown in Fig. 2. The value Si − Si−1 indicates the energy
position of each |κi, 0〉 state.

Once we have selected the |κ, 0〉 SDs, we perform the PCI
calculations. There are two parameters used in PCI: one is
the number of |κ, 0〉 SDs, n, and the other is the Ecut used in
Eq. (9) to select the number of particle-hole excitations on top
of each |κ, 0〉 [18].

It is interesting to study how many |κ, 0〉 are needed to
describe the low-lying states. Figure 3(a) shows the PCI

FIG. 1. (Color online) Unprojected energy surface (a) and the
projected energy surface with I = 0 (b) for the ground state of 56Ni
with the GXPF1A interaction. The lowest energy is marked by ⊗.

FIG. 2. (Color online) Si − Si−1 values of |κi, 0〉 at I = 0 for 56Ni
as a function of ε2. ε4 are included in the calculation. |κ1, 0〉 is the
lowest one.

energies as functions of n for Ecut = 1 keV. For n = 1, the
PCI dimension is only 180, yet the first 0+ PCI energy is
−205.409 MeV, only 300 keV above the exact full CI value.
|κ2, 0〉 must be included to describe the second 0+ state, and
|κ3, 0〉 reproduces the third 0+ state. To accurately describe
more excited states, more |κ, 0〉 SDs are needed. For the lowest
five states in 56Ni, a good approximation can been achieved
starting with n = 7. If one keeps on increasing n, then those
five energies will become closer and closer to the CI values.
For instance, with n = 15, the the ground state PCI energy
becomes −205.603 MeV, just 100 keV above the exact value.

The PCI energies are also affected by the Ecut parameter
[Fig. 3(b)]. For Ecut = 1000 keV, no particle-hole excited SDs
are included, and the PCI dimension is the same as the number
of |κ, 0〉 SDs included, n = 8 in this case. Therefore the PCI
energies are exactly the values of λi in Eq. (18). More particle-
hole excited SDs can be included by reducing the value of Ecut.
For example, by decreasing from Ecut = 1000 keV to Ecut =
1 keV, the PCI energies drop ∼1.0–2.3 MeV for the lowest five
states, and become close to the full CI values. By decreasing
from Ecut = 1 keV to Ecut = 0.2 keV, the energy drop becomes

(a) (b)

FIG. 3. (Color online) I = 0 PCI energies for 56Ni as functions of
(a) n with Ecut = 1 keV and (b) Ecut = 1 with n = 8. Full CI results
are also shown as the open circles for comparison.
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FIG. 4. (Color online) Lowest five energies at each spin for 56Ni
calculated using PCI and full CI.

slower and is around ∼100–200 keV. The PCI energies for
I �= 0 states are also calculated and shown in Fig. 4; the number
of |κ, 0〉 is n = 15 and Ecut = 1 keV. One can observe good
agreement between the PCI and the CI results, including the
states in the rotational band starting at about 5 MeV.

V. CALCULATIONS IN f 5 pg9 VALENCE SPACE

We have also extended our calculations to the f 5pg9
valence space, which includes the 1f5/2, 2p3/2, 2p1/2, and
1g9/2 spherical shells. 1g9/2 orbital has positive parity,
and the other fp orbitals have negative parity. Therefore,
SDs with both parities can be built for any number of
nucleons. The positive-parity SDs are those with even number
particles occupying the fp orbitals, while the negative-parity
SDs have odd number particles occupying the fp orbitals.
The angular momentum projection does not change the parity.
The parity of the projected states remains the same as that
of the original SDs. Therefore, one can split the PCI basis into
the positive-parity part I+ and the negative-parity part I− at
each spin I . With the present method, different |κ, 0〉 SDs can
be generated separately for the I+ basis and I− basis.

The interaction for the f 5pg9 shell space was taken
from Ref. [23]. It includes, besides the usual quadrupole,
hexadecapole, and pairing terms, octupole contributions and
monopole corrections. In all cases, 20 |κ, 0〉 SDs are taken for
each Iπ basis, and Ecut was fixed to 1 keV. The first example
we analyze is the N = Z nucleus 68Se, which is known to
be deformed with competing oblate and prolate deformations.
The energies of the 20 |κ, 0〉 SDs for both Iπ = 0+ basis and
Iπ = 0− basis are shown in Fig. 5.

It is known that the 68Se nucleus exhibits shape coexistence
features. The constrained HF calculations of Ref. [23] as well
as our results in Fig. 6 show that there are two minima.
Both of them are axially and reflection symmetric. The lowest
minimum has −40.718 MeV and oblate shape, and the second
one has −39.956 MeV and prolate shape. It is interesting that
the results of our new method present the same picture as
that observed in the left panel of Fig. 5, where the lowest
|κ1, 0〉 is oblate with S1 = Eexp(0, sa, εa) = −42.405 MeV
and |κ2, 0〉 is prolate with S2 − S1 = −41.549 MeV. However,
both energies are about 1.6 MeV lower than those obtained

(a) (b)

FIG. 5. (Color online) Si − Si−1 values of |κi, 0〉 for (a) Iπ = 0+

and (b) Iπ = 0− in 68Se as a function of ε2. ε4 are included in the
calculation.

by an HF procedure, because of the angular momentum
projection.

For the 0− basis, the lowest |κ, 0〉 SD lies at −36.44 MeV,
which is relatively high (see Fig. 5), and has a prolate shape.
The corresponding configuration is the same as that of the
second HF minimum, except that one particle was excited
from the 	 = 3/2(p3/2) orbital to the 	 = 3/2(g9/2) orbital.
Because 68Se has N = Z, this excited particle can be either a
neutron or a proton, and therefore there are two different |κ, 0〉
SDs with the same shape and the same low energy. Similar
cases appear for other |κ, 0〉 SDs. Therefore, in Fig. 5(b), each
symbol corresponds to two different |κ, 0〉 SDs. The position
of the second lowest symbol is only about 130 keV above
the lowest one, and its configuration is similar to the lowest
one, but with the odd particle excited from the 	 = 1/2(p3/2)
orbital to the 	 = 1/2(g9/2) orbital.

Using the |κ, 0〉 states described in Fig. 5, we calculated
the PCI energies for the 0+ and 0− states, which turned out to
be very close to the CI results. For I �= 0, similar good results
were also achieved, as shown in Fig. 7.

CHF for 68Se(MeV)

20 0 20
q2

0

5
10

15
20

q3
40

35

30

25

FIG. 6. (Color online) Energy surface provided by constrained

Hartree-Fock (CHF) calculations as a function of q2 =
√

16π

5 ( r
b

)2Y20

and q3 = ( r

b
)3Y30. (b is the harmonic oscillator length).
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(a) (b)

FIG. 7. (Color online) Lowest three energies at each spin-parity
for 68Se calculated using PCI and full CI.

As indicated in the above discussions, the PCI method not
only provides a good approximation for the CI results, but
it is also a convenient tool for gaining some insight into the
physics of the nuclear states. One interesting example is the
lowest state in Fig. 7(b), which is a 3− state. As shown in Fig. 8,
the (lowest) |κ1, 0〉 SD has Kπ = 3− and oblate deformation.
The configuration of this |κ1, 0〉 is the same as the oblate
HF minimum, except that one particle was excited from the
	 = 3/2(p3/2) orbital to the 	 = 9/2(g9/2) orbital to form a
Kπ = 3− SD. The second SD, |κ2, 0〉, has the same energy and
the same shape as |κ1, 0〉 because N = Z and due to the isospin
symmetry of the adopted Hamiltonian. If only the particle-hole
excitations built on |κ1, 0〉 are included, one obtains a PCI
energy of −40.469 MeV. If the |κ2, 0〉 SD is further included,
the PCI energy drops 300 keV to −40.769 MeV. This energy
is only 300 keV above the exact value of −41.043 MeV.
However, the PCI energy for n = 20 is −40.843 MeV, only
70 keV lower than what one can obtain with n = 2. Therefore,
it is clear that the lowest 3− state has mostly contributions from
the lowest two oblate Kπ = 3− SDs, i.e., |κ1, 0〉 and |κ2, 0〉.

(a) (b)

FIG. 8. (Color online) (a) Si − Si−1 values of |κ, 0〉 at Iπ = 3− in
68Se. (b) PCI energies and CI energies at Iπ = 3− in 68Se. The open
symbols from left to right refer to PCI calculations with n = 1, 2,
and 20.

(a) (b)

FIG. 9. (Color online) Same as Fig. 7, but for 70Se.

We have also calculated states of both parities in 70Se.
The results are shown in Fig. 9. Once again, the PCI results
are very close to those of full CI for both positive parity and
negative parity for a wide range of spin values. However, much
smaller dimensions of the PCI matrices are necessary. The PCI
dimensions corresponding to the Iπ calculations in Fig. 9 are
compared in Table I with the full coupled-I CI dimensions . The
PCI dimensions are small fractions, roughly 10−4, of the full
CI dimensions. As is well known, the most serious problem
with the full CI method is the explosion of the dimensions
as the number of the single-particle valence states and/or the
number of valence nucleons increase. However, this problem
seems to be less of an issue for the PCI method. The total PCI
dimension can be estimated as the product of two numbers,
n × m, where n is the number of |κ, 0〉 states and m is the
number of particle-hole excitations selected by Ecut in Eq. (9).
Our investigations indicate that n is related to how many low-
lying states of a given spin one wants to accurately describe.
For instance, if we are interested in only the yrast state, quite
often a good approximation can be obtained with n = 1 or 2.
n = 20 seems to be enough to describe the lowest three to
five states of each Iπ in the present calculations. As regarding
m, the |κ, j 〉 SDs are limited to 1p-1h and 2p-2h excitations
according to Eq. (9). Note that |κ, j 〉 has the same Kπ as that of
|κ, 0〉. As the parameter Ecut is enforced via Eq. (9), m can be
significantly reduced. For instance, in the case of Iπ = 0+ for

TABLE I. PCI Dimensions compared with those of
full CI for 70Se.

Spin π = + π = −
(I )

PCI CI PCI CI

0 3665 6.7 × 106 4497 6.7 × 106

1 4735 2.0 × 107 4431 2.0 × 107

2 4369 3.2 × 107 4284 3.2 × 107

3 4799 4.2 × 107 4778 4.2 × 107

4 4384 5.0 × 107 4476 5.0 × 107

5 4714 5.5 × 107 4284 5.5 × 107

6 4246 5.8 × 107 4636 5.8 × 107

7 4505 5.9 × 107 4159 5.9 × 107

8 4125 5.7 × 107 4056 5.7 × 107
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FIG. 10. (Color online) Lowest 3 0+ energies of 76Ge and 76Se
calculated by PCI (filled symbols) and full CI (open circles).

70Se, m2p2h = 801 for |κ1, 0〉, but only 138 SDs were finally
included if Ecut = 1 keV.

The exploding CI dimensions have as a consequence a
rapid increase of the computing time necessary for full CI
calculation. Using the modern coupled-I code NUSHELLX [4],
the full CI calculation of all states in Fig. 9 could take almost
one year when only one processor is used. The calculation
of the lowest three states of each Iπ in 70Se would take in
average of about 20 days. For the same calculation, PCI takes
around 5 hr for each Iπ . The main computational workload
in PCI is related to the calculation of the dense matrices H

and N in Eq. (6). It should be mentioned that extra time is
needed to to search for the optimized set of |κ, 0〉 SDs. The
computing time can be affected by (1) the number of mesh
points used for the shape parameters, (2) the values of the
parameters Eexpup and Epjup(Iπ ) that decide how many SDs are
considered in the optimization process, (3) the total number n

of |κ, 0〉 basis states selected. For example, in the calculation of
Iπ = 0+ in 70Se, both ε2 and ε4 run from −0.3 to 0.3 in steps
of 0.02, Eexpup = 7 MeV, Epjup(Iπ = 0+) = 5 MeV. Under
these conditions, it will takes about 10 hr to obtain 20 |κ, 0〉
SDs using one processor. For other Iπ , the computational time
ranges from a few hours to 1 or 2 days. However, the total time
for a PCI calculation is at least 10 times shorter than that of
the corresponding full CI calculation for the case of 70Se.

Finally, we used the new PCI method to calculate the low-
lying 0+ states in 76Ge and 76Se. The nuclear structure of these
two nuclei is relevant for the double β decay (DBD) process
of 76Ge. DBD is one of the most actively investigated nuclear
physics problem, which may reveal new physics beyond the
standard model, including the absolute values of the neutrino
masses. Full CI calculations [24–26] of the two-neutrino and
neutrinoless DBD matrix elements have been carried out for
some DBD nuclei up to 136Xe. However, for heavier DBD
nuclei 150Nd and 238U, the huge CI dimensions make the full
CI calculation unmanageable. PCI can take full advantage of
the deformation, and an efficient truncation could be obtained
for well-deformed nuclei, such as 150Nd and 238U. As a first
inroad into this problem, the low-lying 0+ states 76Ge and
76Se are calculated using the present version of the PCI and

are compared with full CI results in Fig. 10. Using only 6
|κ, 0〉 SDs (n = 6) for each nucleus, the PCI dimensions are
561 and 647 for 76Ge and 76Se, respectively. The calculated
PCI energy of the lowest 0+ state for 76Se is 200 keV higher
than the exact value, and only 86 keV higher for 76Ge. In
addition, good approximations for the excited 0+ states have
also been reached. Given these encouraging results, one would
hope that PCI calculations could be successfully performed for
the heavy deformed DBD nuclei, such as 150Nd and 238U, in
the not so distant future.

VI. CONCLUSIONS AND OUTLOOK

In this article, we propose a newly improved algorithm
of selecting the basis of Slater determinants that can be used
with the projected configuration interaction method introduced
in Ref. [18]. The new algorithm depends on a number of
parameters that can be used to fine-tune its efficiency. Its main
advantages over the original method of selecting the basis are
summarized at the end of Sec. III.

We used the new algorithm to revisit the calculation of
56Ni, a quasispherical nucleus that has a relatively low-lying
rotational band. We were able to calculate its low-lying states
very efficiently and with good accuracy, while also gaining
insight into the physics of these states. We have also used
the new method to analyze some Se and Ge isotopes in the
f 5pg9 valence space. Both natural and unnatural parities
can be accurately described for these nuclei, even for cases
with pronounced competing deformations, such as 70Se and
70Se. The PCI dimensions are significantly lower than the
corresponding CI dimensions, as well as the corresponding
computational effort. In addition, in most cases, the low-lying
projected basis states can provide some physical insight into
the structure of the low-lying states. Finally, we calculated
with the new method the low-lying 0+ states in 76Ge and 76Se
that are relevant for the double β decay of 76Ge. The hope is
that this method could be used some day to study the double
β decay of the strongly deformed 150Nd and 238U.

Further improvements to the PCI method will include the
extension of the formalism developed in Ref. [18] to calculate
electromagnetic transition probabilities. The new method uses
different bases for different spins, which introduces additional
complications. Other observables, such as spectroscopic am-
plitudes and DBD matrix elements, have to be worked out.
Further improvement of the basis may be achieved for some
cases that exhibit significant octupole deformation, which will
require full projection on good parity.
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