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Improved variational many-body wave function in light nuclei
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We propose and implement a simple method for improving the variational wave function of a many-body
system. We have obtained a significant improvement in the binding energies, wave functions, and variance for
the light nuclei 3H, 4He, and 6Li, using the fully realistic Argonne (AV18) two-body and Urbana-IX (UIX)
three-body interactions. The energy of 4He was improved by about 0.2 MeV and the 6Li binding energy was
increased by ≈1.7 MeV compared to earlier variational Monte Carlo results. The latter result demonstrates the
significant progress achieved by our method, and detailed analyses of the improved results are given. With central
interactions the results are found to be in agreement with the “exact” calculations. Our study shows that the
relative error in the many-body wave functions, compared to two-body pair correlations, increases rapidly at least
proportionally to the number of pairs in the system. However, this error does not increase indefinitely since the
pair interactions saturate owing to convergence of cluster expansion.
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I. INTRODUCTION

The variational Monte Carlo (VMC) method has wide
applications and is an established powerful tool in the areas
of nuclear [1–11], molecular, and condensed matter [12]
physics. In nuclear physics, its importance can be gauged by
its relevance to a large number of calculations. In addition
to calculating energies and other properties of nuclei, it has
been employed to calculate the electromagnetic elastic and
transition form factors in 6Li [1], to calculate spectroscopic
factors in the 7Li(e,e′p) reaction [2], to calculate spectroscopic
amplitudes used as input to the distorted-wave Borm approx-
imation (DWBA) analysis of radioactive beam experiments
[3], and in astrophysical radiative capture reactions such as
d(α,γ )6Li, t(α,γ )7Li, and 3He(α,γ )7Be [4]. It has also been
used in a number of calculations in hypernuclei [5,6]. Equally
important is that it is used as a starting trial wave function,
where its quality is crucial, for Green’s function Monte Carlo
(GFMC) calculations [7–11]. The VMC method produces
good results for few-body systems when the constituent
particles interact with simple interactions. However, with
complicated interactions, the method gives only approximate
solutions for few-body systems and in addition the results
deteriorate rapidly as the number of particles increases in the
system [8,10]. In this paper, we propose and implement a
technique to improve upon the variational wave functions for
a many-body system where the constituent particles interact
through complicated interactions. First we analyze the effect
of the errors as a function of the number of particles in
the variational wave function and then correct them in a
suitable manner. We consider nuclear many-body systems,
where the nucleons interact through two-body AV18 [13]
and UIX [14] three-body interactions. These interactions are
extremely complicated in nature with complex operatorial
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dependence. The improved method is applied to the pair
correlation functions as well as to each pairwise link of the
three-body correlations of the total wave function for 3H, 4He,
and 6Li. The present results from the improved method account
for significant differences between the GFMC [8] and the
earlier VMC calculations. We also perform calculations with
central interactions (Minnesota [15] and Malfliet-Tjon V [16])
for 3H, 4He, and 6Li as well as 6He. Results for these are in
complete agreement with precise variational solutions that use
the stochastic variational method (SVM) [17]. It is hoped that
the present study and its follow-up on the suggested lines shall
be useful in calculations in light nuclei. We confine ourselves to
the known nuclear correlations and their structures as proposed
and developed by Pandharipande and collaborators [18–22].
For brevity, we shall write it as the PANDC Collaboration.

Usually, the variational wave function for a complicated
interaction similar to AV18 is approximate on two counts. First,
there are approximations in the radial shape of the functions;
second, the correlation structures in themselves are not fully
understood or known. In this paper, we shall be concerned
with correcting the known approximate correlations. In a
subsequent paper, new correlations shall be incorporated.

For VMC calculations in light nuclei with an interaction
such as AV18, the calculations proceed with f8 correlations,
which are obtained as solutions of eight two-body coupled
differential equations. These contain a number of variational
parameters that have been introduced over a number of years
based upon physical and intuitive considerations. AV18 is also
found to induce important three-body correlations in light
nuclei [22]. Three-body interaction and p-shell nuclei add
additional correlations whose shapes and structures are guided
by perturbation theory and various features of the shell model.
However, the radial shapes of these correlations are largely
approximate.

In Sec. II, we demonstrate that, as the number of particles
in the system increases, the relative error in the wave function
increases at least in proportion to the number of particle pairs.
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This makes the many-body wave function more approximate
as the number of particles increases in the system. A simple
method is devised that corrects these errors variationally. In
Sec. III, we describe the wave function for light nuclei and
the correction required to improve upon the wave function. In
Sec. IV we present our results for central as well as for the
AV18 + UIX interactions. Conclusions are presented in Sec. V.

II. ERROR ANALYSIS

We first consider the case of Jastrow correlations. The wave
function is written as a product of two-particle correlation
functions. If ε(r) represents the as-yet unknown variational
error in each correlation function, we have

�a =
∏
i<j

f a
ij =

∏
i<j

(fij + εij ), (2.1)

where f a
ij and fij represent, respectively, the approximate and

the desired correlation functions and �a is the approximate
total wave function. f a

ij is usually obtained through the solution
of a Schrödinger-type two-body equation containing varia-
tional parameters through a suitably modified NN potential for
variational purposes [8,18–22]. For the moment we disregard
the antisymmetry and other components, namely, three-body
and other correlations that may be present in the wave function.
We include these in our calculations at a later stage.

Expression (2.1) can also be written as

�a =
⎛
⎝∏

i<j

fij

⎞
⎠
(∏

k<l

(1 + εkl/fkl)

)

= �

(∏
k<l

(1 + εkl/fkl)

)
, (2.2)

where � is the “exact” or desired variational wave function
within the limitations just mentioned. For terms linear in ε the
relative error in the wave function is

�a

�
=
∏
k<l

(1 + εkl/fkl). (2.3)

For a three- or four-particle system if the particles are located
at the vertices of an equilateral triangle (three particles)
or a regular tetrahedron (four particles), we have �a/� ≈
1 + npε/f , where np is the number of pairs. Thus the relative
error in case of a many-particle system is enhanced by a
factor that is proportional at least to np as compared to
the errors in a two-particle system. Errors in the variational
energies will then be proportional to n2

p. It is important to
note that, in view of the presence of the functions fkl in the
denominator, the errors are amplified wherever fkl are small.
This will occur for low values of r for repulsive potentials at
short distances and in the asymptotic regions for finite bound
systems. This can be clearly seen in Figs. 4 and 5 of Ref. [22].
However, these regions are sampled with much less probability
because the wave functions for these configurations are small.
It also follows that if ε is not small the relative errors will
be proportional to the number of triplets and quartets etc.,
in addition to the number of pairs. We therefore arrive at

the important conclusion that the relative error in the wave
function increases rapidly as the number of particles increases
in the system. This probably could be one of the reasons why
VMC results deteriorate in the p-shell region with increasing
mass number. For example, the VMC energies for 6Li and 12C
are roughly higher by 3 and 30 MeV, respectively, compared
to GFMC energies [8,10]. There can also be other reasons
responsible for the deterioration in the energy with higher mass
number. For example, addition of more particles may give rise
to new correlations, which are not included in PANDC, or for
higher mass numbers, optimization of PANDC correlations
may become difficult. But this does not imply that for heavier
nuclei or in the extreme case of nuclear matter the situation
is hopeless. Fortunately, because of the saturating nature of
the nuclear forces, as the number of particles in the system
increases the number of effective correlated pairs remains finite
(mostly the immediate neighbors correlate). For example,
if one makes an irreducible cluster expansion of the wave
function [23] the contribution to the energy of successive
many-body cluster terms converges after a finite number of
terms. Thus the errors in the correlations will also tend to
saturate.

These considerations will also hold for operatorial and
three-body correlations. On the basis of these arguments, we
may expect that improvement in the radial shape of correlations
will affect the lowering of energies more in heavy nuclei, for
example in 6Li as compared to 3H. These expectations are
supported by actual calculations as demonstrated in this study.

We consider the following simple technique to improve
upon the approximate variational wave function. We add to εij

in Eq. (2.1) a function γij , which is determined variationally.
This leads to

εij − γij
∼= 0. (2.4)

We determine the variational functions γ through the use of a
convenient set of orthonormal polynomials Lm [5]:

γ (r) =
K∑

n=0

anLn(r) for r � rd, (2.5)

where an are variational parameters. We also impose the
condition that γ (r) and at least its first derivative are zero
at r = rd , where rd is the healing distance. The healing
distance is also a variational parameter. We have used for Ln(r)
the function cos(nπr/rd ). In a few test cases, we have used
the combination of cos(nπr/rd ) and sin(nπr/rd ) functions
as well as the Chebyshev polynomials for Ln(r) without any
significant differences in the results. The function cos(nπr/rd )
has the advantage that its first derivative vanishes at r =
0 and rd . Usually, a large value of K would be required to
satisfy Eq. (2.4). For Ln(r) = cos(nπr/rd ), the condition that
γ (r) = 0 at r = rd gives

a0 =
K∑

n=1

(−1)n+1an. (2.6)
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III. WAVE FUNCTION

The Minnesota (Minn.) potential has central, spin, isospin,
and spin-isospin parts. As stated earlier we follow the wave
function construct and techniques developed by the PANDC
Collaboration for carrying out variational calculations in light
nuclei. Corresponding to each component of the interaction
the wave function consists of central (fc), isospin (uτ ), spin
(uσ ), and spin-isospin (uστ ) correlations. The variational
wave function for particles interacting through Minnesota or
Malfeit-Tjon potentials mainly consists of these with some
additional three-body correlations as explained later. Poten-
tials such as AV18 + UIX induce considerable complicated
structure in the wave function. The state-of-the-art variational
wave function of s- and p-shell nuclei is of the form

|�V 〉 =
⎡
⎣1 +

∑
i<j<k

(
Uijk + UT NI

ijk

)+
∑
i<j

ULS
ij

⎤
⎦

×
⎡
⎣S

∏
i<j

(1 + Uij )

⎤
⎦ |�J 〉 , (3.1)

where the various U’s shall be explained a little later. The
operator S symmetrizes the noncommuting product operators
(1 + Uij ). The wave function [Eq. (3.1)] is explained in Ref. [8]
and earlier Refs. [18–22], but here since we modify almost
each and every component of these it is desirable that we
discuss them in detail. For s-shell nuclei, the following Jastrow
function |�J 〉 is employed:

|�J 〉 =
⎡
⎣∏
i<j<k

f c
ijk(�rij , �rjk, �rki)

∏
i<j

fc(rij )

⎤
⎦ |�A (JMT T 3)〉.

(3.2)

The central two- and three-body correlations fc and f c
ijk have

no spin or isospin dependence. �A is an antisymmetrized spin-
isospin state.

For light p-shell nuclei, shell-model studies [24] suggest
that the LS coupling scheme is a good approximation for
obtaining the desired JM values of a given state. The Jastrow
function is more complicated owing to additional correlations
specific to p-shell nucleons and the possibilities of different
possible LS combinations, which lead to several components in
the wave function. Allowing for the possibility that the central
correlation fc may assume different shapes for ss, sp, and pp
nucleons, we may write

|�J 〉 =
⎛
⎝ ∏

i<j<k

f c
ijk

∏
i<j�k

fss(rij )
∏

k�4<l�A

fsp(rkl)

⎞
⎠

×
{ ∑

LS[n]

(
βLS[n]

∏
4<l<m�A

f LS[n]
pp (rlm)

× |�A (LS[n]JMTT3)1234:56···A〉
)}

, (3.3)

where A operates upon the total wave function and ensures
its antisymmetry. In reality, this is an antisymmetric sum of

all possible partitions of four s-shells and the remaining A −
4 p-shell nucleons. The fsp at short distances has the same
behavior as fss (or fc) but asymptotically goes to unity. This
allows for the possibility that the wave function factorizes
to a cluster formation similar to α + d in 6Li. βLS [n] are
variational parameters that give the weights to the various LS
components of the single-particle wave functions. This also
allows for the possibility that the two-nucleon correlations
between two p-shell nucleons may assume different shapes for
different LS components. The single-particle wave function for
different LS components is given by

|�A (LS[n]JMT T3)1234:56···A〉

= |�α(0000)〉1234

∏
4<l�A

φLS[n]
p (Rαl)

⎧⎨
⎩
⎡
⎣∏

4<l�A

Y1ml
(�αl)

⎤
⎦

LMl [n]

×
⎡
⎣∏

4<l�A

χl

(
1
2ms

)⎤⎦
SMS

⎫⎬
⎭

JM

⎡
⎣∏

4<l�A

νl

(
1
2 t3
)⎤⎦

T T3

, (3.4)

where �α is an antisymmetrized spin-isospin state of the α

particle. The φLS
p

[n](Rαk) are single-particle wave functions of
a p-shell nucleon obtained by assuming that the nucleon is
moving in an effective Woods-Saxon potential

V (RαN ) = V LS
p

[
1 + exp

(
RαN − Rp

ap

)]−1

, (3.5)

where RαN is the relative distance between a p-shell nucleon
and the center of mass of the α particle. The Woods-Saxon
parameters Vp

LS , Rp, and ap are treated as variational
parameters and are different for different LS[n] components.

The correlations fsp and f LS[n]
pp are assumed to have the

form

fsp(r) = fc(r)

[1 + exp(r − s1)]
+ s2{1 − exp[−(r/s3)2]}, (3.6)

f LS[n]
pp = fc(r) + b

LS[n]
1

{
1 − exp

[−(r/bLS[n]
2

)2]}
, (3.7)

where s1-3 and b
LS[n]
1-2 are variational parameters. The parame-

ters s1-3 have been determined earlier with values of 4.0, 0.90,
and 3.2, respectively [8,25]. In earlier studies by Wiringa and
collaborators more general forms of fsp and f LS[n]

pp have been
employed. The different LS[n] combinations for 6Li are 01[2],
21[2], and 10[11]; for brevity we denote them as 1, 2, and 3,
respectively, in φp(1–3) and fpp(1–3).

In Eq. (3.1), the Uij is a sum of noncommuting spin, isospin,
and tensor operators:

Uij =
∑

p=2,6

⎡
⎣∏

k �=i,j

f
p

ijk(�rij , �rjk, �rki)

⎤
⎦ up(rij )Op

ij . (3.8)

In general, the operators O
p

ij for AV18 are

O
p=1,14
ij = [1, �σi · �σj , Sij , �L · �S,L2, L2(�σi · �σj ), ( �L · �S)2]

⊗ [1, �τi · �τj ], (3.9)

O
p=15,18
ij = [1, �σi · �σj , Sij ] ⊗ T ij and (�τzi + �τzj ), (3.10)
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where Tij = 3τziτzj − �τi · �τj is the isotensor operator. All the
symbols have their usual meanings.

In Eq. (3.8), the sum over p is from 2 to 6; that is,

O
p=2,6
ij = �τi · �τj , �σi · �σj , (�σi · �σj )(�τi · �τj ), Sij ,

Sij (�σi · �σj )(�τi · �τj ). (3.11)

These are abbreviated as τ , σ , στ , t, and tτ and the
corresponding u’s are denoted as uτ , uσ ,uστ , ut , and utτ ,
respectively. The ULS

ij in Eq. (3.1) are given by

ULS
ij =

∑
p=7,8

⎡
⎣∏

k �=i,j

f
p

ijk(�rij , �rjk, �rki)

⎤
⎦ up(rij )Op

ij , (3.12)

with

O
p=7,8
ij = �L.�S and �L.�S (�τi · �τj

)
. (3.13)

The corresponding u’s are denoted as ub and ubτ , respectively.
The eight u’s are obtained by minimizing the two-body cluster
energy with a somewhat modified two-nucleon interaction.
Specifically, this modification comes through the use of
quenched interactions and parametrized Lagrange multipliers
to lower the many-body variational energy. The Lagrange mul-
tipliers also take care of the asymptotic boundary conditions on
the wave function for the appropriate single-particle separable
behavior at large distances. The quenched interaction v̄ is
related to the bare interaction by

v̄ij =
n∑

p=1

αpvp(rij ), (3.14)

where αp are variational parameters. The Lagrange multipliers
λp(r) are radial functions, consisting of two parts. The short-
range part simulates the screening effect and the long-range
part is fixed by the asymptotic behavior of the correlation
functions, which is cut off at short distances by an exponential
function:

λp(r) = �p

[
1 + exp

(
r − Rp

ap

)]−1

+�p(r,κx)[1 − exp(−(r/cp)2)]. (3.15)

The constant (eigenvalue) �p is determined by solving the
Schrödinger-type differential equation subject to boundary
conditions on the wave function [21]. The parameters Rp,
ap, cp, and κx (explained in the following) are variational
parameters.

The eight correlation functions fc and up=2-8 can be
expressed in terms of central functions fS,T (r) (T = 0,1;
S = 0,1), tensor functions ft,T (r), and spin-orbit functions
fb,T (r) [21]. The boundary conditions on these for r → ∞
are

fS,T (r → ∞) =
[

exp(−κS,T r)

r

] 1
A−1

, (3.16a)

ft,T (r → ∞) = ηT T (r)fS,T (r), (3.16b)

fb,T (r → ∞) = ςT B(r)fS,T (r), (3.16c)

where

T (r) =
[

1 + 3

κS,T r
+ 3

(κS,T r)2

]
{1 − exp[−(r/dt,T )2]},

B(r) =
[

1

r2
+ κS,T

r

]
{1 − exp[−(r/db,T )2]},

κS,T =
[
A − 1

A

2m

h̄2 ES,T

] 1
2

.

(3.17)

The tensor/central ratio ηT , the spin-orbit/central ratio ζ T ,
and the separation energies ES,T are variational parameters.

All the variational parameters are determined by minimiz-
ing the expectation values of the energy using the Metropolis
random walk method [8,21]. We mainly employ the same
values of the variational parameters as in Refs. [8,21], but now
we introduce additional variational parameters by modifying
fc and the seven u’s by substituting

fc → fc +
K∑

n=0
ac

n cos
(
nπr

/
rc
d

)
,

up → up +
K∑

n=0
a

p
n cos

(
nπr

/
r

p

d

) (3.18)

for p = 2–8. Similarly, we modify fsp, fLS[n]
pp , and φ LS[n]

p ;
the corresponding variational parameters are denoted as a

sp
n ,

a
pp
n (LS[n]), and a

p
n (LS[n]), respectively. The values of K may

be different for different interactions. For interactions such as
Malfliet-Tjon, which is singularly repulsive near the origin,
larger values of K were required. Also, the value of K may
be larger if the initial correlations fc or up are not properly
optimized. In addition, the values of K may be different for
different correlations. Modifications similar to Eq. (3.16) are
employed for three-body correlations also. However, the same
value of K has been used for all the correlations for a given
nucleus.

The three-body correlations f c
ijk , f p

ijk , and Uijk are induced
by the two-nucleon interaction [22]. For f c

ijk and f
p

ijk , the
following forms have been employed:

f c
ijk = 1 + qc

1(rij · rik)(rji · rjk)(rki · rkj ) exp
(−qc

2Rijk

)
,

(3.19)

f
p

ijk = 1 − q
p

1 (1 − r̂ij · r̂jk) exp
(−q

p

2 Rijk

)
, (3.20)

with Rijk = rij + rjk + rki . The various q’s are the variational
parameters. In f c

ijk we do allow the possibility that qc
1-2 may

be different if the ijk refer to nucleons in different shells. Thus
for 6Li we may have three sets of qc

1-2(sss), qc
1-2(ssp), and

qc
1-2(spp), where s and p refer to s- and p-shell nucleons.

The Uijk correlations consist of a spin orbit and an isospin
component. The spin-orbit part is given by

Uls
ijk =

∑
cyc

i �σi · (�rij × �rik)[gik(hij − hjk) − gij (hik − hjk)],

(3.21)

where

h(r) = qls
1 exp

(−qls
2 r2

)+
K∑

n=0

ah
n cos

(
nπrij

/
rh
d

)
(3.22)
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and

g(r) = exp
(
qls

3 r2
)+

K∑
n=0

ag
n cos

(
nπrij big/r

g

d

)
. (3.23)

The isospin component is given by

Uτ
ijk =

∑
cyc

(
1
3Rijk − rij

) {
qτ

1 exp
[−qτ

2

(
Xijk − qτ

3

)2]
− 2qτ

1 exp
(−2qτ

2 X2
ijk

)}�τi · ⇀
τ j , (3.24)

where

Xijk = [
1 + qτ

4 (r̂ij · r̂ik)(r̂j i · r̂jk)(r̂ki · r̂kj )
]
Rijk. (3.25)

All seven q’s in Eqs. (3.17)–(3.23) are variational parameters.
The three-body correlation UTNI

ijk is induced by the three-
nucleon interaction. It has two components:

UTNI
ijk = UFM

ijk + UR
ijk, (3.26)

where UFM
ijk is the two-pion-exchange part of the correlation

similar to the Fujita and Miyazawa [26] three-nucleon inter-
action. This is of the form

UFM
ijk =

∑
cyc

(
δ1A2π {�τi · �τj , �τi · �τk}

{
Xa

ij , X
a
ik

}
+ δ2C2π [�τi · �τj , �τi · �τk]

[
Xc

ij , X
c
ik

])
. (3.27)

The symbols a and c signify, respectively, that whether X
occurs in the anticommutator, { }, or the commutator, [ ], terms.
For Urbana IX, A2π = −0.02930 MeV and C2π = A2π/4 MeV.
δ1 and δ2 are variational parameters. The term X

a(c)
ij stands for

the operator

X
a(c)
ij =

[
Tπ (rsrij ) +

K∑
n=0

aa(c)T
n cos

(
nπrij /r

a(c)T
d

)]
Sij

+
[
Yπ (rsrij )+

K∑
n=0

aa(c)Y
n cos

(
nπrij /r

a(c)Y
d

)] �σi · �σj ,

(3.28)

where rs is a variational parameter. Tπ and Yπ are the radial
functions associated with the tensor and Yukawa parts of the

one-pion-exchange potential:

Tπ (r) =
(

1 + 3

µr
+ 3

(µr)2

)
exp(−µr)

µr
[1 − exp(−cr2)]2,

(3.29)

Yπ (r) = exp(−µr)

µr
[1 − exp(−cr2)], (3.30)

with µ = 0.7 fm−1 and the cutoff parameter c = 2.1 fm−2.
For the UR

ijk , we write

UR
ijk = δ3U0

∑
cyc

[
T 2

π (rsrij ) +
K∑

n=0

aR
n cos

(
nπrij

/
rR
d

)]

×
[
T 2

π (rsrjk) +
K∑

n=0

aR
n cos

(
nπrjk

/
rR
d

)]
. (3.31)

U 0 = 0.0048 MeV for Urbana IX. δ3 is a variational parameter.
The modification in the radial shape of the three-body
correlations is achieved through the variational parameters ah

n ,
a

g
n , aa(c)T (Y )

n , aR
n , and rx

d , where x stands for the corresponding
superscripts in an. For all the an = 0 in Eqs. (3.28) and (3.31)
and δ1 = δ2 = δ3 = rs = 1, Eq. (3.24) reduces to the Urbana IX
three-body interaction.

IV. RESULTS AND DISCUSSION

A. Central interactions

We first present our results for the central interactions
(i.e., for Minnesota and Malfliet-Tjon V potentials). These
are model calculations adopting different central potentials for
which accurate or “exact” calculations have been performed
earlier [17]. The results are summarized in Table I and
compared with the SVM results of Ref. [17]. For the Minnesota
potential calculations were performed for 3H, 4He, and 6Li.
They are in complete agreement with the SVM calculations of
Ref. [17]. The Minnesota potential reproduces the important
low-energy NN scattering data. In operator form it can be
written as

VNN (rij ) =
4∑

p=1

vpO
p

ij . (4.1)

It therefore generates fc, uτ , uσ , and uστ correlations. This
requires solution of four coupled Schrödinger-type equations
to determine f4. To demonstrate the power of our proposed
technique we take a slightly different route. For the present
case, instead of solving the f4 coupled equations, fc is obtained

TABLE I. Energies and rms radii of various nuclei calculated using the Minnesota and
Malfleit-Tjon V potentials and compared with the SVM calculations. K is the dimension
of the basis functions used in the SVM and present VMC calculations.

Nucleus Interaction SVM VMC

K E (MeV) rms (fm) K K (MeV) rms (fm)

3H Minn. 40 −8.38 1.698 7 −8.38(1) 1.709(3)
4He Minn. 60 −29.937 1.41 7 −29.940(4) 1.409(1)
6Li Minn. 600 −34.59 2.22 7 −34.59(1) 2.170(2)
6He MTV 800 −66.30 1.52 19 −67.15(2) 1.537(1)
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by solving the Schrödinger-type equation with the central part
of the potential only. This is then modified variationally by
using the first relation of Eqs. (3.16). The three up are obtained
by using directly the relation

up =
K∑

n=0

ap
n cos

(
nπr

/
r

p

d

)
. (4.2)

For 6Li, correlations specific to the p-shell are obtained as
described in the previous section. We use h̄2/m = 41.47 MeV
fm2. The Coulomb interaction is included with the Minnesota
potential by assuming a point charge with e2 = 1.44 MeV fm.
The Minnesota potential has a super soft core. It therefore
generates very smooth correlations. Thus K = 7 was found
more than sufficient to achieve the variational convergence of
energies. An automated search for the variational parameters,
namely a

p
n , and for 6Li a

sp
n , a

pp
n (LS[n]), and a

p
n (LS[n]), was

employed. None of the three-body correlations were needed
for central potentials.

Because of the flexible nature of the correlations, in a
straightforward minimization of the energy with a finite set
of Monte Carlo configurations, the energy invariably goes to
very low values with large error bars. This in fact raises the true
expectation value of the energy. It therefore becomes essential
to minimize a suitable combination of energy and variance or
standard deviation σ defined as

σ =
[ 〈H 2〉 − 〈H 〉2

N − 1

]1/2

, (4.3)

where N is the number of statistically independent samples.
We have minimized the function

χ = |E + C| + mp(N − 1)1/2σ, (4.4)

where E is the expectation value of energy with the variational
wave function described in Sec. III and C is a positive constant
much larger than |E|. The mixing parameter mp is chosen
through trial and is different for different system. Larger values
of mp were used for small N and vice versa. Though there are
clever methods available to minimize the VMC energy [12]
with smaller N, we have not implemented these in the present
study.

The case of 6He with the MTV potential

VMTV(r)=1458.05 exp(−3.11r)/r − 578.09 exp(−1.55r)/r

(4.5)

is somewhat conspicuous. Our result −67.15(2) MeV for
the energy is significantly lower than the SVM value of
−66.30 MeV of Ref. [17]. These values are obtained without
the Coulomb energy in the Hamiltonian. When we add

K

0 5 10 15 20

E
(M

eV
)

-70

-65

-60

-55

-50

-45

-40

FIG. 1. Convergence of 6He energy as a function of K with the
Malfliet-Tjon V potential.

the Coulomb energy contribution, our value then becomes
−66.30(2) MeV, in agreement with Ref. [17].

For the MTV potential a large value of K (=19) was
needed. Figure 1 shows the convergence of E as a function
of K. The reason for this convergence is that we started with
a nonoptimized Jastrow wave function, where for K = 0,
E ≈ −42.6(1) MeV. Except perhaps for the Coulomb energy
discrepancy in 6He the results are in excellent agreement with
the SVM calculations of Ref. [17].

B. Argonne AV18 + UIX

With this interaction, we have studied 3H, 4He, and 6Li.
Calculations for 4He and 6Li were carried out on a modest
four-node cluster whereas for 3H a single-processor machine
was used. Calculations were performed for two values of
K, namely, 7 and 11. For 3H and 4He, K = 7 was found
sufficient. No statistically significant improvements in results
were found for K = 11. For 6Li a lowering in the energy
by 0.14 MeV was obtained between K = 7 and 11. The
results are summarized in Table II. The entries for K = 0
correspond to VMC calculations without the modifications
described in the previous section. These values are slightly
different from the earlier VMC calculations mainly because
of the use of slightly different variational parameters. Also
the differences, though statistically insignificant, may arise
because we have used a five-point (instead of a three-point)
Lagrange interpolation formula for the various correlations
tabulated on the fixed grid. Use of different seed values in

TABLE II. Variational energies and rms radii of various nuclei with the AV18 + UIX potential. The asterisk (*) value is for
AV18 + IL2 [7].

Nucleus Experiment GFMC VMC (K = 0) K VMC (present)

E (MeV) 〈r2
p〉1/2 E (MeV) 〈r2

p〉1/2 E (MeV) 〈r2
p〉1/2 E (MeV) 〈r2

p〉1/2

3H −8.482 1.60 −8.46(1) 1.59(0)∗ −8.32(1) 1.58(0) 8 −8.35(1) 1.58(0)
4He −28.30 1.48(1) −28.34(4) 1.45(1) −27.72(4) 1.47(0) 8 −27.90(2) 1.44(0)
6Li −31.99 2.43(4) −31.15(11) 2.57(1) −27.99(4) 2.48(0) 12 −29.69(3) 2.58(0)
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FIG. 2. Local energies for 4He as a function of R. For details, see text.

generating the pseudorandom numbers may also account for
some of the differences, but these are not important. The
small differences between the present calculations with K = 0
and the earlier VMC calculations are not important as any
deficiencies in the former compared to the latter is taken care
of by the improvements in the variational wave function as
demonstrated in Sec. IV A for 6He with the MTV potential.
Calculations for all the nuclei were performed for 100 000
random configurations. For s-shell nuclei, random walks were
generated by including the full three-body correlations but
dropping the ULS

ij terms in Eq. (3.1). For 6Li, only the Uijk

part of the three-body correlation was included.
In reference to Table II, we make the following observa-

tions. First, as the number of nucleons increases in the system
the improvement in the energy also increases. For example,
in 3H the VMC energy for K = 0 is −8.32(1) MeV, which
becomes −8.35(1) MeV, a small decrease of 0.03 MeV but
statistically significant, whereas for 6Li the decrease in energy
is quite significant (≈1.7 MeV). For 4He, this decrease lies in

between these two values (i.e., ≈0.18 MeV). This is in line with
the qualitative arguments given in Sec. II, that as the number
of particles increases in the system the relative error in the
wave function increases proportionally at least to the number
of pairs. This error then leads to a higher variational energy.
Second, we notice a reduction in the variance. For all three
nuclei a considerable reduction in the variance was obtained.
The variance decreased to 0.0079 from 0.0147 for 3H, to
0.0198 from 0.0407 for 4He, and to 0.0273 from 0.0351 for 6Li.
This reduction indicates that there is an overall improvement in
the wave function. We could obtain somewhat lower energies
for smaller mp in Eq. (4.4) but with a larger variance. We prefer
to keep the variance small in view of the better quality of the
wave function. Lowering of variance is an indication for the
improvement in the wave function. For example, for an exact
wave function, the variance will be zero.

The overall improvement in the wave function can also be
seen by looking at the local energies. Figures 2 and 3 show
curves for 4He and 6Li, respectively. E(R) is the local energy

R (fm)

10 15 20 25

(a) (b) (a) 

R (fm)

10 15 20 25

E
(R

) 
M

eV

-40

-30

-20

-10

0 (a) 

FIG. 3. Local energies for 6Li as a function of R. For details, see text.
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TABLE III. Two-body variational parameters. The superscripts
a, b, c, d, and e refer to Eqs. (3.17), (3.16c), (3.16b), (3.15), and
(3.14), respectively.

Nucleus ES,T
a ηT

b ζT
c Cp

d ax
d Rx

d αp
e

3H 6.0 0.026 0.0 1.1 0.35 0.75 1.00
3.2 −0.007 0.0003 1.1 0.35 0.75 0.91

13.0 3.0 0.40 2.80 0.91
6.4 3.0 0.40 2.80 0.91

2.0 0.40 3.70 0.91
2.0 0.40 3.70 0.91
2.0 0.24 0.40 0.91
2.0 0.24 0.40 0.91

4He 16.0 0.035 0.0 1.1 0.35 0.75 1.00
17.0 −0.015 0.0003 1.1 0.35 0.75 0.86
23.5 3.0 0.40 2.80 0.86
16.5 3.0 0.40 2.80 0.86

2.0 0.40 3.70 0.86
2.0 0.40 3.70 0.86
2.1 0.24 0.40 0.86
2.1 0.24 0.40 0.86

6Li 16.0 0.035 0.0 1.1 0.35 0.75 1.00
17.0 −0.015 0.0003 1.1 0.35 0.75 1.00
23.5 3.0 0.40 2.80 1.00
16.5 3.0 0.40 2.80 1.00

2.0 0.40 3.70 0.86
2.0 0.40 3.70 0.86
2.0 0.24 0.40 1.10
2.0 0.24 0.40 1.10

for a given spatial configuration R = (r1, . . . , r4 or r6) binned
as a function of the sum R = �i |ri | of particle distances from
the center of mass. The variance is also binned accordingly.
The solid line is the average energy. The lower dashed curves

TABLE V. Correlations specific to 6Li for p-shell nucleons
The superscripts a, b, and c refer to Eqs. (3.3), (3.5), and (3.7),
respectively.

LS[n] βLS[n]
a V LS b

p Rp
b ap

b b
LS[n] c
1 b

LS[n] c
2

01[2] 0.981 −20.0 4.0 1.5 0.1 3.2
21[2] 0.158 −18.0 4.0 1.5 0.1 3.2
10[11] 0.113 −18.0 4.0 1.5 0.1 3.2

give the relative probability of R occurrences in arbitrary units
for 100 000 configurations. Figures 2(a) and 2(b) correspond
to K = 0 and to K = 7, respectively, for 4He, and Figs. 3(a) and
3(b) correspond to K = 0 and K = 11, respectively, for 6Li. It is
evident that the improved local energies are closer to the solid
curve compared to K = 0 for almost all the important regions of
R. In Tables III, IV, and V we give the values of the variational
parameters that have been used in the present study. Table V
gives correlation parameters for p-shell nucleons specific to
6Li. These correlation parameters were determined mostly by
Wiringa and collaborators [25]. In Table IV, the row with the
asterisk on 6Li gives the three-body correlation parameters
δ1-3 that were used when modifications to correlations were
implemented. The reason for employing a different set of δ1-3

parameters was simply to demonstrate and check the proposed
modification; the initial values of the PANDC parameters
do not play an important role though it is desirable to use
optimized values for better convergence. We obtain essentially
the same results when we use the unasterisked parameters.

In Tables VI and VII we give values of the variational
parameters ax

n for 4He and 6Li, respectively, along with the
healing distance rx

n , where x stands for various different
correlations. Theses values are given up to five significant
digits. Truncating them at four to two significant digits changes
the random walk and the energies may go slightly higher. The
parameters ax

0 for various x are fixed from the condition of

TABLE IV. Three-body variational parameters. The superscripts a, b, c, d, and e refer to Eqs. (3.19), (3.20), (3.22)
and (3.23), (3.24) and (3.25), and (3.27) and (3.31), respectively. The asterisk (*) on 6Li refers to the three-body
correlation parameters used with the modified wave function.

Nucleus qc
1-2(sss)a qc

1-2(ssp)a qc
1-2(spp)a q

p

1-2
b

qls
1-3

c
qτ

1-4
d δ1-3

e rs
e

3H 0.20 – – 0.16 −0.013 −0.013 −0.00025 0.70
0.85 0.05 0.12 0.015 −0.00040

0.85 1.200 −0.00060
0.350

4He 0.18 – – 0.17 −0.12 −0.012 −0.00018 0.70
0.88 0.05 0.12 0.0015 −0.00048

0.86 1.200 −0.00053
0.360

6Li 0.184 0.051 0.672 0.16 −0.05 −0.005 −0.00021 0.66
0.856 0.880 0.381 0.05 0.12 0.015 −0.00040

0.85 1.200 −0.00041
0.350

6Li∗ −0.000375 0.72
−0.000100
−0.000500
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TABLE VI. Variational parameters for 4He corresponding to modifications in the wave function. The healing distance rx
d is in femtometers.

Corr.\n 1 2 3 4 5 6 7 rx
d

ac
n 0.12452 × 10−2 −0.29732 × 10−2 −0.86371 × 10−2 −0.38410 × 10−2 −0.38796 × 10−2 −0.47343 × 10−3 −0.11390 × 10−2 8.706

aτ
n −0.43984 × 10−2 0.29679 × 10−2 0.22546 × 10−2 0.90877 × 10−3 0.20779 × 10−2 −0.84671 × 10−3 0.10404 × 10−2 7.398

aσ
n −0.23762 × 10−2 0.65719 × 10−2 0.19283 × 10−2 0.23395 × 10−2 0.30933 × 10−2 −0.42067 × 10−3 0.17577 × 10−2 7.113

aστ
n 0.32188 × 10−3 −0.82182 × 10−3 −0.26743 × 10−3 0.57667 × 10−3 0.68396 × 10−3 0.18796 × 10−3 0.55954 × 10−3 6.446

at
n 0.66134 × 10−4 −0.71330 × 10−3 −0.12813 × 10−2 −0.26590 × 10−2 −0.15165 × 10−2 −0.13263 × 10−2 −0.88126 × 10−3 6.420

atτ
n −0.63054 × 10−3 −0.16978 × 10−2 0.33158 × 10−2 0.12607 × 10−2 −0.35203 × 10−3 0.47092 × 10−4 0.26309 × 10−3 9.955

ab
n −0.26177 × 10−2 −0.42627 × 10−2 −0.31190 × 10−2 −0.28810 × 10−2 −0.30691 × 10−2 −0.13588 × 10−2 −0.12405 × 10−2 5.557

abτ
n −0.33149 × 10−3 0.37375 × 10−3 0.43159 × 10−3 −0.13868 × 10−3 −0.30010 × 10−3 −0.31242 × 10−3 −0.85590 × 10−3 5.000

ah
n −0.11971 × 10−1 −0.14902 × 10−1 −0.56484 × 10−2 −0.35629 × 10−2 −0.21307 × 10−2 −0.14296 × 10−2 −0.64099 × 10−3 3.872

a
g
n 0.10722 0.88876 × 10−1 0.54161 × 10−1 −0.67214 × 10−2 −0.25431 × 10−1 −0.21486 × 10−1 −0.72686 × 10−2 2.949

aaT
n 0.66963 −0.11947 × 10−1 −0.88402 −0.17112 0.43091 × 10−1 0.13386 0.17782 4.114

aaY
n 0.48653 −0.62868 −0.36267 0.39732 0.34618 0.68349 × 10−1 −0.63176 × 10−1 3.854

acT
n 3.7494 11.099 8.9406 2.1909 −1.8355 −1.3509 −0.90447 2.322

acY
n 5.7041 −2.6631 2.9193 −0.39743 −0.29865 0.22578 −0.55806 5.469

aR
n 4.9140 −0.25399 −0.41839 −0.57731 −0.19738 0.23982 −0.11791 2.993

Eq. (2.6). The parameter values in Tables VI and VII are not
unique, in the sense that it is possible to find other sets of
parameters with essentially the same energies and variances
but with somewhat different energy breakup. This problem is
related to the occurrence of a flat energy minima, perhaps
several of them, in the multidimensional parameter space.
Since we minimize a combination of energy and variance,
it is indeed difficult to ascertain that we have reached the
lowest energy. Probably, an optimization along the lines of
what was done in Ref. [12] will be more suitable, but this
requires considerable effort both computationally as well as
from a programming point of view.

It is instructive to know how the energy can be optimized or
lowered with respect to modifications in various correlations.
We have studied this by generating a random walk with the
best set of our parameters (Tables VI and VII) and switching
off the modifications one at a time for each correlation and then
calculating the change in the energy, �E, for the same random
walk. The results are displayed in Table VIII for 4He and 6Li.
We also give the variance σ for each such case. The first column
lists the various correlations. The row for a specific correlation,
for example fc, gives the change �E and the new σ by keeping
all the optimized changes in each correlation except for fc, for
which we use the unmodified values corresponding to K = 0.
It is evident from the table that modifications in f6 correlations
play a role for both the nuclei, but much more significantly
in 6Li, where �E for uστ , ut , utτ , and fc are, respectively,
1.68, 0.62, 0.51, and 0.49 MeV. Table VIII also displays how
sensitive the energies and variances are to modifications in
various correlations. Does this imply that modifying only one
correlation, for example uστ , can lower the energy of 6Li close
to ≈−29.7 MeV? The answer is no. What is important is
the totality of all the changes in the f6 correlations. We shall
elaborate on this a little later. Such large values of �E may then
bring large changes in the corresponding correlations, which
may also depend on how sensitive a particular correlation is
to the energy. In Fig. 4, we display all the f6 correlations. The
solid and dashed curves refer to 6Li and the dashed-dotted
and dashed-double-dotted curves refer to 4He. The solid and
dashed-dotted (dashed and dashed-double-dotted) curves refer

to modified (unmodified) correlations. It may be seen that the
dashed and dashed-double-dotted curves more or less coincide,
implying that the unmodified f6 correlations are almost the
same for both systems. This is by design. Intuitively, one
may expect them to be close as the difference between the
binding energies of 6Li and 4He is small. However, from
Fig. 4 we see that the modified correlations in 6Li and 4He
(the solid and dashed-dot curves) differ from each other. This
difference is represented by the dotted curve after multiplying
the differences by fc for uτ to utτ [Figs. 4(b)–4(f)]. It is seen
that the differences are appreciable for uστ and ut . We discuss
in the following the implications of these results.

The experimental difference in the binding energies of 4He
and 6Li is around 3.7 MeV. Thus the p-shell nucleons in 6Li
interact weakly with the 4He core. Such a weak binding can
change the tightly bound 4He core only by a small amount.
This is also evident from the studies in hypernuclei [5,27,28],
where it has been shown that in 5

�He, the energy of the 4He
core (called the rearrangement or core-polarization energy ER)
changes by ≈0.39(6) MeV, corresponding to a � binding of
3.1 MeV. The corresponding changes in the wave functions are
also very small, in contrast to the findings of the present study.
This may give rise to a false conclusion that the rearrangement
energy of the 4He core in 6Li may be large. However, we
demonstrate that this is not the case.

We obtain ER from

ER ≈ 〈�m|H |�m〉
〈�m|�m〉 − 〈�|H |�〉

〈�|�〉 ≡ Em − E, (4.6)

where �m is the core nucleus wave function of 4He modified by
the presence of extra p-shell nucleons, and � is the optimized
wave function of the isolated core nucleus. Em and E are,
respectively, the expectation values of the Hamiltonian with
�m and �. This estimate of ER is an approximation to the
rigorous definition given in Ref. [28] but is much simpler
to implement and at the same time quite accurate. When we
substitute for �m the optimized part of the two- and three-
body correlations of the 6Li wave function in Eq. (3.6), we
obtain Em = −27.68(3) MeV and ER = 0.22(3) MeV. This
demonstrates that the rearrangement energy is small and the

034309-9



Q. N. USMANI, A. SINGH, K. ANWAR, AND G. RAWITSCHER PHYSICAL REVIEW C 80, 034309 (2009)

TA
B

L
E

V
II

.
V

ar
ia

tio
na

lp
ar

am
et

er
s

fo
r6

L
ic

or
re

sp
on

di
ng

to
m

od
ifi

ca
tio

ns
in

th
e

w
av

e
fu

nc
tio

n.
T

he
he

al
in

g
di

st
an

ce
r

x d
is

in
fe

m
to

m
et

er
s.

a
p n
(1

–3
)a

nd
a

p
p

n
(1

–3
)c

or
re

sp
on

d
to

φ
p
(1

–3
)

an
d

f
p
p
(1

–3
),

re
sp

ec
tiv

el
y,

fo
r

di
ff

er
en

tc
om

bi
na

tio
ns

of
L

S[
n

].

C
or

r.\
n

1
2

3
4

5
6

7
8

9
10

11
r
x d

a
c n

0.
36

26
7

×
10

−2
−0

.2
66

57
×

10
−1

−0
.6

38
62

×
10

−2
−0

.5
77

66
×

10
−2

−0
.2

15
49

×
10

−2
−0

.1
91

93
×

10
−2

−0
.1

07
56

×
10

−2
−0

.7
87

67
×

10
−3

−0
.1

54
21

×
10

−2
−0

.7
72

46
×

10
−4

−0
.5

41
57

×
10

−3
6.

88
1

a
τ n

−0
.2

40
12

×
10

−1
−0

.9
74

02
×

10
−3

0.
14

73
8

×
10

−1
−0

.1
55

69
×

10
−2

0.
36

16
8

×
10

−2
−0

.6
38

18
×

10
−3

0.
65

53
7

×
10

−2
−0

.5
70

87
×

10
−3

0.
31

03
2

×
10

−2
0.

26
39

7
×

10
−2

0.
11

91
5

×
10

−2
21

.5
22

a
σ n

−0
.1

25
00

×
10

−1
−0

.1
99

01
×

10
−2

0.
57

44
3

×
10

−2
0.

70
96

3
×

10
−3

0.
41

94
5

×
10

−2
−0

.9
80

97
×

10
−3

0.
14

87
8

×
10

−2
−0

.3
93

27
×

10
−3

0.
29

29
9

×
10

−3
0.

17
01

9
×

10
−3

0.
24

86
6

×
10

−3
10

.8
58

a
σ
τ

n
−0

.1
32

15
×

10
−1

−0
.2

00
10

×
10

−1
−0

.5
47

95
×

10
−2

−0
.3

19
93

×
10

−2
−0

.1
13

50
×

10
−2

−0
.2

71
23

×
10

−3
0.

42
57

6
×

10
−3

0.
97

09
8

×
10

−4
0.

34
49

7
×

10
−3

0.
43

31
7

×
10

−3
0.

22
09

7
×

10
−3

10
.0

62
a

t n
0.

20
04

4
×

10
−2

−0
.5

47
93

×
10

−2
−0

.4
89

23
×

10
−3

−0
.2

71
65

×
10

−2
−0

.3
51

50
×

10
−3

−0
.1

51
82

×
10

−2
−0

.5
90

53
×

10
−3

−0
.9

25
09

×
10

−3
−0

.6
41

88
×

10
−3

−0
.3

64
47

×
10

−3
−0

.2
55

52
×

10
−3

10
.2

66
a

tτ n
−0

.4
15

34
×

10
−2

−0
.6

03
88

×
10

−2
0.

76
70

3
×

10
−3

−0
.1

20
24

×
10

−2
0.

10
56

6
×

10
−2

−0
.3

43
02

×
10

−3
0.

61
98

4
×

10
−3

−0
.5

07
88

×
10

−4
0.

42
61

0
×

10
−3

0.
17

12
7

×
10

−4
0.

15
76

9
×

10
−3

10
.4

15
a

b n
−0

.7
23

66
×

10
−3

−0
.8

29
88

×
10

−3
−0

.8
25

80
×

10
−3

−0
.9

30
86

×
10

−3
−0

.1
11

56
×

10
−2

−0
.1

11
02

×
10

−2
−0

.1
07

22
×

10
−2

−0
.8

00
41

×
10

−3
−0

.5
27

75
×

10
−3

−0
.2

30
09

×
10

−3
−0

.5
35

80
×

10
−4

7.
97

1
a

b
τ

n
0.

16
27

0
×

10
−2

0.
13

05
8

×
10

−2
0.

77
10

8
×

10
−3

0.
60

22
9

×
10

−4
−0

.4
02

96
×

10
−3

−0
.4

84
31

×
10

−3
−0

.3
69

71
×

10
−3

−0
.1

60
75

×
10

−3
−0

.7
09

99
×

10
−4

−0
.7

95
76

×
10

−4
−0

.9
04

03
×

10
−4

−4
.8

80
a

sp n
0.

44
18

1
×

10
−2

0.
11

88
9

×
10

−1
0.

69
50

6
×

10
−2

0.
10

74
8

×
10

−1
0.

63
12

0
×

10
−2

0.
37

74
9

×
10

−2
0.

15
11

2
×

10
−2

0.
10

97
4

×
10

−2
0.

37
90

5
×

10
−3

0.
54

16
4

×
10

−3
0.

86
65

5
×

10
−3

8.
97

0
a

p n
(1

)
−0

.3
73

99
×

10
−2

−0
.7

20
28

×
10

−2
0.

44
87

7
×

10
−3

0.
15

84
2

×
10

−2
0.

84
49

5
×

10
−3

0.
25

57
4

×
10

−3
0.

26
59

7
×

10
−3

0.
25

69
5

×
10

−3
0.

65
96

4
×

10
−3

0.
43

01
7

×
10

−3
0.

43
98

0
×

10
−3

14
.4

60
a

p n
(2

)
−0

.9
34

72
×

10
−3

−0
.9

20
55

×
10

−2
−0

.8
87

30
×

10
−2

−0
.7

07
94

×
10

−2
−0

.1
10

60
×

10
−2

0.
26

06
9

×
10

−2
0.

55
16

8
×

10
−3

0.
66

70
5

×
10

−3
−0

.1
62

31
×

10
−3

0.
64

59
9

×
10

−3
−0

.6
76

72
×

10
−3

9.
73

8
a

p n
(3

)
0.

33
53

3
×

10
−2

0.
23

56
3

×
10

−1
0.

12
94

0
×

10
−1

0.
53

12
4

×
10

−2
−0

.1
32

73
×

10
−2

−0
.4

42
10

×
10

−2
−0

.3
07

00
×

10
−2

−0
.4

95
48

×
10

−2
−0

.2
81

61
×

10
−2

−0
.1

55
97

×
10

−2
−0

.1
15

41
×

10
−2

13
.2

19
a

p
p

n
(1

)
−0

.8
65

25
×

10
−2

0.
27

05
4

×
10

−1
−0

.8
06

08
×

10
−2

0.
11

95
0

×
10

−1
0.

38
38

4
×

10
−2

0.
31

64
3

×
10

−2
0.

82
48

6
×

10
−2

0.
40

57
9

×
10

−2
0.

27
94

4
×

10
−2

0.
38

18
3

×
10

−2
−0

.2
45

75
×

10
−3

18
.2

81
a

p
p

n
(2

)
0.

88
23

0
×

10
−1

0.
10

69
5

−0
.7

44
58

×
10

−2
−0

.8
37

92
×

10
−2

−0
.1

41
58

×
10

−1
−0

.3
00

50
×

10
−2

−0
.1

28
33

×
10

−1
−0

.4
48

26
×

10
−3

−0
.4

56
39

×
10

−2
−0

.3
55

40
×

10
−2

−0
.4

52
93

×
10

−3
11

.1
53

a
p
p

n
(3

)
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
–

a
h n

−0
.9

19
97

×
10

−4
−0

.7
97

32
×

10
−2

−0
.1

62
32

×
10

−3
0.

19
00

8
×

10
−2

0.
18

30
5

×
10

−2
0.

68
48

4
×

10
−3

0.
47

07
1

×
10

−3
−0

.2
95

56
×

10
−4

0.
53

62
4

×
10

−4
−0

.1
06

40
×

10
−4

0.
21

44
9

×
10

−5
4.

95
9

a
g n

0.
82

29
6

0.
24

48
1

−0
.6

60
51

×
10

−1
−0

.5
54

66
×

10
−1

−0
.4

71
34

×
10

−2
0.

85
52

7
×

10
−2

−0
.2

69
36

×
10

−2
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
1.

48
0

a
a
T

n
−0

.9
44

29
−0

.9
26

23
0.

13
22

8
0.

36
11

7
0.

47
68

8
0.

33
30

9
0.

24
89

6
0.

94
77

0
×

10
−1

0.
27

94
2

×
10

−1
−0

.6
47

87
×

10
−1

−0
.4

31
95

×
10

−2
4.

72
7

a
a
Y

n
0.

00
00

0
−1

.1
93

1
−0

.1
28

62
−0

.4
75

52
−0

.5
72

87
−0

.2
37

10
−0

.1
15

43
0.

10
70

7
×

10
−1

0.
85

79
1

×
10

−1
0.

00
00

0
0.

13
21

2
2.

60
0

a
c
T

n
1.

42
93

−2
.5

60
3

−3
.8

98
7

−2
.1

30
4

−1
.5

41
0

−1
.5

41
0

0.
24

04
1

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

2.
37

1
a

c
Y

n
1.

89
19

−2
.6

67
6

−7
.0

11
7

×
10

−1
−0

.6
77

57
−0

.6
05

74
−0

.3
42

52
0.

14
53

1
0.

18
37

0
−0

.9
63

26
×

10
−1

−0
.1

02
10

0.
89

85
2

×
10

−1
2.

75
8

a
R n

7.
02

37
6.

07
73

5.
46

20
0.

26
60

4
−1

.8
07

1
−1

.6
26

2
−0

.7
40

26
−0

.7
67

45
−0

.4
25

21
−0

.4
62

51
−0

.1
66

05
4.

53
9

034309-10



IMPROVED VARIATIONAL MANY-BODY WAVE FUNCTION . . . PHYSICAL REVIEW C 80, 034309 (2009)

TABLE VIII. �E and σ due to switching off the variational correlations one at a time. h

and g refer to Eqs. (3.22) and (3.23), respectively. Yπ { }, Tπ { }, Yπ [ ], and Tπ [ ] are the Yukawa
and tensor radial shapes for the anticommutator { } and commutator [ ] terms, which refer to
Eq. (3.28). T 2

π refers to Eq. (3.31).

Switching off the Modifications in 4He 6Li

�E (MeV) σ (MeV) �E (MeV) σ (MeV)

None 0.0 0.0198 0.0 0.0273
fc 0.038(13) 0.0248 0.491(29) 0.0427
uτ 0.020(5) 0.0208 0.328(14) 0.0325
uσ 0.062(7) 0.0219 0.175(4) 0.0283
uστ 0.032(6) 0.0208 1.677(29) 0.0360
ut 0.080(7) 0.0213 0.622(8) 0.0279
utτ 0.096(4) 0.0201 0.510(10) 0.0280
ub 0.012(1) 0.0198 0.010(0) 0.0273
ubτ 0.014(1) 0.0198 0.058(1) 0.0270
fsp – – 0.038(1) 0.0078
fpp(1) – – 0.114(8) 0.0280
fpp(2) – – 0.017(2) 0.0273
fpp(3) – – 0.000(0) 0.0000
φp(1) – – 0.214(10) 0.0297
φp(2) – – 0.003(2) 0.0274
φp(3) – – 0.027(1) 0.0273
h 0.017(1) 0.0199 0.088(2) 0.0275
g 0.0180(1) 0.0198 0.015(1) 0.0272
Yπ { } 0.012(3) 0.0204 0.073(6) 0.0276
Tπ { } 0.019(6) 0.0208 0.135(9) 0.0277
T 2

π 0.057(22) 0.0294 0.007(9) 0.0292
Yπ [ ] 0.094(9) 0.0226 0.028(8) 0.0278
Tπ [ ] 0.034(10) 0.0229 0.088(6) 0.0297

extra p-shell nucleons in 6Li modify the 4He core only slightly.
This is consistent with the studies in hypernuclei mentioned
earlier. This result is also consistent with the estimates of
Ref. [8], where it is found that the 4He cores in 6,8He nuclei
are excited by ≈0.08 and 0.35 MeV, respectively.

The small value of ER and at the same time large differences
between the two correlations (solid and dashed-dot curves of
Fig. 4) can be reconciled in the following manner. It is related
to having different correlations in the even and odd states in
6Li since the interactions between the two states are different.
In addition, there are different constraints and symmetries
associated with angular momentum values. This difference
is also accentuated by the greater number of sp pairs (eight) as
compared to ss pairs (six) in 6Li. The even-state correlations
are perhaps very close to the 4He correlations. Thus, most of the
difference between the solid and dashed-dot curves of Fig. 4
may arise from the odd-state correlations in 6Li, which are
different from the even-state correlations. Every correlation
can be broken into even and odd components. We consider
here a specific operator

uτ �τi · �τj = [
uτe

1
2 (1 + Px) + uτo

1
2 (1 − Px)

] �τi · �τj , (4.7)

where uτe and uτo refer to even and odd states, respectively,
and Px is the Majorana space exchange operator, which for an
antisymmetric wave function is −PσPτ , where Pσ and Pτ are
the spin and isospin exchange operators, respectively. Simple

algebra then gives

uτ �τi · �τj = 3
8 (uτo − uτe) + 1

8 (5uτe + 3uτo) �τi · �τj

+ 3
8 (uτe − uτo) �σi · �σj + 1

8 (uτe − uτo)

× (�σi · �σj )(�τi · �τj ). (4.8)

The first term on the right-hand side can be grouped with fc,
the third with uσ , and the last with uστ . Thus all the correlation
modify others if even- and odd-state correlations differ. Similar
considerations hold for tensor and spin-orbit correlations. This
is the reason why fc is modified in 6Li, though a separate
central correlation, fsp, has been incorporated between the s-
and p-shell nucleons. Our optimization scheme takes care of
the possibility of incorporating the even-odd state correlations
in a convenient way. This also explains, as mentioned earlier,
that it is the totality of modification in all the correlations, not
a particular one, that is responsible in reducing the energy of
6Li by ≈1.7 MeV. Though we have not explicitly separated
the even and odd components, we believe that the even-state
components of 6Li should be close to that of 4He, which leads
to a small value of ER as it should.

The modifications in three-body correlations do not play
such a great role as they do the f6 in 6Li. However, as is
evident from Table VIII, their role cannot be ignored.
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FIG. 4. (Color) The f6 correlations in 4He and 6Li as a function of internucleon distance. The legends for uτ to utτ are same as for fc.

We notice a few wiggles in 4He correlations in uσ , ut ,
and utτ . The 6Li correlations do not have pronounced wiggles
but still have some wavy character for large values of r. We
do not know the reasons for these. It is possible that the
energies are insensitive to these wiggles, which result from
overparametrization of the correlations. We have, however,
not looked into it.

The large number of new variational parameters introduced
may seem awkward, but we cannot undermine their impor-
tance. They do demonstrate that better VMC energies can
be achieved if improved correlation shapes are employed. It

would be extremely useful to search for suitable correlation
functions with fewer parameters.

We believe we have stretched the PANDC correlations
to their limits, though there is scope for considerable mod-
ifications in the wave functions and energies for all the
nuclei studied. However, these can be realized only with new
correlation structures and shapes and preferably with fewer
parameters. This will be the subject of a future study. It is
likely that the missing correlations in 6Li that will bring the
results into conformity or close to GFMC values may have the
same origin as in the s-shell nuclei.
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V. CONCLUSIONS

We have presented an error analysis of the variational
many-body wave functions that is based on somewhat general
considerations. Improvements in the wave functions are
proposed to minimize the errors. These are implemented for
central and operatorial two- and three-body correlations, which
lead to improvement in the energies and reduction in the
statistical Monte Carlo variance. A significant reduction in the
6Li energy is obtained, but still this nucleus is unbound with
respect to breakup into 4He and a deuteron cluster, though
now with less than 0.5 MeV. We have given the details of the
wave functions so that the results can be reproduced with a
little effort and can be used in other calculations. We have
discussed in detail the manifestation of odd-state correlations
in 6Li and its implications.

It is hoped that similar improvements can be obtained
for other p-shell nuclei. The present development paves the
way for carrying out calculations for heavy nuclei using
the cluster variational Monte Carlo technique in a more
reliable way. Also improvements on similar lines can be
implemented for helium liquids and nuclear matter within the
variational framework. Indeed, application of the proposed
technique to hypernuclei will be of great importance in
deciphering information on the baryon-baryon interaction
in the strange sector [5,6,28,29] and these wave func-

tions will be useful in GFMC and diffusion Monte Carlo
calculations [30].
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