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Light nuclei of even mass number in the Skyrme model
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We consider the semiclassical rigid-body quantization of Skyrmion solutions of mass numbers B = 4, 6, 8, 10,
and 12. We determine the allowed quantum states for each Skyrmion and find that they often match the observed
states of nuclei. The spin and isospin inertia tensors of these Skyrmions are accurately calculated for the first
time and are used to determine the excitation energies of the quantum states. We calculate the energy level
splittings, using a suitably chosen parameter set for each mass number. We find good qualitative and encouraging
quantitative agreement with experiment. In particular, the rotational bands of beryllium-8 and carbon-12, along
with isospin 1 triplets and isospin 2 quintets, are especially well reproduced. We also predict the existence of
states that have not yet been observed and make predictions for the unknown quantum numbers of some observed
states.
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I. INTRODUCTION

The SU(2) Skyrme model provides a geometrical picture of
nuclear physics in which nuclei are identified with the topolog-
ical soliton solutions of the model, known as Skyrmions [1].
The model has several advantages over conventional nuclear
models. First, single Skyrmions, which are identified with
nucleons, are found to merge to some extent and to lose
their individual identities in the solutions describing larger
nuclei. This captures an important feature of nuclei with
individual nucleons close together and is something that cannot
be achieved in conventional point nucleon models. Second,
the Skyrme Lagrangian is defined in terms of only three
parameters. For each mass number B we fit these parameters
to the mass and size of the nucleus of zero isospin that has mass
number B to obtain predictions with reasonable quantitative
accuracy. This is unlike potential and shell-model calculations
that require many finely tuned parameters.

The model is a pion field theory and is an extension of the
nonlinear σ model. The pion fields π(x) are combined into an
SU(2)-valued scalar field, the Skyrme field

U (x) = σ (x)12 + iπ (x) · τ , (1)

where τ denotes the triplet of Pauli matrices and σ 2 + π · π =
1. The Lagrangian density is [2]

L = F 2
π

16
Tr ∂µU∂µU † + 1

32e2
Tr [∂µUU †, ∂νUU †]

× [∂µUU †, ∂νUU †] + 1

8
m2

πF 2
π Tr (U − 12) , (2)

where Fπ is the pion decay constant, e is a dimensionless
parameter, and mπ is the pion mass. Using energy and
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length units of Fπ/4e and 2/eFπ , respectively, the Skyrme
Lagrangian can be rewritten as

L =
∫ {

−1

2
Tr (RµRµ) + 1

16
Tr ([Rµ,Rν][Rµ,Rν])

+m2 Tr (U − 12)

}
d3x, (3)

where Rµ = ∂µUU † and the dimensionless pion mass m =
2mπ/eFπ . As usual, the Lagrangian splits into kinetic and
potential parts as L = T − V , with T quadratic in the time
derivative of the Skyrme field. The potential energy V is given
by

V =
∫ {

−1

2
Tr (RiRi) − 1

16
Tr ([Ri, Rj ][Ri, Rj ])

−m2Tr(U − 12)

}
d3x. (4)

The Skyrmions are minima of the potential energy and are
static. They are labeled by their topological charge, B, the
degree of the map U : R

3 → SU(2), which is well-defined
provided U → 12 at spatial infinity and is given by the
integral

B =
∫

B0(x)d3x, (5)

where

Bµ(x) = 1

24π2
εµναβ Tr

(
∂νUU †∂αUU †∂βUU †) . (6)

We denote the minimized potential energy by MB . One
interprets a charge B Skyrmion, after quantization, as a nucleus
of mass number B. In this picture, nucleons and nuclei arise
purely from the pion field and no explicit nucleonic sources
are needed.

It is necessary to semiclassically quantize the Skyrmions
as rigid bodies. The Skyrme Lagrangian is invariant under

0556-2813/2009/80(3)/034323(16) 034323-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.034323
mailto:Richard.Battye@manchester.ac.uk
mailto:N.S.Manton@damtp.cam.ac.uk
mailto:P.M.Sutcliffe@durham.ac.uk
mailto:S.W.Wood@damtp.cam.ac.uk


BATTYE, MANTON, SUTCLIFFE, AND WOOD PHYSICAL REVIEW C 80, 034323 (2009)

rotations in space. It is also invariant under the transformations
U → AUA†, where A ∈ SU(2). This is isospin symmetry. The
rotational and isorotational degrees of freedom are treated as
collective coordinates and the Skyrmions are quantized in their
rest frame by canonical methods. In this way the Skyrmions
acquire spin and isospin. An advantage of this model over
other nuclear models that involve collective rotational motion
is that it incorporates isospin excitations. In the Skyrme
model, the vacuum solution U = 12 is isospin invariant,
but for each classical Skyrmion solution, isospin symmetry
as well as rotational symmetry is spontaneously broken.
These symmetries are restored by the collective coordinate
quantization.

The kinetic energy of a rigidly rotating Skyrmion
(ignoring the rather trivial translational motion) is of
the form

T = 1
2aiUij aj − aiWijbj + 1

2biVij bj , (7)

where bi and ai are the angular velocities in space and isospace,
respectively, and Uij , Vij , and Wij are inertia tensors [3,4]. The
momenta conjugate to bi and ai are the body-fixed spin and
isospin operators Li and Ki . The quantum Hamiltonian H is
obtained by re-expressing T in terms of these operators. The
space-fixed spin and isospin operators are denoted Ji and Ii ,
respectively. Note that J2 = L2 and I2 = K2.

Finkelstein and Rubinstein showed that it is possible to
quantize a B = 1 Skyrmion as a fermion and showed that for
even (odd) B the spin and isospin are integers (half-integers)
[5]. Discrete symmetries of the classical Skyrmion solutions1

give rise to further Finkelstein–Rubinstein (FR) constraints on
the space of quantum states |�〉. These constraints are of the
form

eiθ2n2·Leiθ1n1·K|�〉 = χFR|�〉, (8)

where n1, n2 and θ1, θ2 are, respectively, the axes and angles
defining the rotations in isospace and space associated with a
particular symmetry, and χFR = ±1. The FR signs, χFR, define
a one-dimensional representation of the symmetry group of
the Skyrmion. Krusch has found a convenient way to calculate
them [6], and we use this method here. A basis for the wave
functions |�〉 is given by the products |J,L3〉 ⊗ |I,K3〉, the
tensor products of states for a rigid body in space, and a
rigid body in isospace. J and I are the total spin and isospin
quantum numbers and L3 and K3 the projections on to the
third body-fixed axes, and the space projection labels (which
are the physical third components of spin and isospin) are
suppressed. The FR constraints allow only a subset of these
products as physical states. A parity operator is introduced
by considering a Skyrmion’s reflection symmetries. Quantum
states are therefore labeled by the usual quantum numbers:
spin-parity Jπ and isospin I .

The inclusion of the third term in the Lagrangian density,
which involves the pion mass, has a significant effect on the

1Only the B = 1 and B = 2 Skyrmions possess continuous sym-
metries.

shapes and symmetries of the classical Skyrmion solutions.
This effect is more marked for larger values of B. For zero
pion mass, the Skyrmions with B up to 22 and beyond resemble
hollow polyhedra, with their baryon density concentrated in
a shell of roughly constant thickness, surrounding a region
in which the baryon density is very small [7]. This disagrees
with the approximately uniform baryon density observed in
the interior of real nuclei. Fortunately, it has been established
that the hollow polyhedral solutions for B � 8 do not remain
stable when the pion mass is set at a physically reasonable
value, with m ≈ 1 [8]. This is because in the interior of the
hollow polyhedra the Skyrme field is very close to U = −12,
and here the pion mass term gives the field a maximal potential
energy and hence instability. This instability results in the
interior region splitting into separate smaller subregions. The
stable Skyrmion solutions are found to exhibit clustering: small
Skyrmion solutions, such as the cubically symmetric B = 4
solution, appear as substructures within larger solutions [9].
This is a very encouraging development as it has been believed
for some time that α particles exist as stable substructures
inside heavier nuclei. The most remarkable success of the
α-particle model is in its prediction for the binding energies
of nuclei that can be formed out of an integral number of
α particles.

In earlier work, the B = 4, 6, and 8 Skyrmions have
been quantized [4,10], using some approximations to the
Skyrmion solutions based on the rational map ansatz [11].
The inertia tensors used had the right symmetries but not
the correct numerical values. In this article we consider
the B = 4, 6, 8, 10, and 12 Skyrmions, using a consistent
numerical scheme to recalculate all these solutions. Each of
these Skyrmions can be viewed as being built up from B = 4
cubes (it is possible to regard the B = 6 Skyrmion as being
made up of a B = 4 cube and a B = 2 torus, and the B = 10
solution as consisting of two B = 4 cubes together with two
B = 1 Skyrmions). We numerically relax field configurations
to the stable Skyrmions, for various values of the dimensionless
pion mass m, and then compute their static energies MB ,
charge radii 〈r2〉1/2, and inertia tensors. Appendix A tabulates
the calculated numerical values for m = 0.5, 1, and 1.5 and
Appendix B describes the quadratic interpolation method used
to estimate these quantities for any given m. In the next section
we describe our method of choosing m and of calibrating
the model to ensure that it provides quantitatively accurate
predictions of nuclear properties.

For each Skyrmion we determine all the FR-allowed
quantum states and their excitation energies, working up to
spin and isospin values just beyond the edge of what is
experimentally accessible. Our rigid-body quantization leads
to an infinite tower of quantum states (the B = 1 Skyrmion,
for example, has quantum states for all half-integer values
of spin). However, in practice we expect a Skyrmion to
deform as it spins (this is known to occur for the B = 1
Skyrmion [12]), and this disallows many higher-spin states.
We are therefore not concerned that in some cases we
predict higher-spin states that are not experimentally observed.
It is also possible that a Skyrmion might break up as
it spins, a phenomenon that is known to occur for real
nuclei.
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TABLE I. Experimental data and calibration for each B.

B Nucleus Mean charge Mass m Length Classical Quantum
radius (fm) (MeV) scale energy scale energy scale

2/eFπ (fm) Fπ/4e (MeV) e3Fπ (MeV)

4 4He 1.71 3727 0.820 1.173 6.169 4588
6 6Li 2.55 5601 1.153 1.648 5.752 2492
8 8Be 2.51 7455 0.832 1.190 6.336 4339

10 10B 2.58 9324 0.830 1.187 6.348 4354
12 12C 2.46 11175 0.685 0.980 6.525 6216

II. CALIBRATION

The model was first calibrated by Adkins, Nappi, and
Witten, by fitting the model in the B = 1 sector to the masses
of the proton and � resonance [13,14]. In a recent article a
new calibration was obtained by equating the mass and size
of the quantized B = 6 Skyrmion to the mass and size of the
lithium-6 nucleus [10]. However this was performed using the
approximate Skyrmion found using the rational map ansatz.
Evidently, there are many possible ways in which the model
may be calibrated.

The three parameters of the model are the pion decay
constant Fπ (experimentally 186 MeV), the pion mass mπ (ex-
perimentally 138 MeV), and the dimensionless parameter e.
Strictly speaking, one may argue that we are only free to set
e, as the other constants are fixed by experiment. However,
we consider it permissible to vary Fπ , as we consider it to
be a renormalized pion decay constant. We also allow e to
vary with mass number, e = e(B), to get better agreement
with experiment. The length and classical energy scales are
2/eFπ and Fπ/4e, respectively. For the “nuclear” variant of
the model the value of e is less than its value for the B = 1 case
(4.84 [14]). This effectively takes into account nonzero mode
motion of Skyrmions that leads to an increase in the sizes
of the classical configurations. We recall that the quantum
Hamiltonian for a rigidly rotating body is equal to the squared
angular momentum operator divided by twice the moment of
inertia of the body [15]. The moment of inertia has units equal
to the mass scale multiplied by the square of the length scale:
(Fπ/4e) × (2/eFπ )2 = 1/e3Fπ . The quantum energy scale is
its reciprocal, e3Fπ . The total energy of a quantum state of a
Skyrmion is therefore equal to (Fπ/4e)MB + e3FπEQ, where
EQ is the quantum kinetic energy of the state. The ratio of the
total energy of a quantum state to the classical energy of the
Skyrmion is 1 + 4e4(EQ/MB). The ratios of the quantum
energies of Skyrmion states are therefore sensitive to the value
of e.

The classical Skyrmion solutions match the experimental
pion tails of nuclei if we use the physical value of mπ of
138 MeV. For this reason, we keep mπ fixed at this value. For
each B, we choose m (and therefore fix the length scale, as
m = 2mπ/eFπ ) such that the calculated mean charge radius
agrees with that of the nucleus with zero isospin with this value
of B. Within the Skyrme model, the mean charge radius of a

nucleus with zero isospin is estimated to be the square root of

〈r2〉 =
∫

r2 B0(x)d3x∫
B0(x)d3x

, (9)

because the electric charge density is half the baryon density
[10]. Having fixed the length scales, we then set the classical
energy scales such that the sum of the static Skyrmion masses
and spin contributions agree with the nuclear masses. A more
refined analysis would take into account loop corrections and
Casimir energy contributions to the static Skyrmion masses.
These contributions have been estimated for the B = 1 case
[16] but not for higher baryon numbers. It is found that in each
case m takes a value between 0.6 and 1.2. The experimental
data, the values of m used, and the length and energy scales
are listed in Table I.2 Table II lists the corresponding Skyrme
parameters.

A larger length scale, for example in the case of B = 6,
takes into account loose vibrational motion and leads to larger
moments of inertia, which is desirable. The small length scale
for B = 12 takes into account the compact size of the carbon-
12 nucleus. Another reason to use separate parameter sets
for each B comes from comparing the rotational bands of
beryllium-8 and carbon-12. These nuclei have 0+ ground states
and 2+ and 4+ excited states, at 3.0 and 11.4 MeV, respectively,
for beryllium-8 and at 4.4 and 14.4 MeV, respectively, for
carbon-12. Naively, one might expect carbon-12 to be larger
and heavier than beryllium-8 (in dimensionless units, the B =
12 Skyrmion is larger in size and has a larger classical mass

2The mean charge radius of beryllium-8 has not been measured due
to its instability. Here we use the value for its isobar, lithium-8.

TABLE II. Optimized Skyrme parameters for
each B.

B e Fπ (MeV)

4 3.80 91.1
6 4.35 74.2
8 3.88 91.7

10 3.88 91.9
12 3.58 102.5
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than the B = 8 Skyrmion) and for it therefore to have a larger
moment of inertia. As the moment of inertia appears in the
denominator of the quantum Hamiltonian, this would lead to
carbon-12 having a smaller rotational band splitting than that
of beryllium-8, which is not the case. Evidently, the only way
to deal with this problem in our model is to use a different
parameter set for each. Experimentally, the mean charge radii
of the nuclei we are considering are approximately constant
for 6 � B � 12, whereas the dimensionless Skyrmion mean
charge radius increases with B. The optimized parameter sets
allow us to keep the nuclear mean charge radii approximately
constant.

III. B = 4

The minimal-energy B = 4 Skyrmion has octahedral sym-
metry and a cubic shape. A surface of constant baryon density
is presented in Fig. 1. The color scheme represents the direction
in isospace of the associated pion fields. For regions in space
where at least one of the pion fields does not vanish, the
normalized pion field π̂ can be defined and takes values in
the unit sphere. We color this sphere by making a region close
to the north pole white and a region close to the south pole
black. On an equatorial band, where π̂3 is small, we divide the
sphere into three segments and color these red, blue, and green.
In Fig. 1, opposite faces share the same color and vertices
alternate between black and white.

For a derivation of the Skyrmion’s quantum states we
refer the reader to Ref. [4], and here we only state the main
results. For an earlier discussion, see Ref. [17]. The rotational
symmetry group of the Skyrmion, Oh, is one of the largest point
symmetry groups. This leads to particularly restrictive FR
constraints on the space of allowed states. The Oh symmetry
implies that the inertia tensors are diagonal with U11 = U22

and U33 different, Vij proportional to the identity matrix, and
Wij = 0. The quantum collective coordinate Hamiltonian is
therefore the sum of a spherical top in space and a symmetric
top in isospace,

H = 1

2V33
J2 + 1

2U11
I2 +

(
1

2U33
− 1

2U11

)
K2

3 . (10)

The inertia tensors are given in Appendix A1. The lowest
state is a 0+ state with isospin 0, which has the quantum

FIG. 1. (Color online) A surface of constant baryon density for
the B = 4 Skyrmion. Different colors indicate different directions of
the pion fields.

TABLE III. Energy levels of the quantized
B = 4 Skyrmion.

I J π E (×10−4) E (MeV)

0 0+ 0.0 0.0
4+ 129.7 59.5

1 2− 94.1 43.2

numbers of the α-particle in its ground state. The first excited
state with isospin 0 is a 4+ state, which has not been
experimentally observed, because of its high energy. The
lowest state with isospin 1 is a 2− state, which matches the
observed isotriplet, including the hydrogen-4 and lithium-4
ground states. The energy levels are given in Table III. Only
the quantized kinetic contributions to the total energies are
listed; the static Skyrmion mass must be added to give the
total energy. For example, the ground state has zero kinetic
energy and therefore its total energy is precisely 3727 MeV, as
given in Table I. The 4+ state has additional kinetic energy of
10/V33 = 129.7 × 10−4 in dimensionless units. In the final
column of Table III we list the values in physical units,
using the B = 4 conversion factor e3Fπ = 4588 MeV given
in Table I. We overpredict the excitation energy of the 2−
isotriplet as 43.2 MeV compared with an average experimental
value of 23.7 MeV [18].

In summary, the ground state of helium-4 and the isotriplet
of 2− states arise as quantum states of the B = 4 Skyrmion.
The cubic shape of the Skyrmion may become deformed as it
spins. It may be for this reason that the 4+ state is not observed
experimentally.

IV. B = 6

The B = 6 Skyrmion has D4d symmetry (see Fig. 2). We
refer the reader to Ref. [4] for a discussion of its quantization.
The quantum Hamiltonian is that of a system of coupled
symmetric tops:

H = 1

2V11
J2 + 1

2U11
I2 +

(
U33

2�33
− 1

2V11

)
L2

3

+
(

V33

2�33
− 1

2U11

)
K2

3 + W33

�33
L3K3 , (11)

FIG. 2. (Color online) A surface of constant baryon density for
the B = 6 Skyrmion (two viewpoints).
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TABLE IV. Energy levels of the quantized B = 6 Skyrmion.

I J π Quantum state E (×10−4) E (MeV)

0 1+ |1, 0〉 ⊗ |0, 0〉 6.5 1.6
3+ |3, 0〉 ⊗ |0, 0〉 38.9 9.7
4− (|4, 4〉 − |4, −4〉) ⊗ |0, 0〉 73.5 18.3
5+ |5, 0〉 ⊗ |0, 0〉 97.3 24.2
5− (|5, 4〉 + |5, −4〉) ⊗ |0, 0〉 105.9 26.4

1 0+ |0, 0〉 ⊗ |1, 0〉 47.4 11.8
2+ |2, 2〉 ⊗ |1, 1〉 + |2, −2〉 ⊗ |1, −1〉 62.6 15.6

|2, 0〉 ⊗ |1, 0〉 66.8 16.7
2− |2, 2〉 ⊗ |1, −1〉 + |2, −2〉 ⊗ |1, 1〉 73.1 18.2
3+ |3, 2〉 ⊗ |1, 1〉 − |3, −2〉 ⊗ |1, −1〉 82.0 20.4
3− |3, 2〉 ⊗ |1, −1〉 − |3, −2〉 ⊗ |1, 1〉 92.5 23.1
4+ |4, 2〉 ⊗ |1, 1〉 + |4, −2〉 ⊗ |1, −1〉 108.0 26.9

|4, 0〉 ⊗ |1, 0〉 112.2 28.0
4− |4, 2〉 ⊗ |1, −1〉 + |4, −2〉 ⊗ |1, 1〉 118.5 29.5

(|4, 4〉 + |4, −4〉) ⊗ |1, 0〉 120.9 30.1

2 0− |0, 0〉 ⊗ (|2, 2〉 − |2, −2〉) 137.4 34.2
1+ |1, 0〉 ⊗ |2, 0〉 148.6 37.0
1− |1, 0〉 ⊗ (|2, 2〉 + |2, −2〉) 143.9 35.9
2+ |2, 2〉 ⊗ |2, 1〉 − |2, −2〉 ⊗ |2, −1〉 157.3 39.2
2− |2, 0〉 ⊗ (|2, 2〉 − |2, −2〉) 156.9 39.1

|2, 2〉 ⊗ |2, −1〉 − |2, −2〉 ⊗ |2, 1〉 167.8 41.8

where �33 = U33V33 − W 2
33. Its allowed quantum states are

listed in Table IV, together with their energy levels computed
using the inertia tensors in Appendix A2.

The Skyrme model qualitatively reproduces the experimen-
tal spectrum of lithium-6 and its isobars and predicts some
further states, including Jπ = 4−, 5+, and 5− excited states
of lithium-6 with isospin 0. The ground state of lithium-6 is

correctly predicted to be a 1+ state (Fig. 3). We also find
a 3+ excited state, which is seen experimentally. However,
we overpredict its excitation energy by roughly a factor of 5.
The model does not account for centrifugal stretching nor
the allowed decay of the 3+ state to an α-particle plus a
deuteron, which may be the reason for our overprediction. The
lowest allowed state with isospin 1 is a 0+ state, which is seen

Lithium−6

Hydrogen−6

5.9MeV

4.1MeV
3.6MeV

3.1MeV

5.4MeV
4.8MeV

2.2MeV

18.0MeV

24.8MeV

24.9MeV

30.1MeV

26.1MeV

Helium−6
Beryllium−6

9.7MeV

29.1MeV28.2MeV

18.7MeV

I=2

−J=(1 ,2 )−

+ −J=(2 , 1 , 0 ) +

J=2 ,I=1+

J=0 ,I=1+

J=1 ,I=0+

J=3 ,I=0+

J=0 ,I=1+

J=2 ,I=1+

J=2 ,I=1−

J=3 ,I=1−

J=4 ,I=1−

J=0 ,I=1+

J=(2) ,I=1+

J=4−

J=2−

J=3−

FIG. 3. (Color online) Energy
level diagram for nuclei of mass
number 6. Mass splittings between
nuclei are adjusted to eliminate the
proton/neutron mass difference and
remove Coulomb effects, as described
in Ref. [19].
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experimentally as an isotriplet that includes the helium-6 and
beryllium-6 ground states. An excited 2+ state of this isotriplet
exists, which we also find within our model. However, again we
overpredict its excitation energy. We predict an additional 2+
state with isospin 1. The lowest allowed negative-parity state
with isospin 1 is predicted to be a 2− state with excitation
energy 18.2 MeV. We therefore suggest that the observed
9.7 MeV state of helium-6 is our second 2+ state. Lithium-6
has a 2− state with isospin 1 at 18.0 MeV. We predict that the
18.7 MeV state of helium-6 has Jπ = 2− and is one of its
isotriplet partners. A 2− state of beryllium-6 is observed at
29.1 MeV. Perhaps this state completes the isotriplet, but
its high energy makes this unclear. States of lithium-6 and
beryllium-6 with Jπ = 3− and 4− and with isospin 1 have
been experimentally observed. We predict these states with
roughly the correct excitation energies. We also predict the
existence of 3+ and 4+ states with isospin 1, which have not
been seen experimentally. The ground state of hydrogen-6
has isospin 2, at 28.2 MeV above the lithium-6 ground state,
and an undetermined spin. The Skyrme model gives the
lowest allowed state with isospin 2 as a 0− state, and its
excitation energy is 34.2 MeV. Higher spin excited isospin 2
states are also allowed in the model, but they have not been
experimentally observed.

In summary, the quantum numbers of the low-lying states
of the B = 6 Skyrmion agree with those of the nuclei of
mass number 6, although we overpredict their excitation
energies. Our calculated values for the excitation energies of
the isospin 1 states are, however, quantitatively good. We have
also made predictions for the spins of two excited states of
helium-6 and predict that the hydrogen-6 ground state is a
0− state.

V. B = 8

When m = 1, the stable B = 8 Skyrmion is D4h-symmetric
and resembles two touching B = 4 cubes, matching the
α-particle model picture of beryllium-8 as an almost bound
configuration of two α particles. A surface of constant baryon
density is displayed in Fig. 4. In Ref. [4] we approximated the
B = 8 Skyrmion as a “double cube” of two B = 4 Skyrmions
and made estimates for its inertia tensors, enabling us to
estimate its energy levels. We refer the reader to this article for
a discussion of its quantization. The quantum Hamiltonian is
the sum of a symmetric top in space and an asymmetric top in

FIG. 4. (Color online) A surface of constant baryon density for
the B = 8 Skyrmion, resembling two B = 4 cubes.

TABLE V. Energy levels of the quantized B = 8 Skyrmion. n is
the number of FR-allowed states with given I and J π .

I J π n E (×10−4) E (MeV)

0 0+ 1 0.0 0.0
2+ 1 7.0 3.0
4+ 2 23.4, 56.1 10.2, 24.3

1 0− 1 30.0 13.0
2+ 1 44.6 19.3
2− 2 37.1, 46.3 16.1, 20.1
3+ 1 51.6 22.4
3− 1 53.3 23.1
4+ 1 61.0 26.5
4− 3 53.5, 62.7, 86.2 23.2, 27.2, 37.4

2 0+ 2 87.6, 93.5 38.0, 40.6
0− 1 90.9 39.5
2+ 3 94.6, 100.5, 108.1 41.0, 43.6, 46.9
2− 2 98.0, 103.0 42.5, 44.7

isospace:

H = 1

2V11
J2 +

(
1

2V33
− 1

2V11

)
L2

3 + 1

2U11
K2

1

+ 1

2U22
K2

2 + 1

2U33
K2

3 . (12)

The exact inertia tensors are given in Appendix A3. As
anticipated on symmetry grounds, the inertia tensor Uij has
three distinct eigenvalues (the earlier double cube estimate
made two of them equal). The energy levels calculated using
the exact inertia tensors are listed in Table V.

Figure 5 is an energy level diagram for nuclei of mass
number 8. The Skyrme model predictions for positive-parity
states agree well with experiment. The ground state of
beryllium-8 is correctly determined to be a 0+ state. The
rotational band of beryllium-8 is remarkably well reproduced
in our model: we predict the 2+ and 4+ states at 3.0 and
10.2 MeV, respectively, which is very close to the experimental
values of 3.0 and 11.4 MeV, respectively. We predict a
second 4+ state with isospin 0 at 24.3 MeV. Experimentally,
beryllium-8 has two further 4+ states with isospin 0 (at 19.9
and 25.5 MeV).

The model predicts that the lowest allowed state with
isospin 1 has Jπ = 0−. However, the ground states of lithium-8
and boron-8 are believed to have Jπ = 2+. Perhaps the 0−
isotriplet may be seen experimentally in the future, for it is
known that low-lying spin 0, negative-parity states are difficult
to observe, as experienced in the search for the bottomonium
and charmonium ground state mesons ηb and ηc [21,22].
Our estimate for the excitation energy of the 2+ isotriplet
is 19.3 MeV, which experimentally has an average excitation
energy of 16.7 MeV. In addition, we predict a 3+ isotriplet
at 22.4 MeV, to be compared to the experimental value of
19.0 MeV. The model forbids spin 1 states with isospin 1.
However, several 1+ states with isospin 1 have been observed
in the spectrum of lithium-8. Perhaps these may arise as
quantum states of an alternative B = 8 Skyrmion, or from the
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FIG. 5. (Color online) Energy level diagram for nuclei of mass number 8. Mass splittings between nuclei are adjusted to eliminate the
proton/neutron mass difference and remove Coulomb effects, as described in Ref. [20].

quantization of further degrees of freedom, such as vibrational
modes. We predict two 2− states with isospin 1 at 16.1 and
20.1 MeV. A state with these quantum numbers has been seen
in the spectrum of boron-8 at 19.9 MeV. We predict a 4+ state
with isospin 1 at 26.5 MeV, which is seen in the spectrum of
lithium-8 at 23.5 MeV, although its beryllium-8 and boron-8
partners are not yet confirmed. Beryllium-8 has a 4− state at
20.9 MeV, which we identify with our 4− state with isospin 1
at 23.2 MeV.

We find that the lowest state with isospin 2 has Jπ = 0+.
Experimentally this forms an isospin 2 quintet that includes
the ground states of helium-8 and carbon-8. We calculate its
excitation energy to be 38.0 MeV, to be compared to the
experimental value of 27.3 MeV. A 2+ state of helium-8 has
been observed at approximately 31.1 MeV, which we predict
at 41.0 MeV.

In summary, the spectrum of beryllium-8 is very well
reproduced in our model, in particular its isospin 0 rotational
band. So too are the experimentally observed isospin 1 triplets
and the isospin 2 quintet. Predicted 0− states with isospin 1
have not been seen in the spectra of nuclei of mass number 8;
however, as we mentioned they may be difficult to observe.
We have been unable to explain the appearance of 1+ states of
lithium-8 and boron-8. We are led to consider refinements of
our model and its quantization to address this.

VI. B = 10

In Ref. [8] the minimal-energy solution for B = 10 was
found to have D2h symmetry. This Skyrmion can be thought of
within the context of the α-particle model as a pair of B = 4
cubes with two B = 1 Skyrmions between, as illustrated in
Fig. 6.

Here, we quantize this Skyrmion for the first time. We use
the rational map ansatz to determine its FR constraints. For an
overview of the ansatz, which provides close approximations
to the exact Skyrmion solutions, see Ref. [11]. While it does
not provide quantitatively exact results, it precisely describes
the symmetry group of many Skyrmions and therefore can

FIG. 6. (Color online) A surface of constant baryon density for
the B = 10 Skyrmion (two viewpoints).
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be used to derive their FR constraints. In the B = 10 case a
suitable rational map is

R(z) = α + βz2 + γ z4 + δz6 + εz8 + z10

1 + εz2 + δz4 + γ z6 + βz8 + αz10
, (13)

with α = 0.28, β = −9.37, γ = 14.83, δ = 4.98, and ε =
3.02. The D2 rotation group is generated by two C2 sym-
metries, which correspond to the following symmetries of the
rational map:

R(−z) = R(z), R(1/z) = 1/R(z). (14)

The associated FR constraints are determined using Krusch’s
method [6] to be

eiπL3 |�〉 = |�〉, eiπL1eiπK1 |�〉 = −|�〉, (15)

so the signs χFR form one of the nontrivial one-dimensional
representations of D2.

Generally, the parity operator in the Skyrme model is
an inversion in space and isospace: P : U (x) → U †(−x). A
rational map is invariant under parity if it satisfies

R(−1/z̄) = −1/R(z). (16)

For a quantized Skyrmion described by such a rational map,
all states would have positive parity. However, as the rational
map (13) satisfies the inversion symmetry

R(−1/z̄) = 1/R(z), (17)

the parity operation in this case is equivalent to a single rotation
in isospace, given by P = eiπK3 . The parity of a quantum state
is its eigenvalue when acted on by this P . Note that we attach
the parity label to the spin quantum number, to form Jπ , as is
conventionally done in nuclear physics, despite the fact that in
the Skyrme model the parity operator generally reduces to a
combination of rotations in space and in isospace.

For the B = 10 Skyrmion, the symmetries imply that the
inertia tensors Uij and Vij are diagonal, and the only nonzero
component of the mixed inertia tensor Wij is W33. The quantum
Hamiltonian is that of a system of coupled asymmetric tops:

H = 1

2V11
L2

1 + 1

2V22
L2

2 + U33

2�33
L2

3 + 1

2U11
K2

1

+ 1

2U22
K2

2 + V33

2�33
K2

3 + W33

�33
L3K3 , (18)

where �33 = U33V33 − W 2
33 as before. In the absence of

symmetry and FR constraints, (2J + 1) × (2I + 1) different
nondegenerate levels would correspond to any given pair of J

and I . Imposing the FR constraints, however, substantially
reduces the number of allowed states. The calculation of
energy levels is similar to the case of a general asymmetric
top, described in Ref. [15]. However, the final term in
Eq. (18) mixes states of the form |J,L3〉 + |J,−L3〉 and
|J,L3〉 − |J,−L3〉 (and similarly for isospin basis states).
In Table VI we list the total number of allowed states, n,
for different combinations of spin and isospin, together with
their energy eigenvalues. The energy levels are calculated by
diagonalizing the Hamiltonian in matrix form, separately for
each combination of Jπ and I . The precise forms of the

TABLE VI. Energy levels of the quantized B = 10 Skyrmion.

I J π n E (×10−4) E (MeV)

0 1+ 1 2.5 1.1
2+ 1 6.6 2.9
3+ 2 12.7, 16.1 5.5, 7.0
4+ 2 21.1, 24.3 9.2, 10.6

1 0+ 1 23.8 10.4
0− 1 24.9 10.9
1− 1 27.5 12.0
2+ 2 30.0, 31.7 13.1, 13.8
2− 3 31.1, 31.6, 32.8 13.5, 13.8, 14.3
3+ 1 37.8 16.5
3− 3 37.7, 38.9, 41.1 16.4, 17.0, 17.9
4+ 3 44.4, 46.1, 51.1 19.3, 20.1, 22.2
4− 5 45.5, 46.2, 47.2, 49.3, 19.8, 20.1, 20.6, 21.5,

52.2 22.7

2 0+ 1 76.0 33.1
0− 1 72.7 31.7
1+ 2 73.9, 78.5 32.2, 34.2
1− 1 74.0 32.2
2+ 4 78.1, 82.2, 82.7, 83.9 34.0, 35.8, 36.0, 36.5
2− 3 78.9, 79.2, 80.6 34.4, 34.5, 35.1
3+ 5 84.2, 87.6, 88.7, 90.1, 36.6, 38.1, 38.6, 39.2,

92.1 40.1
3− 3 85.2, 86.7, 88.6 37.1, 37.8, 38.6

3 0+ 2 142.9, 147.5 62.2, 64.2
0− 2 144.1, 153.2 62.7, 66.7
1+ 1 150.0 65.3
1− 2 146.8, 155.7 63.9, 67.8
2+ 5 149.1, 150.8, 153.7, 154.2, 64.9, 65.6, 66.9, 67.1,

155.4 67.7
2− 6 150.0, 151.0, 151.7, 159.3, 65.3, 65.7, 66.1, 69.4,

159.9, 161.1 69.6, 70.1
3+ 4 156.9, 160.2, 161.6, 163.6 68.3, 69.8, 70.3, 71.2
3− 6 157.0, 157.9, 160.4, 165.9, 68.4, 68.7, 69.8, 72.2,

167.3, 169.3 72.8, 73.7

eigenvectors are omitted as they do not add anything to our
discussion.

The ground state of boron-10 has Jπ = 3+ and its first
excited state has Jπ = 1+ at 0.7 MeV (Fig. 7). We incorrectly
determine the 1+ state to be the ground state and 3+ states to be
excited states. However, this problem arises in other models of
boron-10, for example, in models involving nucleon-nucleon
potentials in chiral perturbation theory [23]. Boron-10 has
further isospin 0 excited states, including 2+, 3+, and 4+
states at 3.6, 4.8, and 6.0 MeV, respectively. We find that our
model only allows positive-parity states with isospin 0, and our
predictions for the excitation energies of the aforementioned
states are of the correct order of magnitude. Second 3+ and
4+ states with isospin 0 are allowed, which we identify with
the states of boron-10 at 7.0 and 10.8 MeV, respectively.
Curiously, 2−, 3−, and 4− states of boron-10 with isospin 0
have been found experimentally at 5.1, 6.1, and 6.6 MeV,
respectively. Consideration of further degrees of freedom or
the quantization of an alternative B = 10 Skyrmion may be
necessary to account for these negative-parity states.
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FIG. 7. (Color online) Energy level diagram for nuclei of mass number 10. Individual isobars are shifted vertically for clarity, and mass
splittings between nuclei are adjusted to eliminate the proton/neutron mass difference and remove Coulomb effects, as described in Ref. [20].

We find that the lowest allowed state with isospin 1 has
Jπ = 0+ and is at 4.9 MeV above the lowest 3+ isospin 0
state. Experimentally this is observed as an isospin 1 triplet
that includes the beryllium-10 and carbon-10 ground states
and has an average excitation energy of 1.8 MeV relative to
the boron-10 ground state. Three 2+ spin excitations of this
isotriplet have been observed, at average excitation energies
5.2, 7.4, and 8.9 MeV. We predict two such excitations at 7.6
and 8.3 MeV. Note that our model disallows a Jπ = 1+ state
with isospin 1. This agrees with experimental observations.
Additionally, 1−, 2−, and 3− states with isospin 1 have been
seen in the spectrum of beryllium-10, and our predictions for
their excitation energies are close to the experimental values.
A number of 2− states with isospin 1 are also seen in the
spectrum of boron-10.

For isospins 2 and 3, we find that all possible spins and
parities are allowed and that in both cases the lowest state is
a 0+ state. The spins of the lithium-10 and nitrogen-10 states
(both with isospin 2) are not well established. The lowest state
of lithium-10 is at 23.3 MeV above that of boron-10, and its

spin is uncertain: either 1− or 2−. We calculate these states
to exist at 26.7 and 28.8 MeV above the lowest 3+ isospin 0
state. Lithium-10 has an excited 1+ state, and the lowest state
of nitrogen-10 is believed to be a 1+ state. We predict two 1+
states with isospin 2 and slightly overpredict their excitation
energies. The lowest helium-10 state is a 0+ state at 39.4 MeV
above the boron-10 ground state. This is to be compared to our
value of 56.7 MeV. In our model, the isobar splittings increase
in proportion to I (I + 1). However, as can be seen from the
nuclear energy level diagrams, this approximately quadratic
behavior is not precisely reflected in the data.

In summary, the quantum numbers and excitation energies
of the states of nuclei of mass number 10 are reasonably
well described by our model. However, the appearance of a
1+ state as the isospin 0 ground state disagrees with that of
boron-10, but as we mentioned this is a well-known artifact of
nuclear models. The negative-parity states with isospin 0 in the
nuclear spectra may arise as quantum states of an alternative
B = 10 Skyrmion, invariant under an alternative symmetry
group that may permit such states. We find significantly more
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FIG. 8. (Color online) A surface of constant baryon density for
the D3h-symmetric B = 12 Skyrmion (two viewpoints).

allowed states with isospins 2 and 3 than have been found
experimentally. However, we are not too concerned about those
of higher spin, as the D2h symmetry may become deformed as
the Skyrmion spins.

VII. B = 12

In the α-particle model, the classical minimum of the
potential energy for three α particles occurs when they
are arranged in an equilateral triangle. The minimal-energy
solution of the Skyrme model in the B = 12 sector has C3v

symmetry, but there is a solution of very slightly higher energy
with a larger D3h symmetry, which is a saddle point and not a
local energy minimum. Both have an equilateral triangle shape.
Here, we quantize the D3h-symmetric solution (see Fig. 8),
which we believe provides a physically more realistic picture
of the nucleus. A more refined analysis might include an
anharmonic vibrational mode centered on the D3h-symmetric
solution and oscillating through two C3v-symmetric minima.
This solution can be approximated using the double rational
map ansatz [24]. We use this to determine its FR constraints.
The ansatz involves a D3h-symmetric outer map of degree 11,
Rout, and a spherically symmetric degree 1 inner map, Rin,
together with an overall radial profile function. The maps
are [9]:

Rout(z) = z9 + αz6 + βz3 + γ

z2(γ z9 + βz6 + αz3 + 1)
, (19)

Rin(z) = −z , (20)

where α = −2.47, β = −0.84, and γ = −0.13. The orienta-
tion of the inner map is chosen so that the D3h symmetry is
realized in a way compatible with the outer map. Both maps
satisfy

R
(
ei 2π

3 z
) = ei 2π

3 R(z), R(1/z) = 1/R(z). (21)

As the baryon number is a multiple of four, the FR signs
form the trivial representation of D3, and so the FR constraints
are [6]

ei 2π
3 L3ei 2π

3 K3 |�〉 = |�〉, eiπL1eiπK1 |�〉 = |�〉. (22)

Both maps satisfy the reflection symmetry

R(1/z̄) = 1/R(z), (23)

TABLE VII. FR-allowed quantum states of the B = 12
Skyrmion (normalized).

I J π Quantum state |�Jπ ,I,|L3|,|K3|〉
0 0+ |�0+,0,0,0〉 = |0, 0〉 ⊗ |0, 0〉

2+ |�2+,0,0,0〉 = |2, 0〉 ⊗ |0, 0〉
3− |�3−,0,3,0〉 = 1√

2
(|3, 3〉 − |3, −3〉) ⊗ |0, 0〉

4− |�4−,0,3,0〉 = 1√
2
(|4, 3〉 + |4, −3〉) ⊗ |0, 0〉

4+ |�4+,0,0,0〉 = |4, 0〉 ⊗ |0, 0〉
5− |�5−,0,3,0〉 = 1√

2
(|5, 3〉 − |5, −3〉) ⊗ |0, 0〉

6− |�6−,0,3,0〉 = 1√
2
(|6, 3〉 + |6, −3〉) ⊗ |0, 0〉

6+ |�6+,0,0,0〉 = |6, 0〉 ⊗ |0, 0〉
|�6+,0,6,0〉 = 1√

2
(|6, 6〉 + |6, −6〉) ⊗ |0, 0〉

1 1+ |�1+,1,1,1〉 = 1√
2
(|1, 1〉 ⊗ |1, −1〉 + |1, −1〉 ⊗ |1, 1〉)

|�1+,1,0,0〉 = |1, 0〉 ⊗ |1, 0〉
2− |�2−,1,2,1〉 = 1√

2
(|2, 2〉 ⊗ |1, 1〉 − |2,−2〉 ⊗ |1, −1〉)

2+ |�2+,1,1,1〉 = 1√
2
(|2, 1〉 ⊗ |1, −1〉 − |2, −1〉 ⊗ |1, 1〉)

3− |�3−,1,3,0〉 = 1√
2
(|3, 3〉 + |3, −3〉) ⊗ |1, 0〉

|�3−,1,2,1〉 = 1√
2
(|3, 2〉 ⊗ |1, 1〉 + |3,−2〉 ⊗ |1, −1〉)

3+ |�3+,1,1,1〉 = 1√
2
(|3, 1〉 ⊗ |1, −1〉 + |3, −1〉 ⊗ |1, 1〉)

|�3+,1,0,0〉 = |3, 0〉 ⊗ |1, 0〉
4− |�4−,1,4,1〉 = 1√

2
(|4, 4〉 ⊗ |1, −1〉 − |4, −4〉 ⊗ |1, 1〉)

|�4−,1,3,0〉 = 1√
2
(|4, 3〉 − |4, −3〉) ⊗ |1, 0〉

|�4−,1,2,1〉 = 1√
2
(|4, 2〉 ⊗ |1, 1〉 − |4,−2〉 ⊗ |1, −1〉)

4+ |�4+,1,1,1〉 = 1√
2
(|4, 1〉 ⊗ |1, −1〉 − |4, −1〉 ⊗ |1, 1〉)

2 0+ |�0+,2,0,0〉 = |0, 0〉 ⊗ |2, 0〉
1− |�1−,2,1,2〉 = 1√

2
(|1, 1〉 ⊗ |2, 2〉 − |1,−1〉 ⊗ |2, −2〉)

1+ |�1+,2,1,1〉 = 1√
2
(|1, 1〉 ⊗ |2, −1〉 − |1, −1〉 ⊗ |2, 1〉)

2− |�2−,2,1,2〉 = 1√
2
(|2, 1〉 ⊗ |2, 2〉 + |2,−1〉 ⊗ |2, −2〉)

|�2−,2,2,1〉 = 1√
2
(|2, 2〉 ⊗ |2, 1〉 + |2,−2〉 ⊗ |2, −1〉)

2+ |�2+,2,2,2〉 = 1√
2
(|2, 2〉 ⊗ |2, −2〉 + |2, −2〉 ⊗ |2, 2〉)

|�2+,2,1,1〉 = 1√
2
(|2, 1〉 ⊗ |2, −1〉 + |2, −1〉 ⊗ |2, 1〉)

|�2+,2,0,0〉 = |2, 0〉 ⊗ |2, 0〉

and so the parity operator is equivalent to P = eiπL3eiπK3 . The
D3h symmetry implies that the inertia tensors are diagonal,
with U11 = U22, V11 = V22, and W11 = W22, so the quantum
Hamiltonian is that of a system of coupled symmetric tops:

H =
(

U11 − W11

2�11

)
J2 +

(
V11 − W11

2�11

)
I2 +

(
W11

2�11

)
M2

+
(

U33

2�33
− U11

2�11

)
L2

3 +
(

V33

2�33
− V11

2�11

)
K2

3

+
(

W33

�33
− W11

�11

)
L3K3 , (24)

where M = L + K,�33 is as before and �11 = U11V11 −
W 2

11.
The states that are allowed by the FR constraints are listed

in Table VII. Each of the allowed isospin 0 states is also
an eigenstate of the Hamiltonian, and their quantum energies
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EJπ ,I,|L3|,|K3| are:

E0+,0,0,0 = 0,

E2+,0,0,0 = 3U11/�11,

E3−,0,3,0 = 3U11/2�11 + 9U33/2�33,

E4−,0,3,0 = 11U11/2�11 + 9U33/2�33,

E4+,0,0,0 = 10U11/�11, (25)

E5−,0,3,0 = 21U11/2�11 + 9U33/2�33,

E6−,0,3,0 = 33U11/2�11 + 9U33/2�33,

E6+,0,0,0 = 21U11/�11,

E6+,0,6,0 = 3U11/�11 + 18U33/�33.

These states also result from the rigid-body quantization of
an equilateral triangle with α particles at its vertices and are
not a prediction characteristic of the Skyrme model itself. The
states fall into rotational bands labeled by |L3| = 0, 3, 6, . . . .
As in Refs. [25,26], we suggest that the second experimental
2− state of carbon-12 at 13.4 MeV has been misidentified and
is really a 4− state. Again as in Ref. [25], we predict a relatively
low-energy 6+ state of carbon-12, with |L3| = 6. Such a state
has not yet been seen experimentally.

The isospin 1 states in Table VII are not all individually
eigenstates of the Hamiltonian, as they are not eigenstates of
M2. It is convenient to introduce basis states |J, I ; M,M3〉 and
express the states we have in terms of these. For example, for
the two orthonormal FR-allowed 1+ states:

|�1+,1,0,0〉 ≡ |1, 0〉 ⊗ |1, 0〉

=
√

2

3
|1, 1; 2, 0〉 −

√
1

3
|1, 1; 0, 0〉, (26)

|�1+,1,1,1〉 ≡ 1√
2

(|1, 1〉 ⊗ |1,−1〉 + |1,−1〉 ⊗ |1, 1〉)

=
√

1

3
|1, 1; 2, 0〉 +

√
2

3
|1, 1; 0, 0〉. (27)

Neither is an eigenstate of the Hamiltonian, as neither is an
eigenstate of M2, but we can find two linear combinations of
|�1+,1,0,0〉 and |�1+,1,1,1〉 that are eigenstates by diagonalizing
a matrix Hamiltonian. Their energies are the eigenvalues of
the 2 × 2 matrix(

〈�1+,1,0,0|H |�1+,1,0,0〉 〈�1+,1,0,0|H |�1+,1,1,1〉
〈�1+,1,1,1|H |�1+,1,0,0〉 〈�1+,1,1,1|H |�1+,1,1,1〉

)

≡
(

a c

c b

)
, (28)

where

a = U11/�11 + V11/�11, (29)

b = U11/2�11 + V11/2�11

+U33/2�33 + V33/2�33 − W33/�33, (30)

c =
√

2W11/�11. (31)

The eigenvalues are 1
2 (a + b ± √

a2 + b2 − 2ab + 4c2).
There are two possible interpretations. Either the energies are
close together and remain below the isospin 1 states of higher

spin, in which case we predict two close 1+ states (which have
experimentally not been resolved) or their energies are well
separated, in which case we predict the observed 1+ state and
a higher excited 1+ state that has not yet been seen. From our
numerical values for a, b, and c we calculate the energies to be
0.00194 and 0.00207, which are in fact close together. So we
predict that the single observed 1+ isotriplet of states is really
an unresolved doublet of isotriplets.

This matrix diagonalization method is also used to calculate
the energy eigenvalues for the other values of Jπ and I for
which there is more than one allowed state. It is found that in
all cases, the off-diagonal elements of the matrices analogous
to (28) are small, of the order 10−2 times the diagonal elements.
We may therefore consistently assign values of |L3| and |K3|
to each of our calculated energy eigenvalues, as the “mixing”
of states with the same values of Jπ and I , but different |L3|
and |K3| values, is minimal. The quantum energies of the spin
2 states with isospin 1 are:

E2−,1,2,1 = U11/�11 + 2U33/�33 + V11/2�11

+V33/2�33 + 2W33/�33, (32)

E2+,1,1,1 = 5U11/2�11 + U33/2�33 + V11/2�11

+V33/2�33 − W33/�33. (33)

We calculate that E2−,1,2,1 and E2+,1,1,1 are 0.00218 and
0.00228, respectively, and so the 2+ isotriplet lies above the
2− isotriplet. Experimentally, however, the 2+ isotriplet is
observed below the 2− isotriplet.

The quantum energies of the isospin 2 states with spins 0
and 1 are:

E0+,2,0,0 = 3V11/�11, (34)

E1−,2,1,2 = U11/2�11 + U33/2�33 + V11/�11

+ 2V33/�33 + 2W33/�33, (35)

E1+,2,1,1 = U11/2�11 + U33/2�33 + 5V11/2�11

+V33/2�33 − W33/�33. (36)

We calculate these values to be 0.00569, 0.00541, and 0.00574,
respectively, and so the 1− state lies below the 0+ state and
the 1+ state lies above the 0+ state. Between the 0+ and
1+ states there is a further 2+ state. Experimentally the 0+
isospin 2 quintet includes the ground states of beryllium-12 and
oxygen-12; low-energy excited 1− and 2+ states of
beryllium-12 are also observed. The energy levels of the
quantized B = 12 Skyrmion are listed in Table VIII. The
experimental spectrum is in Fig. 9.

A. Three cube interpretation

In Ref. [4] we estimated the moments of inertia of the B = 8
Skyrmion by treating it as a “double cube” of two cubic B = 4
Skyrmions, separated a certain distance along a common C4

axis, with the cubes rotated around this axis by π/2 relative
to each other. This enabled us to estimate the energies of the
Skyrmion’s quantum states. These estimates agree well with
our results using the exact B = 8 solution. In this section we
apply a similar procedure to the B = 12 Skyrmion.

We work with three B = 4 cubes arranged in an equilateral
triangle, meeting at a common edge. Each cube is related to
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TABLE VIII. Energy levels of the B = 12 Skyrmion, using
both the exact solution and the three cube interpretation. To each
of the quantum states of the exact solution there correspond
dominant values of |L3| and |K3|.

I J π |L3| |K3| E exact E 3–cube E exact E 3–cube

(×10−4) (×10−4) (MeV) (MeV)

0 0+ 0 0 0.0 0.0 0.0 0.0
2+ 0 0 5.1 5.2 3.2 3.2
3− 3 0 7.6 7.6 4.7 4.7
4− 3 0 14.4 14.5 8.9 9.0
4+ 0 0 17.0 17.4 10.6 10.8
5− 3 0 22.9 23.2 14.2 14.4
6− 3 0 33.1 33.7 20.6 20.9
6+ 6 0 25.3 25.2 15.7 15.7

0 0 35.7 36.5 22.2 22.7

1 1+ 1 1 19.4 18.4 12.1 11.5
0 0 20.7 20.2 12.9 12.6

2− 2 1 21.8 21.0 13.5 13.0
2+ 1 1 22.8 21.9 14.2 13.6
3− 3 0 26.4 26.1 16.4 16.2

2 1 27.0 26.2 16.8 16.3
3+ 1 1 27.8 27.1 17.3 16.9

0 0 29.3 28.9 18.2 18.0
4− 4 1 30.6 29.4 19.0 18.2

3 0 33.1 33.1 20.6 20.5
2 1 33.9 33.1 21.1 20.6

4+ 1 1 34.7 34.1 21.6 21.2

2 0+ 0 0 56.9 55.5 35.4 34.5
1− 1 2 54.1 50.9 33.6 31.7
1+ 1 1 57.4 55.4 35.7 34.5
2− 1 2 57.5 54.4 35.7 33.8

2 1 59.7 58.0 37.1 36.0
2+ 2 2 57.1 53.5 35.5 33.2

1 1 60.6 58.9 37.7 36.6
0 0 62.3 60.7 38.7 37.7

its neighbor by a spatial rotation by 2π/3 followed by an
isorotation by 2π/3. The isorotation cyclically permutes the
values of the pion fields on the faces of the cubes, so that these
values match on touching faces. We denote by d the distance
between the center of each cube and the center of the triangle.
In a similar manner to the case of the B = 8 double cube,
we use the parallel axis theorem to make estimates for the
moments of inertia of the D3h-symmetric B = 12 Skyrmion
in terms of the moments of inertia of the B = 4 Skyrmion and
the separation parameter d. We use the quadratic interpolation
method to obtain values for the B = 4 inertia tensors with
m = 0.685, the optimized value of m for the B = 12 sector of
the model (see Table I), to obtain the estimates

U
(B=12)
11 = U

(B=12)
22 = 3U

(B=4)
11 = 540 , (37)

U
(B=12)
33 = 3U

(B=4)
33 = 645 , (38)

V
(B=12)

11 = V
(B=12)

22 = 3V
(B=4)

11 + 3
2M4d

2 , (39)

V
(B=12)

33 = 3V
(B=4)

11 + 3M4d
2 . (40)

The interpolated value of M4 for m = 0.685 is 589.3. The
value of d is chosen using a least-squares method so that our
approximation to Vij is closest to that of the exact B = 12 so-
lution. This yields a value for d of 1.92 and hence the estimates

V
(B=12)

11 = 5756, (41)

V
(B=12)

33 = 9014. (42)

In this simplified picture, Wij vanishes, as it vanishes for the
B = 4 cube. Comparing these numbers to those obtained from
the exact solution for B = 12 (given in Appendix A5), we
see that the three cube approach has provided good estimates
of the inertia tensors Uij and Vij , and the inequalities that are
satisfied by their elements are right. For the exact solution,
Wij is nonzero but small. Also, for the exact solution the ratio
of U11 to U33 is closer to 1 than for the B = 4 cube. This is
because the triangular arrangement of the three cubes is closer
to the Skyrme crystal, for which U11 = U33. The accuracy of
this approximate inertia tensor shows that the Skyrme model
is consistent with the intrinsic shape of carbon-12 being an
equilateral triangle of three α particles.

The assumption that Wij vanishes simplifies the quantum
Hamiltonian to the sum of a symmetric top in space and a
symmetric top in isospace:

H = 1

2V11
J2 + 1

2U11
I2 +

(
1

2V33
− 1

2V11

)
L2

3

+
(

1

2U33
− 1

2U11

)
K2

3 . (43)

|L3| and |K3| become good quantum numbers, and the
expressions for a selection of the quantum energies simplify to:

E0+,0,0,0 = 0,

E2+,0,0,0 = 3/V11,

E3−,0,3,0 = 3/2V11 + 9/2V33,

E4−,0,3,0 = 11/2V11 + 9/2V33,

E4+,0,0,0 = 10/V11,

E5−,0,3,0 = 21/2V11 + 9/2V33,

E6−,0,3,0 = 33/2V11 + 9/2V33,

E6+,0,0,0 = 21/V11,

E6+,0,6,0 = 3/V11 + 18/V33, (44)

E1+,1,1,1 = 1/V11 + 1/U11,

E1+,1,0,0 = 1/2V11 + 1/2V33 + 1/2U11 + 1/2U33,

E2−,1,2,1 = 1/V11 + 2/V33 + 1/2U11 + 1/2U33,

E2+,1,1,1 = 5/2V11 + 1/2V33 + 1/2U11 + 1/2U33,

E0+,2,0,0 = 3/U11,

E1−,2,1,2 = 1/2V11 + 1/2V33 + 1/U11 + 2/U33,

E1+,2,1,1 = 1/2V11 + 1/2V33 + 5/2U11 + 1/2U33,

E2+,2,2,2 = 1/V11 + 2/V33 + 1/U11 + 2/U33.

Their numerical values (using U11 = 540, U33 = 645, V11 =
5756, and V33 = 9014) are listed in Table VIII alongside
the corresponding values using the exact solution. We also
present the values in physical units, obtained using the B = 12
parameter set given in Table I.
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FIG. 9. (Color online) Energy level diagram for nuclei of mass number 12. Mass splittings between nuclei are adjusted to eliminate the
proton/neutron mass difference and remove Coulomb effects, as described in Ref. [27].

B. Comparison with experimental data

The ground state of carbon-12 is a 0+ state with isospin 0. It
has excited 2+, 3−, and 4+ states with excitation energies 4.4,
9.6, and 14.1 MeV, respectively. In addition, there may be a 4−
state at 13.4 MeV (reassigned from the 2− state at this energy).

As can be seen from Table VIII, we predict precisely these
states and in the same order. Our predictions for their excitation
energies are 3.2, 4.7, 10.6, and 8.9 MeV, respectively.

Carbon-12 has an excited 0+ state at 7.7 MeV, the
famous Hoyle state. Unfortunately, our method of rigid-body
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quantization prohibits two independent spin 0, isospin 0 states.
An extension of the model might allow this. Perhaps the
lowest-lying quantum state of an alternative B = 12 solution,
such as the C3v-symmetric solution, or a solution with three
B = 4 Skyrmions in a linear chain, both discussed in Ref. [9],
could be interpreted as this excited 0+ state. Additional excited
states of carbon-12 are seen experimentally but are not yet
predicted in our model: for example, a 1+ state at 12.7 MeV.

We predict two nondegenerate 1+ states with isospin 1. An
isotriplet with Jπ = 1+ is observed, which includes the ground
states of boron-12 and nitrogen-12, with average excitation
energy 15.1 MeV, to be compared to our value of 12.1 MeV.
As mentioned previously, this may be an unresolved doublet
of isotriplets. However, a number of higher 1+ states with
isospin 1 are seen in the nuclear spectra. We also predict a 2+
and a 2− isotriplet. Both of these are seen experimentally, but in
the opposite order: we predict the 2− isotriplet to lie below the
2+ isotriplet. Experimentally, the 2+ isotriplet has an average
excitation energy of 16.1 MeV, compared with 16.5 MeV for
the 2− isotriplet. Higher excited 1− and 0+ isotriplets are
seen experimentally, but we do not predict them in our model.
We find two allowed 3+ states with isospin 1, at 17.3 and
18.2 MeV. One such state has been seen in the spectrum of
boron-12, at 20.8 MeV. An incomplete 3− isotriplet is observed
at 18.5 MeV, which we predict at 16.4 MeV. We predict
a second 3− state with isospin 1 at 16.8 MeV. States with
these quantum numbers are seen in the spectra of boron-12,
carbon-12, and nitrogen-12 at 20.9, 20.6, and 20.4 MeV,
respectively. A further excited 4− state of boron-12 with
isospin 1 exists at 19.7 MeV, to be compared with our value of
19.0 MeV.

An (incomplete) Jπ = 0+, isospin 2 quintet, which in-
cludes the ground states of beryllium-12 and oxygen-12, is
observed experimentally with an average excitation energy
of 27.7 MeV. We predict such an isoquintet at 35.4 MeV.
We also predict the existence of a 1− isoquintet with an
excitation energy less than that of the 0+ isoquintet. Such a
1− state is observed in beryllium-12, at 2.7 MeV above the 0+
ground state. An (incomplete) 2+ isoquintet is experimentally
observed with an average excitation energy roughly 2 MeV
above the 0+ isoquintet. In our model three 2+ states with
isospin 2 are allowed, just above the 0+ state.

In summary, the model describes the energy spectra of
nuclei of mass number 12 especially well. The rotational band
of carbon-12 is very well reproduced, along with some of
the experimentally observed isospin 1 triplets and isospin 2
quintets. However, the observed isotriplets with Jπ = 0+ and
1− do not appear as quantum states of our D3h-symmetric
Skyrmion (neither does the Hoyle state). They may arise
from the quantization of further modes or appear as quantum
states of an alternative Skyrmion. The molecular rotational
band of beryllium-12 in the range 10–20 MeV above the
beryllium-12 ground state [28] may also be explained in terms
of an alternative Skyrmion.

VIII. CONCLUSION

The Skyrme model provides a model of nuclei that unifies
spin and isospin as collective excitations of topological

solitons. We have been able to reproduce the energy spectra
of a number of light nuclei to a good degree of accuracy by
quantizing Skyrmions as rigid bodies in space and isospace and
by parametrizing the model separately for each mass number.
The model is fitted to nuclear charge radii and masses. Remark-
ably, this leads to good predictions for moments of inertia, spin
splittings, and isobar splittings. The quantum states we have
calculated agree well with what is experimentally observed,
with the correct spins and parities. Among the successes of
the model is the prediction of the existence and the excitation
energies of the rotational bands of beryllium-8 and carbon-12.
We predict that neither beryllium-10 nor carbon-10 has a 1+
state, in agreement with experiment. Our predictions of the
quantum states of the nuclear isobars with nonzero isospin
is quantitatively good, and the spin splittings are quite good.
However, the spin states do not always appear in the correct
order. A few, so far unobserved, states have been predicted,
notably some negative-parity states of lithium-8 and boron-8
and some high-spin states, including a 4+ state of helium-4
and a 6+ state of carbon-12. Several observed states are not
predicted by the rigid-body quantization of Skyrmions. To
understand these one will need to consider further Skyrmion
degrees of freedom.

One can be pleased with the general trend of isospin
excitations. In each case, the I = 0, 1 splitting is of the order
of 10 MeV, the I = 0, 2 splitting of the order of 20–30 MeV,
and the I = 0, 3 splitting of the order of 60 MeV. Isospin
splittings for spherically averaged Skyrmions, over a wider
range of baryon numbers and isospins, have been estimated in
Ref. [29]. The Skyrme model predicts that the isobar splittings
rise in proportion to I (I + 1). Curiously the experimental data
do not rise quite as fast, but our prediction for the coefficient
of I (I + 1) is roughly correct.

It would have been possible to have chosen just one
parameter set, as in previous work [4]. We could have chosen
m close to 1, the energy scale close to 6 MeV, and the length
scale close to 1.6 fm, for example. This would have provided
good qualitative results but would not have given such a good
fit to charge radii and energy splittings.

Further work is needed on the electromagnetic form factors
and transition amplitudes of light nuclei within the Skyrme
model, as these provide more information about the internal
structure of nuclei. It would also be desirable to consider the
effect of vibrational modes and the breakup of Skyrmions into
clusters, for example, modeling the breakup of lithium-6 into
helium-4 and the deuteron. Finally, we would like to extend
this analysis to Skyrmions and nuclei with B = 7, 9, 11, and
beyond 12.
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APPENDIX A: NUMERICAL RESULTS

The static energies, mean charge radii, and nonzero ele-
ments of the inertia tensors for B = 4, 6, 8, 10, and 12 have
been calculated for m = 0.5, 1, and 1.5 and are shown below.
The interpolated values for the preferred values of m are shown
in the final columns. An estimate of the numerical errors can be
made by calculating the off-diagonal inertia tensor elements,
which should be identically zero in each case. The calculated
ratio of off-diagonal elements to nonzero diagonal elements is
of the order of 10−2 or less.

A1. B = 4

m = 0.5 m = 1 m = 1.5 m = 0.820

U11 201 151 124 167
U33 241 180 146 198
V33 928 701 576 771

〈r2〉1/2 1.679 1.360 1.185 1.458
M4 569 624 681 604

A2. B = 6

m = 0.5 m = 1 m = 1.5 m = 1.153

U11 305 228 186 211
U33 329 245 199 227
V11 2195 1658 1362 1542
V33 1927 1451 1190 1349
W33 −105 −84 −71 −79

〈r2〉1/2 1.948 1.620 1.430 1.547
M6 858 946 1036 973

A3. B = 8

m = 0.5 m = 1 m = 1.5 m = 0.832

U11 403 299 243 329
U22 374 291 242 315
U33 418 326 271 353
V11 4740 4052 3490 4269
V33 1990 1390 1109 1556

〈r2〉1/2 2.316 2.017 1.787 2.109
M8 1106 1213 1323 1177

A4. B = 10

m = 0.5 m = 1 m = 1.5 m = 0.830

U11 511 383 303 421
U22 508 380 298 418
U33 459 351 285 383
V11 4250 3120 2360 3463
V22 5860 4520 3700 4917
V33 5730 4400 3590 4794
W33 −10.4 −4.8 0.7 −6.7

〈r2〉1/2 2.455 2.047 1.745 2.174
M10 1373 1516 1657 1468

A5. B = 12

m = 0.5 m = 1 m = 1.5 m = 0.685

U11 588 444 364 527
U33 653 500 396 590
V11 6487 5037 4087 5891
V33 9743 7684 6240 8909
W11 −49 −40 −37 −45
W33 −42 −35 −40 −38

〈r2〉1/2 2.674 2.265 1.952 2.511
M12 1653 1816 1982 1713

APPENDIX B: QUADRATIC INTERPOLATION BETWEEN
THREE POINTS

To obtain approximations to the inertia tensors, static
energies, and mean charge radii for a given value of m, we use
the method of quadratic interpolation between three points.
We know the values of a property p at m = 0.5, 1, and 1.5,
and we make the ansatz

p(m) = α1 + α2m + α3m
2. (B1)

Let p = (p(0.5), p(1), p(1.5))T. The vector α = (α1, α2, α3)T

is obtained by inverting the expression

M · α = p, (B2)

where

M =
⎛
⎝ 1 0.5 0.25

1 1 1
1 1.5 2.25

⎞
⎠ ,

and therefore

M−1 =
⎛
⎝ 3 −3 1

−5 8 −3
2 −4 2

⎞
⎠ . (B3)

The interpolated values are given in the right-hand columns of
the tables in Appendices A1 to A5.
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