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We calculate the binding energy, root-mean-square radius, and quadrupole deformation parameter for the recent,
possibly discovered superheavy element Z = 122, using the axially deformed relativistic mean-field (RMF) and
nonrelativistic Skyrme Hartree-Fock (SHF) formalisms. The calculation is extended to include various isotopes
of Z = 122 element, starting from A = 282 to A = 320. We predict highly deformed structures in the ground
state for all the isotopes. A shape transition appears at about A = 290 from a highly oblate to a large prolate
shape, which may be considered as the superdeformed and hyperdeformed structures of the Z = 122 nucleus in
the mean-field approaches. The most stable isotope (largest binding energy per nucleon) is found to be 302122,
instead of the experimentally observed 292122.
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I. INTRODUCTION

The stability of nuclei in the superheavy mass region
was predicted in the mid-sixties [1–4] when shell correction
was added to the liquid drop binding energy and possible
shell closure was pointed out at Z = 114 and N = 184.
A nice historical review on theoretical predictions and new
experimental possibilities is available in Ref. [5]. Myers and
Swiatecki [6] concluded that the half-lives of nuclei near the
shell closures must be long enough to be observed. In other
words, nuclei with zero shell effects would not be stable and
would decay immediately, as was predicted by macroscopic
liquid drop models for Z > 100 nuclides. Recently, however,
the microscopic studies of the nuclei beyond Z = 100 has
become possible [7], and the heaviest nucleus studied so far in
this series of experiments [8] is 254No (Z = 102, N = 152).
Thus, the progress in experimental techniques has drawn
our attention and opened up the field once again for further
theoretical investigations in structure physics of nuclei in the
superheavy mass region.

Even though, experimentally, the elements up to Z = 118
have been synthesized to-date, with half-lives varying from
a few minutes to milliseconds [9,10], the above-mentioned
theoretically predicted center of the island of stability could not
be located precisely. Recently, more microscopic theoretical
calculations have predicted various other regions of stability,
namely, Z = 120, N = 172 or 184 [11–13] and Z = 124 or
126, N = 184 [14,15]. Apparently, there is a need to design
the new experiments to solve the outstanding problem of
locating the precise island of stability for superheavy elements.
In an effort in this direction, using inductively coupled
plasma-sector field mass spectroscopy, Marinov et al. [16]
have observed some neutron-deficient Th isotopes in naturally
occurring Thorium substances. Long-lived isomeric states,
with estimated half-lives T1/2 � 108 y, have been identified
in the neutron-deficient 211,213,217,218Th isotopes, which are
associated with the superdeformed (SD) or hyperdeformed
(HD) states (minima) in potential energy surfaces (PES). In a

similar search for long-lived transactinides in natural materials,
more recently, these authors [17] obtained a possible evidence
for the existence of a long-lived superheavy nucleus with
mass number A = 292 and atomic number Z = 122 or 124 in
natural thorium. The half-life is again estimated to be the same
as above, i.e., T1/2 � 108 y and abundance (1–10) × 10−12

relative to 232Th. Note, however, that, although this discovery
of an extremely superheavy nucleus is important, these results
have yet to be confirmed by any other group. In any case, the
very possibility of an extremely heavy Z nucleus motivated us
to see the structures of such nuclei in an isotopic mass chain.
Therefore, on the basis of the relativistic mean-field (RMF)
and nonrelativistic Skyrme Hartree-Fock (SHF) methods, we
calculated the bulk proporties of a Z = 122 nucleus in an
isotopic chain of mass A = 282–320. This choice of mass
range covers both the predicted neutron magic numbers N =
172 and 184.

The article is organized as follows. Section II gives a brief
description of the relativistic and nonrelativistic mean-field
formalisms. The effects of pairing for open shell nuclei,
included in our calculations, are also discussed in this section.
The results of our calculations are presented in Sec. III, and
a summary of the results obtained, together with concluding
remarks, is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The Skyrme Hartree-Fock method

The general form of the Skyrme effective interaction, used
in the mean-field models, can be expressed as an energy density
functional H [18,19],

H = K + H0 + H3 + Heff + · · · , (1)

where K = h̄2

2m
τ is the kinetic energy term with m as the

nucleon mass, H0 the zero range, H3 the density dependent
term, and Heff the effective-mass dependent term, relevant for
calculating the properties of nuclear matter, are functions of
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nine parameters, ti , xi (i = 0, 1, 2, 3), and η, given as

H0 = 1
4 t0

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (2)

H3 = 1
24 t3ρ

η
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
, (3)

Heff = 1
8 [t1(2 + x1) + t2(2 + x2)] τρ

+ 1
8 [t2(2x2 + 1) − t1(2x1 + 1)] (τpρp + τnρn). (4)

The other terms, representing the surface contributions of a
finite nucleus with b4 and b′

4 as additional parameters, are

HSρ = 1
16

[
3t1

(
1 + 1

2x1
) − t2

(
1 + 1

2x2
)]

( �∇ρ)2

− 1
16

[
3t1

(
x1 + 1

2

) + t2
(
x2 + 1

2

)]
×[( �∇ρn)2 + ( �∇ρp)2], (5)

and

HS �J = − 1
2 [b4ρ �∇ · �J + b′

4(ρn
�∇ · �Jn + ρp

�∇ · �Jp)]. (6)

Here, the total nucleon number density ρ = ρn + ρp, the
kinetic energy density τ = τn + τp, and the spin-orbit density
�J = �Jn + �Jp, with n and p referring to neutron and proton,

respectively. The �Jq = 0, q = n or p, for spin-saturated nuclei,
i.e., for nuclei with major oscillator shells completely filled.
The total binding energy (BE) of a nucleus is the integral of the
energy density functional H. We have used here the Skyrme
SkI4 set with b4 �= b′

4 [20], designed for considerations of
proper spin-orbit interaction in finite nuclei, related to the
isotope shifts in the Pb region.

B. The relativistic mean-field method

The relativistic Lagrangian density for a nucleon-meson
many-body system [21,22] is written as

L = ψi{iγ µ∂µ − M}ψi + 1
2∂µσ∂µσ − 1

2m2
σ σ 2

− 1
3g2σ

3 − 1
4g3σ

4 − gsψiψiσ − 1
4�µν�µν

+ 1
2m2

wV µVµ + 1
4c3(VµV µ)2 − gwψiγ

µψiVµ

− 1
4

�Bµν. �Bµν + 1
2m2

ρ
�Rµ. �Rµ − gρψiγ

µ�τψi. �Rµ

− 1
4FµνFµν − eψiγ

µ (1−τ3i )
2 ψiAµ. (7)

All the quantities have their usual well-known meanings. From
the above Lagrangian we obtain the field equations for the nu-
cleons and mesons. These equations are solved by expanding
the upper and lower components of the Dirac spinors and the
boson fields in an axially deformed harmonic oscillator basis
with an initial deformation β0. The set of coupled equations
is solved numerically by a self-consistent iteration method.
The center-of-mass motion energy correction is estimated by
the usual harmonic oscillator formula Ec.m. = 3

4 (41A−1/3).
The quadrupole deformation parameter β2 is evaluated
from the resulting proton and neutron quadrupole moments

as Q = Qn + Qp =
√

16π
5 ( 3

4π
AR2β2). The root-mean-square

(rms) matter radius is defined as 〈r2
m〉 = 1

A

∫
ρ(r⊥, z)r2dτ ,

where A is the mass number and ρ(r⊥, z) is the deformed
density. The total binding energy and other observables are also
obtained by using the standard relations, given in Ref. [22]. We
use the well-known NL3 parameter set [23]. This set not only

reproduces the properties of stable nuclei but also well predicts
for those far from the β-stability valley. As outputs, we obtain
different potentials, densities, single-particle energy levels,
radii, deformations, and binding energies. For a given nucleus,
the maximum binding energy corresponds to the ground state
and other solutions are obtained as various excited intrinsic
states.

C. Pairing effect

Pairing is a crucial quantity for open shell nuclei in
determining the nuclear properties. The constant gap, BCS-
pairing approach is reasonably valid for nuclei in the valley
of the β-stability line. However, this method breaks down
when the coupling of the continuum becomes important. In
the present study, we deal with nuclei on or near the valley
of the stability line because the superheavy elements, though
very exotic in nature, lie on the β-stability line. These nuclei
are unstable because of the repulsive Coulomb force, but the
attractive nuclear shell effects come to their rescue, making the
superheavy element possible to be synthesized, particularly
when a combination of magic proton and neutron number
happens to occur (largest shell correction).

The pairing energy expression Epair = −G[
∑

i>0 uivi]2,
where G is the pairing force constant and v2

i and u2
i = 1 − v2

i

are the occupation probabilities [22,24,25]. The variational
procedure with respect to the occupation numbers v2

i gives
the BCS equation 2εiuivi − �(u2

i − v2
i ) = 0, with � =

G
∑

i>0 uivi . This is the famous BCS equation for pairing
energy. The densities are contained within the occupation num-
ber ni = v2

i = 1
2 [1 − εi−λ√

(εi−λ)2+�2
]. To take care of the pairing

effects in the present study, we use the constant gap for proton
and neutron, as given in Ref. [26]: �p = RBse

sI−tI 2
/Z1/3

and �n = RBse
−sI−tI 2

/A1/3, with R = 5.72, s = 0.118, t =
8.12, Bs = 1, and I = (N − Z)/(N + Z). (Note that the gaps
obtained by these expressions are valid for nuclei both on or
away from the stability line.) The pairing force constant G is
not calculated explicitly in solving the RMF equations. Using
the above gap parameter, we calculate directly the occupation
probability. The chemical potentials λn and λp are determined
by the particle numbers for protons and neutrons. Finally,
we can write the pairing energy as Epair = −�∑

i>0 uivi .
Apparently, in a given nucleus, for a constant pairing gap
�, the pairing energy Epair is not constant because it depends
on the occupation probabilities v2

i and u2
i , and hence on the

deformation parameter β2, particularly near the Fermi surface.
It is known that for a constant pairing parameter � and force
constant G, the pairing energy Epair diverges if it is extended
to an infinite configuration space. In fact, in all realistic
calculations with finite range forces, � decreases with state
(spherical or deformed) for large momenta near the Fermi
surface. However in the present case, we assume that pairing
gap for all states |α〉 = |nljm〉 are equal to each other near
the Fermi surface and hence a constant pairing gap is taken
for simplicity of the calculations. We use in our calculations,
a pairing window, and all the equations are extended up to the
level εi − λ � 2(41A1/3). The factor 2 has been determined so
as to reproduce the pairing correlation energy for neutrons in
118Sn using Gogny force [22,24]. This type of prescription for
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pairing effects, in both RMF and SHF models, has already been
used by us and by many other authors [22,24,27]. Within this
pairing approach, it is shown [27,28] that the results for binding
energies and quadruple deformations are almost identical with
the predictions of the relativistic Hartree-Bogoliubov (RHB)
approach [28,29].

III. RESULTS AND DISCUSSION

A. Ground state properties using the SHF and RMF models

There exist a number of parameter sets for solving the
standard SHF Hamiltonians and RMF Lagrangians. In many
of our previous works and those of other authors [13,22,23,
30–32] the ground state properties, like the binding energies
(BE), quadrupole deformation parameters β2, charge radii (rc),
and other bulk properties, are evaluated by using the various
nonrelativistic and relativistic parameter sets. It is found that,
more or less, most of the recent parameter sets reproduce well
the ground state properties, not only of stable normal nuclei
but also of exotic nuclei that are far away from the valley of
β stability. This means that if one uses a reasonably acceptable
parameter set, the predictions of the model will remain nearly
force independent.

B. Potential energy surface

In this subsection, we first calculate the potential energy
surfaces (PES) by using both the RMF and SHF theories in a
constrained calculation [32–36], i.e., instead of minimizing
the H0, we have minimized H ′ = H0 − λQ2, with λ as a
Lagrange multiplier and Q2, the quadrupole moment. Thus, we
get the solution at a given quadrupole deformation. Here, H0

is a Dirac mean-field Hamiltonian (the notations are standard
and its form can be seen in Refs. [22,34,36]) in the RMF
model and it is a Schrödinger mean-field Hamiltonian in the
SHF model. In other words, we get the constrained solution
from the minimization

∑
ij

〈ψi |H0−λQ2|ψj 〉
〈ψi |ψj 〉 and then calculate

the constrained energy using H0. The “free energy” is obtained
from BE = ∑

ij

〈ψi |H0|ψj 〉
〈ψi |ψj 〉 . In our calculations, the free energy

solution does not depend on the initial guess value of the basis
deformation β0 as long as it is nearer to the minimum in PES.
However it converges to some other local minimum when β0

is drastically different, and in this way we evaluate a different
isomeric state for a given nucleus.

The PES, i.e., the potential energy as a function of
quadrupole deformation parameter β2, for the superheavy
nucleus 292122, is shown in Fig. 1. Both the RMF and SHF
results are given for comparisons. The calculated PES is
shown for a wide range of oblate to prolate deformations.
We notice from this figure that in RMF model, minima
appear at around β2 = −0.436,−0.032, and 0.523. The energy
differences between the ground and the isomeric states are
found to be 0.48 and 1.84 MeV for the nearest consecutive
minimas. For the SHF model, the minima appear at around
β2 = −0.459,−0.159, and 0.511. The intrinsic excited state
energy differences are 1.30 and 0.48 MeV. From the figure it is
clear that the minima and the maxima in both the RMF and SHF
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FIG. 1. The potential energy surfaces for the 292122 nucleus
as a function of the quadrupole deformation parameter. The open
squares with the solid line represent SHF calculations using the SkI4
parameter set, and the open circles with the solid line represent RMF
calculations using the NL3 parameter set.

models are qualitatively similar. The absolute values differ by
a constant factor from one another, i.e., the two calculations
(RMF and SHF) differ from each other by a large shift of
∼15 MeV. This difference, however, may be considered small
for a nucleus because the binding energies per nucleon just
differ from one another by a small factor of 0.075, as is shown
in Fig. 4. In other words, this difference in PES is also reflected
in the binding energy calculations of this nucleus in an isotopic
chain, which is discussed in the following subsection.

C. Binding energy, two-neutron separation energy, and
pairing energy

Figure 2 shows the calculated binding energy, obtained in
both the SHF and RMF formalisms. We notice that, similar to
the PES, the binding energy obtained in the RMF model also
over-estimates the SHF result by a constant factor. In other
words, here also the multiplication by a constant factor will
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FIG. 2. The total binding energy for 282−320122 nuclei in
SHF(SkI4) and RMF(NL3) calculations.
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TABLE I. The SHF(SkI4) and the RMF(NL3) results for binding energy BE, two-neutron separation energy
S2n, and the quadrupole deformation parameter β2, compared with the finite range droplet model (FRDM) data [37].
The energy is in MeV.

Nucleus SHF(SkI4 parameter set) RMF(NL3 parameter set) FRDM results

BE S2n β2 BE S2n β2 BE S2n β2

294 2045.52 16.29 0.534 2062.49 16.71 0.530 2053.16 −0.155
296 2061.74 15.94 0.529 2078.46 16.21 0.527 2068.99 15.84 −0.130
298 2077.44 15.34 0.526 2093.81 15.70 0.536 2084.26 15.26 −0.096
300 2092.62 14.81 0.526 2108.67 15.18 0.548 2099.64 15.38 0.009
302 2107.30 14.34 0.529 2123.01 14.68 0.562 2113.98 14.34 0.418
304 2121.47 13.82 0.545 2136.83 14.17 0.603 2126.87 12.89 0.000
306 2132.71 13.20 0.556 2150.03 13.76 0.608 2139.43 12.56 0.000
308 2148.31 12.45 0.560 2162.49 13.08 0.618 2150.84 11.41 0.001
310 2160.66 12.00 0.571 2174.49 12.35 0.641 2162.05 11.22 0.003
312 2172.58 12.62 0.584 2187.10 11.92 0.742 2173.42 11.36 0.005
314 2184.17 12.02 0.594 2199.12 11.59 0.739 2184.67 11.25 0.006
316 2295.39 11.37 0.595 2210.49 11.22 0.736 2195.74 11.07 0.007
318 2206.30 10.65 0.588 2221.02 10.91 0.722 2214.11 18.37 0.541
320 2216.96 10.21 0.575 2231.23 10.67 0.728 2224.88 10.76 0.543

make the two curves overlap with one another. This means that
a slight modification of the parameter set of one formalism can
predict a binding energy similar to that of the other.

Table I shows a comparison of the calculated binding ener-
gies with the finite range droplet model (FRDM) predictions
of Ref. [37], wherever possible. The two-neutron separation
energy S2n(N,Z) = BE(N,Z) − BE(N − 2, Z) is also listed
in Table I. From the table, we find that the microscopic
binding energies and the S2n values agree well with the
macro-microscopic FRDM calculations. The comparisons of
S2n for the SHF and RMF models with the FRDM result
are further shown in Fig. 3, which shows clearly that the
two S2n values coincide remarkably well, except at mass
A = 318 which seems spurious due to some error somewhere
in the case of FRDM. Apparently, the S2n valeus decrease
gradually with increase of the neutron number, except for the
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S
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SHF (SkI4)
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FIG. 3. The two-neutron separation energy S2n for 282−320122
nuclei, obtained from SHF(SkI4) and RMF(NL3) formalisms and
compared with the FRDM results [37] wherever available.

noticeable kinks at A = 294 (N = 172) and 312 (N = 190)
in RMF and at A = 304 (N = 182) and 308 (N = 186) in
FRDM. Interestingly, these neutron numbers are close to either
N = 172 or 184 magic numbers. However, the SHF results are
smooth.

The binding energy per particle for the isotopic chain is
also plotted in Fig. 4. We notice that here again the SHF and
RMF curves could be overlapped with one another through
a constant scaling factor, and the FRDM calculation lies in
between these two calculations. This means, qualitatively, all
three curves show a similar behavior. However, unlike the
BE/A curve for SHF or RMF, the FRDM results do not
show the regular behavior. In general, the BE/A value starts
increasing with the increase of mass number A, reaching a
peak value at A = 302 for all three formalisms. This means
that 302122 is the most stable element from the binding energy

280 284 288 292 296 300 304 308 312 316 320
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FIG. 4. The binding energy per particle BE/A for the super-
heavy isotopes 282−320122 obtained in SHF(SkI4) and RMF(NL3)
formalisms compared with the FRDM results [37] wherever available.
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FIG. 5. (a) The pairing energy Epair for the ground and first
excited states and (b) the pairing energy difference �Epair between the
Epair values of ground and first excited states [�Epair = Epair(g.s.) −
Epair(e.s.)] as a function of the mass of nucleus, using the relativistic
mean-field formalism RMF(NL3).

point of view. Interestingly, 302122 is situated toward the
neutron-deficient side of the isotopic series of Z = 122 and
could be taken as a suggestion to synthesize this superheavy
nucleus experimentally.

Certainly, pairing is important for open shell nuclei. How-
ever, for a given nucleus, its value depends only marginally on
the quadrupole deformation β2. This means that for differing
β2 values in a nucleus, the pairing energy Epair changes only
marginally (∼5–6%). On the other hand, even if the β2 values
for two nuclei are same, the Epair values are different from one
another, depending on the filling of the nucleons. This result
is illustrated in Fig. 5 for the RMF(NL3) calculation, where
the pairing energy Epair for both the ground state (g.s.) and
the first excited state (e.s.), referring to different β2 values, are
plotted in panel (a) for the full isotopic chain. The difference in
the two Epair values, i.e., �Epair = Epair(g.s.) − Epair(e.s.), is
given in Fig. 5(b). It is clear from Fig. 5(a) that Epair decreases
with an increase in mass number A; i.e., even if the β2 values
for two nuclei are the same, the pairing energies are different
from one another. This change of the Epair value is ∼25% in
going from, say, A = 294 to 320. In Fig. 5(b), the �Epair value
is ∼5–6% of the Epair for many of the nuclei because of their
two different configurations (g.s. and first e.s.).

D. Shape coexistence

We have also calculated the “free solutions” for the
whole isotopic chain, both in prolate and oblate deformed
configurations. In many cases, we find low-lying excited states.
As a measure of the energy difference between the ground band
and the first excited state, we have plotted in Fig. 6 the binding
energy difference �E between the two solutions, noting that
the maximum binding energy solution refers to the ground state
and all other solutions refer to the intrinsic excited state(s).
From Fig. 6, we notice that, in RMF calculations, the energy

280 284 288 292 296 300 304 308 312 316 320
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RMF (NL3)
SHF (SkI4)

∆Ε
 (M

eV
)

FIG. 6. The energy difference between the ground state and the
first excited state in both nonrelativistic SHF(SkI4) and relativistic
RMF(NL3) formalisms.

difference �E is small for neutron-deficient isotopes, but it
increases with the increase of mass number A in the isotopic
series. This small difference in the binding energy for neutron-
deficient isotopes is an indication of shape coexistence. In other
words, the two solutions in these nuclei are almost degenerate
and might have large shape fluctuations. On the other hand,
in SHF formalism, the �E value remains small throughout
the isotopic chain. For example, in 308122 the two solutions
for β2 = 0.56 and β2 = 0.008 are completely degenerate with
binding energies of 2148.31 and 2148.12 MeV. This later result
suggests that the ground state can be changed to the excited
state and vice versa by a small change in the input, like the
pairing strength, etc., in the calculations. In any case, such a
phenomenon is known to exist in many other regions [38] of
the periodic table.

E. Quadrupole deformation parameter

The quadrupole deformation parameter β2, for both the
ground state and the first excited states, is also determined
within the two formalisms. In some of the earlier RMF and
SHF calculations, it was shown that the quadrupole moment
obtained from these theories reproduce the experimental data
pretty well [13,18,20–23,30,39,40]. We have seen in Fig. 1
that both the ground state and intrinsic excited quadrupole
deformation parameters for SHF and RMF results agree well
with each other (the same is true for “free solutions,” not shown
here). However, the ground state (g.s.) quadrupole deformation
parameter β2 values plotted in Fig. 7 for SHF and RMF
formalisms, and compared with FRDM results [37], show that
the FRDM results differ strongly. In both the SHF and RMF
results, we find highly deformed oblates solutions in the g.s.
configuration for isotopes near the low mass region. Then,
with increase of mass number there is a shape change from
highly oblate to highly prolate in both SHF and RMF models.
Interestingly, most of the isotopes are superdeformed in their
g.s. configurations, and because of the shape coexistence
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FIG. 7. Comparison of quadrupole deformation parameters ob-
tained from nonrelativistic SHF formalism, SHF(SkI4), and relativis-
tic mean-field formalism, RMF(NL3), compared with the FRDM
results [37] wherever available.

properties of these isotopes, sometimes it is possible that the
g.s. could be the hyperdeformed solution.

F. Nuclear radii

The rms radii for proton (rp), neutron (rn), and matter (rm)
distributions are shown in Figs. 8(a) and 8(b), respectively,
for SHF and RMF formalisms. Figure 8(a) shows the SHF
calculations and Fig. 8(b) the RMF calculations. As expected,
the neutron and matter distribution radii increase with in-
creases of the neutron number. Although, the proton number
Z = 122 is constant in the isotopic series, the value of rp also
increases as shown in the figure. This trend is similar in both
the formalisms. A detailed inspection of the figure shows that,
in the RMF calculation, the radii show a jump at A = 312
(N = 190) after the monotonic increase of radii to A = 310.

6.4

6.6

6.8

7

280 284 288 292 296 300 304 308 312 316 320

6.4

6.6

6.8

7

r
n

r
p

r
m

A

r rm
s (

fm
)

SHF (SkI4)

 RMF (NL3)

(a)

(b)

FIG. 8. The rms radii of proton (rp), neutron (rn), and matter
(rm) distributions for 282−320122 nuclei using (a) nonrelativistic SHF
formalism, SHF(SkI4), and (b) relativistic mean-field formalism,
RMF(NL3).

Note that a similar trend was observed in RMF calculations
for S2n (see Fig. 3).

G. The Qα energy and the decay half-life Tα

We choose the nucleus 292122 (Z = 122, N = 170) for
illustrating our calculations of the α-decay chain and the half-
life time Tα . The Qα energy is obtained from the relation [41]

Qα(N,Z) = BE(N,Z) − BE(N − 2, Z − 2) − BE(2,2).

Here, BE(N,Z) is the binding energy of the parent nucleus
with neutron number N and proton number Z, BE(2,2) is
the binding energy of the α particle (4He), i.e., 28.296 MeV,
and BE(N − 2, Z − 2) is the binding energy of the daughter
nucleus after the emission of an α particle.

The binding energies of the parent and daughter nuclei are
obtained by using both the RMF and SHF formalisms. Our
predicted results are compared in Table II with the FRDM
calculation of Ref. [37] and the experimental data [42,43],
wherever possible. The Qα values are then calculated; they
are shown in Table II and in Fig. 9(b). Then, the half-life
log10 Tα(s) values are estimated by using the phenomeno-
logical formula of Viola and Seaborg [44]: log10 Tα(s) =
aZ−b√

Qα
− (cZ + d), where Z is the atomic number of the

parent nucleus, a = 1.66175, b = 8.5166, c = 0.20228, and
d = 33.9069. The calculated log10 Tα(s) values are also given
in Table II and in Fig. 9(a).

From Figs. 9(a) and 9(b) and Table II, we notice that the
calculated values for both Qα and Tα(s) agree quite well with
the FRDM predictions, as well as with the known experimental
data. For example, the value of Tα , in both the FRDM and RMF
model, coincides well with the data for the 264Hs nucleus.
Similarly, for 276114, the SHF prediction matches the FRDM
result. Possible shell structure effects in Qα , as well as in
Tα(s), are noticed for the daughter nucleus A = 256 (Z =
104, N = 152) and 284 (Z = 118, N = 166) in SHF and for
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FIG. 9. (a) The half-life time Tα for 292122 nucleus and (b) the Qα

energy for the 292122 nucleus using the nonrelativistic SHF formalism,
SHF(SkI4), the relativistic mean-field formalism, RMF(NL3), and the
FRDM data [37].
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TABLE II. The Qα and Tα calculated in the SHF(SkI4) and the RMF(NL3) models and compared with the finite range droplet model
(FRDM) results [37] as well as the experimental data [42,43], wherever available. The binding energies marked with an asterisk (*) are the
extrapolated values. The energy is in MeV and the half-life time in seconds.

Nucleus Z SHF(SkI4 parameter set) RMF(NL3 parameter set) FRDM results Experimental results

BE Qα Tα BE Qα Tα BE Qα Tα BE Qα Tα

292 122 2028.81 14.31 10−7.23 2046.19 13.83 10−6.35

288 120 2014.82 13.13 10−5.49 2031.75 12.35 10−3.85 2023.06 13.98 10−6.07

284 118 1999.65 14.86 10−9.11 2015.80 12.87 10−5.48 2008.69 12.70 10−4.08

280 116 1986.21 13.89 10−7.93 2000.37 12.92 10−6.10 1993.49 12.42 10−5.10

276 114 1971.80 12.30 10−5.37 1984.99 11.82 10−4.33 1977.62 12.33 10−5.44

272 112 1955.80 12.33 10−5.97 1968.51 11.45 10−4.07 1961.66 11.61 10−4.45

268 110 1939.83 11.86 10−5.54 1951.66 10.92 10−3.41 1944.97 10.94 10−3.47 1943.00∗ 11.5 10−4.76

264 108 1923.39 10.25 10−2.34 1934.28 10.19 10−2.19 1927.62 10.57 10−3.18 1926.67 10.65 10−3.3

260 106 1905.34 9.59 10−1.10 1916.17 9.98 10−2.27 1909.90 9.93 10−2.15 1908.92 9.70 10−1.5

256 104 1886.63 9.71 10−2.20 1897.85 7.53 104.95 1891.53 8.75 100.59 1890.56 8.90 100.13

252 102 1868.04 8.71 100.02 1877.08 8.02 102.32 1871.98 8.35 101.19 1871.35∗ 8.50 100.67

248 100 1848.45 7.34 104.08 1856.80 7.18 104.72 1852.03 7.64 102.91 1851.57 8.0 101.60

244 98 1827.49 7.37 103.14 1835.68 6.85 105.26 1831.38 6.90 105.01 1831.22 7.32 103.30

240 96 1806.56 6.63 103.34 1814.23 5.91 108.82 1809.98 6.52 105.81 1805.52 6.40 106.36

236 94 1784.89 6.10 105.90 1791.84 5.64 109.26 1788.21 5.77 108.54 1788.41 5.87 108.03

232 92 1762.69 6.09 105.98 1768.19 5.54 108.82 1754.15 5.14 1011.18 1765.98 5.41 109.50

A = 256 (A = 104, N = 152) and 288 (Z = 120, N = 168)
in RMF calculations. Note that some of these proton or neutron
numbers refer to either observed or predicted magic numbers.

IV. SUMMARY

Concluding, we have calculated the binding energy, rms
radius, and quadrupole deformation parameter for the possibly
discovered Z = 122 superheavy element recently. From the
calculated binding energy, we also estimated the two-neutron
separation energy for the isotopic chain. We employed both the
SHF and RMF formalisms to see the formalism dependence of
the results. We found qualitatively similar predictions in both
techniques. A shape change from oblate to prolate deformation
is observed with an increase of isotopic mass number at
A = 290. The ground state structures are highly deformed,
which are comparable to superdeformed or hyperdeformed

solutions, in agreement with the observations of Ref. [17] for
the superheavy region. From the binding energy analysis, we
found that the most stable isotope in the series is 302122, instead
of the observed 292122, considered to be a neutron-deficient
nucleus. Our predicted α-decay energy Qα and half-life time
Tα agree nicely with the FRDM calculations and available
experimental data. Some shell structure is also observed in
the calculated quantities at N = 172 or 190 for RMF and at
N = 182–186 for SHF calculations for the various isotopes of
the Z = 122 nucleus.
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