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The energies of subsets of excited 0+ states in geometric collective models are investigated and found to
exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula,
dependent on only the number of dimensions, describes a subset of 0+ states. The same behavior of a subset of
0+ states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the
critical point of a first-order phase transition, in contrast to the fact that these 0+ state energies exhibit a harmonic
behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0+ energies are analyzed
in terms of the underlying group theoretical framework of the different models.
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I. INTRODUCTION

One of the overarching themes of the science of com-
plex many-body systems is to understand the remarkable
regularities they often exhibit and try to relate these to
underlying symmetries of the system. In nuclei, this challenge
is approached through the use of geometric and algebraic
models that describe collective behavior of the nuclear system.
There are a large number and variety of such models, each with
seemingly unique properties and predictions. Nevertheless,
careful analysis often shows relations among such models
that have escaped notice and therefore leads to a better
understanding of their mutual interrelationships and, often,
to experimental tests and constraints on their applicability.

In the present work, we will focus on the properties of
subsets of 0+ states in nuclei. In general, 0+ states are of
fundamental importance because they are easily observed
experimentally in reactions such as few nucleon transfer [1–3]
or β decay [4]. Although not all 0+ states are collective in
nature, they are always intrinsic excitations of the ground-state
condensate and are free of some of the complications (such
as centrifugal effects) present in other states. In the present
work, we focus on the properties of a subset of collective 0+
states. We will show that broad classes of seemingly diverse
models actually yield identical predictions for that subset of
0+ states. One upshot of this analysis will be the development
of extremely simple, analytic eigenvalue expressions that, in
one case, depend only on the dimensionality of the system and,
in another, turn out to transcend the symmetry structure.

Our approach primarily exploits two classes of models,
namely the interacting boson approximation (IBA) model and
geometric descriptions of nuclei at critical points of quantum
phase transitions in their equilibrium structure. Therefore, we
start by briefly recalling pertinent features of these models. The
IBA model [5] describes collective structure in terms of bosons
of angular-momentum zero (s bosons) and two (d bosons)
in the framework of an overall U(6) symmetry. Emerging
from the U(6) symmetry group structure are three dynamical
symmetries that have long been benchmark paradigms of
structure: U(5), which gives vibrational structure characteristic

of spherical nuclei; SU(3), which describes axially symmetric
deformed rotors; and O(6), which pertains to deformed
nuclei that are soft with respect to axial asymmetry (γ -soft).
Shape/phase transitions in atomic nuclei were discussed [6]
many years ago in the classical analog [7,8] of the IBA.

To visualize these limiting symmetries and the transitions
between them, it is common to place them at the corners
of a symmetry triangle [9], as shown in Fig. 1 (top). In
the IBA framework, a point of first-order phase transition
occurs between U(5) and SU(3), while a point of second-order
phase transition occurs between U(5) and O(6). The triangle
is divided into two regions, spherical and deformed, by a
narrow shape coexistence region [10] extending around the
line of first-order phase transition connecting the two points
mentioned above. In the classical limit of the IBA, obtained
through use of the intrinsic state formalism [7,8], one can
use [11] Landau theory to delineate a similar phase transitional
behavior.

More recently, phase transitions have been investigated
in a geometrical framework. The critical point symmetries
E(5) [12] and X(5) [13] have been developed to describe
phase/shape transitions between vibrational to γ -soft and
vibrational to axially symmetric deformed, respectively, using
special solutions of the Bohr Hamiltonian [14]. These solutions
are analytic and parameter free, except for scale. In Fig. 1
(bottom), we indicate their position close to the critical point
of a phase transition in a symmetry triangle for geometrical
models. The concept of critical point symmetries (CPS) is
supported by the observation of nuclei exhibiting such prop-
erties [15–20]. Their success has spawned the development
of numerous additional geometrical models, several of which
offer analytic solutions and cover a wider range of structures
both before and after the phase-transitional point.

Links between the geometrical approach and the IBA
formalism have also found renewed interest. A powerful
method for solving the Bohr Hamiltonian numerically has
recently been developed [21], leading to an algebraic collective
model [22]. Examples of the use of this method have recently
been presented [23]. The relationship between the algebraic
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FIG. 1. (Top) Symmetry triangle with the three IBA dynamical
symmetries placed at the vertices. The phase-transition region is
indicated by the slanted lines. (Bottom) Similar triangle in a
geometrical framework. The critical point symmetries E(5) and X(5)
are located close to the phase-transition region of the IBA. The models
E(5)-β2k and X(5)-β2k span structures between a vibrator and the
critical point symmetries.

collective model and the different limiting symmetries of the
IBA has been studied in Refs. [24,25]. The connection between
geometrical models spanning structure near E(5) and the IBA
has also been investigated [26].

A key prediction of the CPS involves the energy of the first
excited 0+ state. The nature of low-lying 0+ states is critical to
understanding the structure of nuclei and changes in structure
[3,27,28]. Although there is some debate as to the nature [29] of
low-lying 0+ states, the fact that the energies of 0+ states evolve
rather smoothly as a function of changing structure cannot be
ignored. This has been pointed out previously in Ref. [30]. We
illustrate this in a similar way in Fig. 2, plotting the relationship
between a level of the ground-state band, E(6+

1 ), and the first
excited 0+ state, E(0+

2 ), as a function of R4/2 ≡ E(4+
1 )/E(2+

1 )
for all even-even nuclei with Z > 40. Despite the enormous
range of structures encompassed in the plot, an overall compact
trajectory emerges.

The primary purpose of the present work is to investigate
the energies of 0+ states in a wide range of models. In
some cases the analysis applies to all collective 0+ states,
in others to classes of 0+ states that act as bandheads for
major families of states. For a broad class of models, we
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FIG. 2. Experimental [E(0+
2 )-E(6+

1 )]/E(2+
1 ) values plotted as a

function of the R4/2 ≡ E(4+
1 )/E(2+

1 ) ratio for all even-even nuclei
with Z > 40. Data from Ref. [31].

will discuss some remarkable regularities, develop analytic
expressions for the eigenvalues of these states that depend
only on the dimensionality of the system, relate these results
to more general models, and discuss the group theoretical
properties underlying these regularities. We begin within the
framework of the different solutions of the Bohr Hamiltonian.
We then do a similar analysis within the framework of the
IBA and then finally investigate the links between these
two different approaches. Some of this material has been
previously summarized [32,33].

II. 0+ STATES IN SOLUTIONS OF THE BOHR
HAMILTONIAN

Numerous models are emerging that provide a reasonable
description of certain nuclei using an infinite square well
potential. E(5) and X(5) are special solutions of the Bohr
Hamiltonian describing collective nuclear properties in terms
of the shape variables β and γ . Both take the potential in β as
an infinite square well but use different potentials in γ ; X(5)
uses a harmonic oscillator potential in γ that has a minimum
at γ = 0◦, whereas E(5) takes a potential independent of γ .
Additional solutions that make use of infinite square well
potentials in β include Z(5) [34], which uses a harmonic
oscillator potential in γ with a minimum at γ = 30◦, Z(4) [35]
where γ is frozen to 30◦, and X(3) [36] where γ is fixed at 0◦.

In each of the infinite square well solutions, the energy
eigenvalues are proportional to the squares of roots of the
Bessel functions, Jν(z), where the order ν is different for each
solution. The orders of the Bessel functions obtained in the
E(5), X(5), Z(5), Z(4), and X(3) models are summarized in
Table I, along with the dimension, D, of each model and
the value of ν for Jπ = 0+ states. The dimension effectively
refers to the number of degrees of freedom of the model. For
example, the five-dimensional models are described by β, γ ,
and the three Euler angles.

In the X(3) and Z(4) models, we consider all excited 0+
states. In X(5) and Z(5), the solutions are obtained through an
approximate separation of the β and γ degrees of freedom. We
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TABLE I. Order ν, dimension, D, of the model space and
ν for J π = 0+ states in the geometrical models E(5), X(5),
Z(5), Z(4), and X(3). J is the spin of the level, τ = J/2 (in the
ground-state band), and nw is the wobbling quantum number
[37], which is zero for 0+ states.

Model ν D ν (J = 0+)

E(5) τ + 3
2 5 3

2

X(5)
√

J (J+1)
3 + 9

4 5 3
2

Z(5)
√

J (J+4)+3nw (2J−nw )+9
2 5 3

2

Z(4)
√

J (J+4)+3nw (2J−nw )+4
2 4 1

X(3)
√

J (J+1)
3 + 1

4 3 1
2

consider those 0+ states arising from the β solution, as they
are directly related to the infinite square well potential. In the
E(5) solution, we consider those 0+ states with τ = 0, that is,
those 0+ states that correspond to base states on which major
families of levels are built.

Traditionally, the excitation energy of the first excited 2+
state is used to set the overall scale for these models. However,
in some cases, using a different normalization can reveal
physics not otherwise very evident. In particular, one can
sometimes see relations among states of the same angular
momentum by normalizing to the first excited state of that spin.
Hence, here, we scale to the energy of the first excited 0+ state,
0+

2 . It turns out that this approach allows the relative energies of
these excited 0+ states to be well described by simple formulas.
For the 0+ states we use the usual notation, 0+

m, where m = 1
corresponds to the ground state, m = 2 denotes the first excited
0+ state, and so on, within each of the subsets of 0+ states,
described above.

The energies of the 0+
m states in the X(3) model are given

in Table II. Normalizing to the first excited 0+ state, 0+
2 , the

energies are described exactly by

E
(
0+

m

) = An(n + 2), n = m − 1, (1)

where n gives the sequencing of 0+ states defined such that the
first excited 0+ state corresponds to n = 1, and A is a scaling
factor.

In the Z(4) model, normalizing to the first excited 0+ state,
the 0+

m states increase approximately as

E
(
0+

m

) = An(n + 2.5), n = m − 1, (2)

where again, A is a scaling factor dependent on the particular
model.

The energies of 0+
m states in the E(5), Z(5), and X(5) models,

normalized to the 2+
1 state, are given in Table II. Although these

energies are quite different, by normalizing to the first excited
0+ state, the models produce exactly identical results, as seen
on the right of Table II. These energies very closely follow the
simple formula

E
(
0+

m

) = An(n + 3), n = m − 1. (3)

Equation (3) is not an exact description of the 0+ energies in
E(5), Z(5), and X(5); however, it does provide a very accurate
approximation. Through n = 10, the model 0+ energies
deviate from the expression given in Eq. (3) on the order of
less than 0.1%.

The above empirical results can all be combined into a
single, simple formula describing the 0+

m states in any model
with an infinite square well potential by

E
(
0+

m

) = An

(
n + D + 1

2

)
, n = m − 1, (4)

where D is the number of dimensions and A again depends on
the model. Equation (4) is exact only for D = 3. As mentioned
previously, for other values of D and low values of ν, it is a
very accurate approximation.

Equation (4) stems from particular relations between the
zeros of the Bessel functions that are involved in the solutions
to the infinite square well models. Given the Bessel function
Jν(z), with roots zs , s = 1, 2, 3, . . . we empirically observe
that the following approximate relation holds

Eν(n) = z2
n − z2

0

z2
1 − z2

0

= n
(
n + ν + 3

2

)
ν + 5

2

, (5)

where n = s − 1. We call Eν(n) the spectrum of the roots
of Jν , because this quantity corresponds to energy spectra in
models describing atomic nuclei.

The relation given in Eq. (5) is exact only in the case
ν = 1/2, as one can see from the expansions of roots of
Bessel functions given in Ref. [38] (Eq. 9.5.12). Numerical
results are shown in Table III. It is clear that the approximation

TABLE II. Energies of 0+
m states in different geometrical models using an infinite square well potential.

Columns labeled 2+
1 (0+

2 ) are normalized to the first excited 2+ (0+) energies.

0+
m X(3) X(3) Z(4) Z(4) E(5) Z(5) X(5) E(5),Z(5),X(5)

2+
1 0+

2 2+
1 0+

2 2+
1 2+

1 2+
1 0+

2

0+
1 0 0 0 0 0 0 0 0

0+
2 2.87 1.0 2.95 1.0 3.03 3.91 5.65 1.0

0+
3 7.65 2.67 7.60 2.57 7.58 9.78 14.12 2.50

0+
4 14.34 5.00 13.93 4.71 13.64 17.61 25.41 4.50

0+
5 22.95 8.00 21.95 7.43 21.22 27.39 39.53 7.00

0+
6 33.47 11.67 31.65 10.72 30.31 39.12 56.47 10.00
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TABLE III. Exact spectra of several Bessel functions Jν [labeled by Eν(n)] compared to the corresponding n(n + x) approximate
expressions (labeled by x). J3/2 occurs in E(5), X(5), and Z(5). J1/2 occurs in X(3). J1 occurs in Z(4). J0, J1, J2, J3 occur in the pairing
case [39].

n E0(n) x = 1.5 E1/2(n) x = 2 E1(n) x = 2.5 E3/2(n) x = 3 E2(n) x = 3.5 E5/2(n) x = 4 E3(n) x = 4.5

1 1.000 1.0 1.000 1.000 1.000 1.000 1.000 1.0 1.000 1.000 1.000 1.0 1.000 1.000
2 2.799 2.8 2.667 2.667 2.572 2.571 2.500 2.5 2.443 2.444 2.397 2.4 2.358 2.364
3 5.398 5.4 5.000 5.000 4.715 4.714 4.499 4.5 4.329 4.333 4.192 4.2 4.077 4.091
4 8.796 8.8 8.000 8.000 7.430 7.429 6.999 7.0 6.659 6.667 6.385 6.4 6.157 6.182
5 12.993 13.0 11.667 11.667 10.716 10.714 9.998 10.0 9.433 9.444 8.977 9.0 8.599 8.636
6 17.990 18.0 16.000 16.000 14.574 14.571 13.497 13.5 12.651 12.667 11.968 12.0 11.403 11.455
7 23.787 23.8 21.000 21.000 19.004 19.000 17.496 17.5 16.313 16.333 15.357 15.4 14.568 14.636
8 30.383 30.4 26.667 26.667 24.005 24.000 21.995 22.0 20.418 20.444 19.145 19.2 18.095 18.182
9 37.779 37.8 33.000 33.000 29.577 29.571 26.993 27.0 24.967 25.000 23.332 23.4 21.983 22.091
10 45.974 46.0 40.000 40.000 35.721 35.714 32.492 32.5 29.960 30.000 27.918 28.0 26.233 26.364

deteriorates rather slowly with increasing n (while keeping ν

constant), while it deteriorates faster with increasing ν (while
keeping n constant).

For the Bessel function Yν(z), with roots zs , s = 1, 2, 3, . . .

(not used in this article), we observe that the following
approximate relation holds

Eν(n) = z2
n − z2

0

z2
1 − z2

0

= n
(
n + ν + 1

2

)
ν + 3

2

, (6)

where n = s − 1. This formula is exact only in the case
ν = 1/2. Similar to the results obtained for the Bessel function
Jν(z) relations, the approximation deteriorates rather slowly
with increasing n (while keeping ν constant), while it deterio-
rates faster with increasing ν (while keeping n constant).

These results are applicable outside of the models discussed
above. As an example, Eq. (4) applies to a recent model [39]
describing the critical point of a pairing vibration to pairing
rotation phase transition. Here the energies of 0+ states, which
span two degrees of freedom, the excitation energies of a
particular nucleus and the masses along a series of even-even
nuclei, can be described. In addition, these results would
be applicable to hadronic spectra, which have recently been
described [40] in terms of roots of Bessel functions.

We can go further and generalize Eq. (3) for a broader
range of models. The Bohr Hamiltonian can also be solved
with potentials in β of the form V ∼ β2k , giving the so-called
E(5)-β2k model [41] and the X(5)-β2k model [42], using the
γ dependence characteristic of E(5) and X(5), respectively.
These models allow for a description of structure between
vibrational-like and the infinite square well solutions by
increasing the power of β in the potential. For example, in the
E(5)-β2k case, β2 gives the vibrational limit and as the power of
β goes to infinity, the E(5) solution is reached. The evolution of
both models is included schematically in Fig. 1 (bottom). The
predicted 0+ energies of the β2k models are plotted in Fig. 3
(top) normalized to the first 2+ state energy. As evident from
Fig. 3 (top), with increasing powers of β in the potential, the
0+ energies evolve gradually toward the infinite square well
predictions. However, again, the E(5) and X(5) related models
seemingly give different results. If instead, we normalize each
energy to that of the first excited 0+ energy, these models

produce exactly identical results for a given β2k potential, as
seen in Fig. 3 (bottom). The normalized E(0+

m) energies can
be reproduced with a generalized version of Eq. (3) given by

E
(
0+

m

) = An(n + x), n = m − 1, (7)
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FIG. 3. (Color online) (Top) Excited 0+ state energies in the
E(5)-β2k and X(5)-β2k models, normalized to the 2+

1 state energy.
(Bottom) Same as top but with the energies normalized to the first
excited 0+ state energy. IW is the infinite square well potential used
in the original E(5) and X(5) solutions.
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where x is some number. The values of x obtained by fitting
the first two 0+ state energies in each model with Eq. (7) are
included in Fig. 3. For a harmonic oscillator potential in β,
x = ∞, because the bandhead 0+ energies increase linearly
[i.e., when considering the ratio of energies the term in
parenthesis in Eq. (7) disappears]. As the power of β in the
potential is increased, the value of x decreases, reaching the
limiting value of 3 for the infinite square well.

III. 0+ STATES IN THE EUCLIDEAN ALGEBRAS E(n)

In the solutions of the Bohr Hamiltonian with an infinite
square well potential in the β degree of freedom, the
regularities observed for 0+ states can be related to the
second-order Casimir operator of E(D), the Euclidean group
in D dimensions. To see this, one can consider in general
the Euclidean algebra in D dimensions, E(D), which is the
semidirect sum [43] of the algebra TD of translations in D

dimensions, generated by the momenta

Pj = −i
∂

∂xj

, (8)

and the SO(D) algebra of rotations in D dimensions, generated
by the angular momenta

Ljk = −i

(
xj

∂

∂xk

− xk

∂

∂xj

)
, (9)

symbolically written as E(D) = TD ⊕s SO(D) [44].
The generators of E(D) satisfy the commutation relations

[Pi, Pj ] = 0, [Pi, Ljk] = i(δikPj − δijPk), (10)

[Lij , Lkl] = i(δikLjl + δjlLik − δilLjk − δjkLil). (11)

From these commutation relations, the square of the total
momentum, P 2, is a second-order Casimir operator of the
algebra, while the eigenfunctions of this operator satisfy the
equation[

− 1

rD−1

∂

∂r
rD−1 ∂

∂r
+ ω(ω + D − 2)

r2

]
F (r) = k2F (r),

(12)

where on the left-hand side of Eq. (12) the eigenvalues of the
Casimir operator of SO(D), ω(ω + D − 2) appear [45]. Using
the transformation

F (r) = r (2−D)/2f (r), (13)

and

ν = ω + D − 2

2
, (14)

Eq. (12) can be written as(
∂2

∂r2
+ 1

r

∂

∂r
+ k2 − ν2

r2

)
f (r) = 0, (15)

the eigenfunctions of which are the Bessel functions f (r) =
Jν(kr) [38].

The “radial” equations in the infinite square well models
E(5) [12], X(5) [13], Z(5) [34], Z(4) [35], and X(3) [36] are

obtained, after the transformation of Eq. (13) has been per-
formed, in the form of Eq. (15), with the order ν summarized
in Table I.

In E(5), Eq. (14) and the corresponding order ν given
in Table I coincide with D = 5 and ω = τ , where τ (τ + 3)
represents the eigenvalues of the second-order Casimir opera-
tor of SO(5). Thus all states obey Eq. (15).

In X(5), where again D = 5, Eq. (14) and the corresponding
order ν given in Table I would agree for J (J + 1)/3 = ω(ω +
3). This does not hold for any J in general, but it is satisfied
for J = 0 = ω. Thus all 0+ bandheads obey Eq. (15).

In Z(5), where again D = 5, Eq. (14) and the corresponding
order ν given in Table I would agree for nw = 0 and for
J (J + 4)/4 = ω(ω + 3). Again, this does not hold for any J in
general, but it is satisfied for J = 0 = ω. Thus 0+ bandheads
with nw = 0 obey Eq. (15).

In the case of Z(4) [35], in which D = 4, Eq. (14) and the
corresponding order ν given in Table I for nw = 0 obtain the
form ν = ω + 1 and ν = J/2 + 1, respectively. They agree
for J = 2ω, as already known [35]; therefore states with any
even J and nw = 0 obey Eq. (15).

In X(3), where D = 3, Eq. (14) and the corresponding order
ν given in Table I would agree for J (J + 1)/3 = ω(ω + 1).
Once again, this does not hold for any J in general, but it is
satisfied for J = 0 = ω. Thus 0+ bandheads obey Eq. (15).

The above situation is similar to a partial dynamical
symmetry [46] of Type I [47], where some of the states (the 0+
states in the present case) preserve all the relevant symmetry.

IV. THE IBA HAMILTONIAN AND SYMMETRY
TRIANGLE

To describe a wider range of structures, it is useful to use
a more general collective model than the specific solutions
described above. To this end, we exploit the IBA model, which
covers a gamut of structures with an economy of parameters.
To do so, we use an IBA Hamiltonian of the form [48]

H (ζ, χ ) = c

[
(1 − ζ )n̂d − ζ

4NB

Q̂χ · Q̂χ

]
, (16)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ (d†d̃)(2), NB is the
number of valence bosons, and c is a scaling factor. The
above Hamiltonian contains two parameters, ζ and χ , with
the parameter ζ ranging from 0 to 1, and the parameter
χ ranging from 0 to −√

7/2. The U(5) symmetry is given
by ζ = 0, any χ , the SU(3) symmetry by ζ = 1 and χ =
−√

7/2, and the O(6) symmetry by ζ = 1 and χ = 0. With
this parametrization, the entire symmetry triangle, shown
in Fig. 1, can be described, along with each of the three
dynamical symmetry limits. Calculations in this work have
been performed with the code IBAR [49,50], which has recently
been developed to handle large boson numbers.

In Sec. V, we discuss the fact that, in all three limiting
symmetries of the IBA, the energies of certain subsets of 0+
states exhibit harmonic behavior in the limit of large boson
numbers. (This result has also been derived [51,52] using the
coherent state formalism.) In contrast, we will show, in Sec. VI,
that near the critical point, the same subsets of 0+ states
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exhibit the n(n + 3) behavior found in the framework of the
geometrical models in Sec. II. Furthermore, near the critical
point these 0+ states in the large boson number limit of IBA
exhibit certain degeneracies with alternate members of the
ground-state band, calling for further investigation.

V. 0+ STATES IN THE LIMITING SYMMETRIES OF THE
INTERACTING BOSON MODEL

We begin an analysis in the IBA framework [5] by looking
at the three dynamical symmetry limits and analyzing the
behavior of the 0+ states in the analytic formulas appropriate
to each, especially in the large NB limit. Again, we consider
a particular subset of 0+ states, looking for simple patterns
common to all three symmetries, despite the diversity of the
structures they describe.

In the case of U(5), states are labeled by their quantum
numbers v and n�, where v is the seniority and n� is the
number of triplets of bosons coupled to angular-momentum
zero. There are two classes of 0+ states, those with n� = 0 and
those with n� = 1, 2, 3 . . . that are always found degenerate
with 3+ states. In the present work, we consider those
states with n� = 0, that is those 0+ states that are not degenerate
with 3+ states. These states correspond to base states on which
major families of levels are built. In the U(5) limit, the energies
of the 0+ states with n� = 0 are proportional to the number of
d bosons, nd , corresponding to their respective phonon number
(terms proportional to n2

d are also allowed, but are omitted in
the present consideration); thus, the energies increase linearly.

In the SU(3) limit of the IBA, the position of the 0+
bandheads is determined by the second-order Casimir operator
of SU(3). The eigenvalue expression for 0+ states, in terms of
the representation labels (λ, µ), is given by E = a[λ2 + µ2 +
λµ + 3(λ + µ)]. Here, we consider all 0+ states. Taking the
0+ state that belongs to the (2NB, 0) irreducible representation
(irrep) at zero energy, and normalizing to the first excited 0+
state, which belongs to the (2NB − 4, 2) irrep, we find for the
lowest 0+ states the results shown in Table IV. From Table IV
it is clear that at large boson numbers NB , we have two states
with normalized energy 2, two states with normalized energy
3, three states with normalized energy 4, and so on. In other
words, for large NB , the energies of the 0+ states in the SU(3)
limit of the IBA grow linearly.

In the case of O(6), states are labeled by their quantum
numbers σ and τ . One set of excited 0+ states is found within

the multiplet structure of a given σ family, has τ values of 3 or
larger, and always appears degenerate with J = 6+, 4+, and 3+
states. The other set of excited 0+ states forms the bandheads
of the different σ families, has τ = 0, and is not degenerate
with other states in the spectrum. We consider only those states
with τ = 0. In the O(6) limit of the IBA, the positions of the
0+ bandheads are determined by the second-order Casimir
operator of SO(6). The eigenvalue expression for τ = 0, J =
0 states in terms of the major family quantum number σ is
E = a σ (σ + 4), with σ = NB , NB − 2, . . . , 0 or 1. Taking
the 0+ state that belongs to the (NB) irrep at zero energy,
and normalizing to the first excited 0+ state belonging to the
(NB − 2) irrep, we obtain the results shown in Table IV. We
observe that 0+ bandheads in the O(6) limit of the IBA also
grow linearly in the limit of large boson numbers NB .

For all three IBA dynamical symmetry limits, the energies
of these sets of 0+ states are given by

E = An (17)

in the large NB limit. Thus, a single simple formula applies to
all three dynamical symmetry limits of the IBA despite the fact
that each describes a very different structure. It is interesting
that this harmonic behavior, appearing as a general feature of
IBA spectra, not only at the three limiting symmetries but also
in intermediate situations [51,52], is strongly violated near the
critical point, as we shall see in the next section.

VI. 0+ STATE ENERGIES AND DEGENERACIES IN THE
SHAPE COEXISTENCE REGION OF THE IBA

It has been recently observed [33] that the line describing
the degeneracy E(6+

1 ) = E(0+
2 ) (where 0+

2 is the first excited
0+ state) in the symmetry triangle of the IBA for large NB

(NB = 250) falls within the coexistence region of spherical
and deformed shapes, slightly to the right of the critical line
representing the first-order phase transition between U(5) and
SU(3). Similar results are obtained for the E(10+

1 ) = E(0+
3 )

and E(14+
1 ) = E(0+

4 ) degeneracies. These degeneracies are
interesting not only because they can possibly be associated
with underlying symmetries but also because the degeneracy
between E(0+

2 ) and E(6+
1 ) found near the critical point of the

IBA is also approximately given by the X(5) critical point
model. In what follows, we investigate further the degree to
which the IBA predictions near the critical point are related to
simple analytic formulas.

TABLE IV. Irreducible representations (irreps) of SU(3) and O(6) and the corresponding 0+ bandhead energies. In the case of SU(3),
energies are normalized to the 0+ bandhead with (λ, µ) = (2N − 4, 2), while in O(6) to the 0+ bandhead with σ = (N − 2). N stands for
the boson number, NB .

SU(3) O(6)

Irrep(λ,µ) E(0+) Irrep(λ,µ) E(0+) Irrep(λ,µ) E(0+) Irrep(σ ) E(0+)

(2N,0) 0 (N ) 0
(2N − 4,2) 1 (N − 2) 1
(2N − 8,4) (4N − 6)/(2N − 1) (2N − 6,0) (4N − 3)/(2N − 1) (N − 4) 2 − (2/N )
(2N − 12,6) (6N − 15)/(2N − 1) (2N − 10,2) (6N − 10)/(2N − 1) (N − 6) 3 − (3/N )
(2N − 16,8) (8N − 28)/(2N − 1) (2N − 14,4) (8N − 21)/(2N − 1) (2N − 12,0) (8N − 18)/(2N − 1) (N − 8) 4 − (8/N )
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TABLE V. Predictions of the IBA (with NB = 250, χ =
−√

7/2, ζ = 0.473) compared to analytic expressions (see text).
On the left, excited 0+ energies are compared while on the right,
energies in the ground-state band are compared. Results are
normalized to E(2+

1 ) = 1.0, the numerical factors accompanying
n(n + 3) and J (J + 2) in the column headings reflecting this
normalization.

n Analytic IBA J Analytic IBA
3n(n+3)

2 E(0+
m) J (J+2)

8 E(J )

2 1.00 1.00
4 3.00 3.05

1 6.00 6.08 6 6.00 6.08
8 10.00 10.00

2 15.00 14.85 10 15.00 14.73
12 21.00 20.23

3 27.00 27.57 14 28.00 26.43
16 36.00 33.30

4 42.00 42.55 18 45.00 40.81

Along the U(5)-SU(3) leg (χ = −√
7/2) a degeneracy

between the 6+
1 state and the 0+

2 state occurs for ζ = 0.473
for NB = 250. This occurs very close to, but just beyond,
the critical point (ζcrit = 0.472 for NB = 250) of the phase
transition. Numerical results of the above IBA calculation are
given in Table V and compared with simple analytic formulas.
In the first three columns, the first four excited 0+

m states
(normalized to the energy of the 2+

1 state) obtained in this
calculation are compared to the predictions of Eq. (3), i.e.,
to the n(n + 3) formula. Very good agreement is obtained up
to n = 4. This result is what might be expected given the
similarity of the IBA coherent state energy functional at the
critical point with an infinite square well potential.

As mentioned above, successive ground band members with
J > 2 and J/2 odd are nearly degenerate with higher lying 0+
states. Trying to satisfy simultaneously the degeneracies E(6+

1 )
= E(0+

2 ) and E(10+
1 ) = E(0+

3 ) with the 0+ states obeying
Eq. (3), and the levels of the ground-state band obeying a
general equation of the form E(J ) = AJ (J + y), one obtains
y = 2, i.e., the levels of the ground-state band should grow as

E(J ) = AJ (J + 2), (18)

where, again, A is some number. In a very crude interpretation,
the J (J+2) empirical result can be thought of as the average
of the vibrational limit, where the energies go as J , and the
rotational limit, where the energies go as J (J+1).

The relevant connection to the 0+ expression is given by

J (J + 2) = 12n(n + 3). (19)

The predictions of the above-mentioned IBA calculation are
compared to the J (J + 2) predictions, which are normalized to
the energy of the 2+

1 state, in the right section of Table V. Good
agreement is obtained at lower levels, the deviation reaching
10% at J = 18. Also visible in the table are the approximate
degeneracies E(6+

1 ) = E(0+
2 ), E(10+

1 ) = E(0+
3 ), E(14+

1 ) =
E(0+

4 ), E(18+
1 ) = E(0+

5 ). These degeneracies hold to the 10%
level for J = 18.

In summary, IBA 0+ states (in the large boson number
limit) near the critical point on the U(5)-SU(3) line exhibit
the same n(n + 3) behavior seen in geometrical models
involving infinite square well potentials. Furthermore, these
0+ states demonstrate approximate degeneracies with alter-
nate members of the ground-state band, calling for further
investigations.

VII. CONCLUSIONS

Working within the framework of both algebraic and
collective models, we have investigated the energies of subsets
of excited 0+ states, pointing out regularities within and
similarities between the two different approaches. For models
employing an infinite square well potential in the β degree of
freedom, a single formula is derived for a subset of excited 0+
state energies, dependent only on the number of dimensions of
the model. The same regular behavior for 0+ states has been
found in IBA calculations (in the large boson number limit)
near the critical point of the first-order phase transition between
U(5) and SU(3), despite the fact that in all three limiting
symmetries of the IBA (in the large boson number limit) the
same 0+ states exhibit a harmonic behavior. Furthermore, these
successive 0+ states near the critical point exhibit degeneracies
with alternate yrast states, analogous to the near-degeneracy
that occurs between the first 6+ state and the first excited 0+
state in X(5), calling for further investigations. Finally, the
observed regularities in 0+ energies are discussed in terms of
the underlying group theoretical framework of the different
models.
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