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The application of the hyperspherical harmonic approach to the case of the N -d scattering problem below
deuteron breakup threshold is described. The nuclear Hamiltonian includes two- and three-nucleon interactions,
in particular the Argonne v18, the N3LO-Idaho, and the Vlow−k two-nucleon, and the Urbana IX and N2LO
three-nucleon interactions. Some of these models are local, whereas some are nonlocal. Also electromagnetic
effects are included. Accurate calculations for many scattering observables at various center-of-mass energies are
performed and the results are compared with the available experimental data. Furthermore, a χ2 analysis of some
of the Hamiltonian models has been performed to compare their capability to describe the scattering process.
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I. INTRODUCTION

One of the main inputs for any study on nuclear systems
within a nonrelativistic framework is the model used to
describe the nuclear interaction, i.e., the nuclear Hamilto-
nian. Nowadays, it is common practice to use, at least for
few-nucleon systems, Hamiltonian models composed of a
two-nucleon plus, for A � 3, a three-nucleon interaction
(TNI). The modern two-nucleon interaction models have a
large number of parameters and can reproduce the deuteron
properties and the nucleon-nucleon scattering data up to
the pion threshold with a χ2/datum �1. Among them, the
Argonne v18 (AV18) [1] and the charge-dependent Bonn
(CDBonn) [2] explicitly include charge-symmetry-breaking
terms in the nuclear interaction to reproduce equally well the
np and pp data. Recently, a number of two-nucleon interaction
models have been derived by many authors within an effective
field theory (EFT) approach, up to next-to-next-to-next-to
leading order (N3LO) [3,4]. In particular, the N3LO model
of Ref. [4] (N3LO-Idaho) reaches the same level of accuracy
of the CDBonn model.

The available models for the TNI contain, on the contrary to
the two-nucleon interaction models, a small number of param-
eters, usually fixed to reproduce the 3H and/or 4He binding
energies and, in some cases, the nuclear matter equilibrium
density. Among the different existing models, we quote only
those ones of the Urbana and Tucson-Melbourne families.
Although constructed within different frameworks, these two
families of potentials have shown to give similar results, when
used in conjunction with a given two-nucleon interaction
model. Therefore, we have considered the Urbana IX [5] (UIX)
TNI in conjunction with both the AV18 and N3LO-Idaho
two-nucleon interaction models. Finally, it should be noted that
within the EFT approach mentioned above, TNIs also appear
at the next-to-next-to leading order (N2LO) [6]. In particular,
we will consider the local version of this N2LO TNI, as given
in Ref. [7].

More recently, a new class of two-nucleon interactions
has been obtained (Vlow−k potentials). With the purpose of
eliminating from the semiphenomenological high-precision

two-nucleon potentials the high-momentum parts, the two-
nucleon Hilbert space has been separated into low- and high-
momentum regions and the renormalization group method has
been used to integrate out the high-momentum components
above a cutoff � [8]. The value for � is typically fixed in
A > 2 systems, for example, so that the triton binding energy
is reproduced.

At this point, a crucial issue is to test the model for the
nuclear Hamiltonian studying A � 4 bound states and A � 3
scattering states. In the present work, we focus our attention
to the A = 3 scattering problem, which has been the object
of a large number of investigations [9]. Traditionally, the
A = 3 scattering problem with realistic Hamiltonians is solved
using the Faddeev equations. However, we have developed in
recent years a variational approach, based on the expansion
of the wave functions on the hyperspherical harmonics (HH)
basis (for a recent review, see Ref. [10]). This method has
proven to be very efficient in the description of bound and
scattering states in few-nucleon systems. In Ref. [11] the
HH expansion with correlations factors (the correlated and
pair-correlated HH expansions, CHH and PHH respectively)
has been used to describe A = 3 bound states, whereas the
extension to scattering states has been discussed in Ref. [12].
The inclusion of correlation factors was motivated by the
short-range repulsion of the two-nucleon potential that induces
particular configurations in the wave function difficult to
describe using the bare expansion. In fact, in Ref. [13] the
HH expansion without correlation factors has been used to
describe the A = 3 bound state, with the AV18 interaction.
The conclusion was that a much higher number of states
are necessary when the bare expansion is used. The same
observation has been done in the A = 4 system [14] and is a
direct consequence of using local interactions, which result to
have a strong repulsion at short distances. The implementation
of the HH method in momentum-space has been done in
Ref. [15] for the A = 3, 4 bound states. This analysis has
revealed a much faster convergence of the expansion when
nonlocal potentials are considered, even when TNI terms are
taken into account.
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The aim of the present work is twofold. First, we want to
extend the HH method to describe N -d scattering states using
either local or nonlocal potentials. We will show that we can
apply the method in both configuration and momentum spaces.
Second, we will present a detailed comparison between the
predictions of the different models, local and nonlocal, at low
center-of-mass energies, for n-d as well as p-d scattering.
Moreover, we will consider the Coulomb potential plus the
magnetic moment (MM) interaction that was shown to give
sizable contributions [16]. To our knowledge, this is the first
time that nonlocal two- plus three-nucleon potentials are used
to describe p-d scattering at very low energies.

The article is organized as follows: in Sec. II, the HH
method for the low-energy scattering problem is described,
putting more emphasis on those new developments of the
method necessary to use nonlocal interaction models. In
Sec. III, the results for the zero-energy scattering lengths and
low-energy elastic-scattering observables are presented and
discussed. Some concluding remarks are given in Sec. IV.

II. FORMALISM

In this section we present the HH method for scattering
states. The method for bound states has been most recently
reviewed in Ref. [10], and its main characteristics are briefly
summarized in the following subsection.

A. The HH method for bound states

The nuclear wave function for the three-body system with
total angular momentum J, Jz can be written as

|�JJz〉 =
∑

µ

cµ

∣∣�JJz

µ

〉
, (2.1)

where |�JJz
µ 〉 is a suitable complete set of states and µ is

an index denoting the set of quantum numbers necessary to
completely specify the basis elements.

The coefficients of the expansion can be calculated using
the Rayleigh-Ritz variational principle, which states that

〈δc�
JJz |H − E|�JJz〉 = 0, (2.2)

where δc�
JJz indicates the variation of �JJz for arbitrary

infinitesimal changes of the linear coefficients cµ. The problem
of determining cµ and the energy E is then reduced to a
generalized eigenvalue problem,∑

µ′

〈
�JJz

µ

∣∣H − E
∣∣�JJz

µ′
〉
cµ′ = 0. (2.3)

The main difficulty of the method is to compute the matrix
elements of the Hamiltonian H with respect to the basis
states |�JJz

µ 〉. Usually H is given as a sum of terms (kinetic
energy, two-body potential, etc.). The calculation of the matrix
elements of some parts of H can be more conveniently
performed in coordinate space, while for other parts it could be
easier to work in momentum space. Therefore, it is important
that the basis states |�JJz

µ 〉 have simple expressions in both
spaces. The HH functions indeed have such a property.

Let us first consider the expression of the HH functions
in coordinate space. The internal dynamics of a system of
three nucleons of identical mass m is conveniently described
in terms of the Jacobi vectors x1p, x2p, constructed from a
given particle permutation denoted with p, which specifies the
particle order i, j, k, and given by

x2p = 1√
2

(rj − r i)

(2.4)

x1p =
√

2

3

[
rk − 1

2
(r i + rj )

]
.

Here p = 1 corresponds to the order 1,2,3. It is convenient
to replace the moduli of x2p and x1p with the so-called
hyperradius and hyperangle, defined as [17]

ρ =
√

x2
1p + x2

2p (2.5)

tan φp = x1p

x2p

. (2.6)

Note that ρ does not depend on the particle permutation p.
The complete set of hyperspherical coordinates is then given
by {ρ,�

(ρ)
p }, with

�(ρ)
p = [x̂1p, x̂2p; φp] (2.7)

and the suffix (ρ) recalls the use of the coordinate space.
The expansion states |�JJz

µ 〉 of Eq. (2.1) are then given by

|�JJz(ρ)
µ 〉 = fl(ρ)Y{G}[�(ρ)], (2.8)

where fl(ρ) for l = 1, . . . M is a complete set of hyperradial
functions, chosen of the form

fl(ρ) = γ 3

√
l!

(l + 5)!
L

(5)
l (γρ) e− γ

2 ρ. (2.9)

Here L
(5)
l (γρ) are Laguerre polynomials, and the nonlinear

parameter γ is variationally optimized. As an example, for
the N3LO-Idaho potential, it can be chosen in the interval
6–8 fm−1.

The functions Y{G}[�(ρ)] are written as

Y{G}[�(ρ)] =
3∑

p=1

[
Y

LLz

[G]

[
�(ρ)

p

] ⊗
[
S2 ⊗ 1

2

]
SSz

]
JJz

×
[
T2 ⊗ 1

2

]
T Tz

, (2.10)

where the sum is performed over the three even permutations.
The spins (isospins) of particle i and j are coupled to S2 (T2),
which is itself coupled to the spin (isospin) of the third particle
to give the state with total spin S (isospin T , Tz). The total
orbital angular momentum L and the total spin S are coupled to
the total angular momentum J, Jz. The functions Y

LLz

[G] [�(ρ)
p ],

having a definite value of L,Lz, are the HH functions and are
written as [13]:

Y
LLz

[G]

[
�(ρ)

p

]
= [Y	2 (x̂2p) ⊗ Y	1 (x̂1p)]LLz

N[G] (cos φp)	2 (sin φp)	1

×P
	1+ 1

2 ,	2+ 1
2

n (cos 2φp). (2.11)
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Here Y	1 (x̂1p) and Y	2 (x̂2p) are spherical harmonics, N[G] is

a normalization factor and P
	1+ 1

2 ,	2+ 1
2

n (cos 2φp) is a Jacobi
polynomial, n being the degree of the polynomial. The grand
angular quantum number G is defined as G = 2n + 	1 + 	2.
The notations [G] and {G} of Eqs. (2.11) and (2.10) stand
for [	1, 	2; n] and {	1, 	2, L, S2, T2, S, T ; n}, respectively, and
µ of Eq. (2.8) is µ = {G}, l. Note that each set of quantum
numbers {	1, 	2, L, S2, T2, S, T } is called “channel,” and the
antisymmetrization of Y{G}[�(ρ)] requires 	2 + S2 + T2 to
be odd. In addition, 	1 + 	2 must be even (odd) for positive
(negative) parity. To be noticed that after the sum on the
permutation in Eq. (2.10), some states inside the subspace
spanned by G are linearly dependent. These states have been
identified and removed from the expansion [10,13].

In this work, we have considered modern two-body poten-
tial models that act on specific spin and angular-momentum
states of the two-body system. Due to the presence of the
sum over the permutations in the expression for Y{G}, a
given particle pair is not in a definite angular and spin state.
However, the HH functions with the grand angular quantum
number G constructed in terms of a given set of Jacobi vectors
x1p, x2p, defined starting from the particle order i, j, k, can
be always expressed in terms of the HH functions constructed,
for instance, in terms of x1(p=1), x2(p=1). In fact, the following
relation holds

Y
LLz

[	1,	2;n]

[
�(ρ)

p

] =
∑

	′
1,	

′
2,n

′
a

(p),L
	1,	2,n; 	′

1,	
′
2,n

′Y
LLz

[	′
1,	

′
2;n′]

[
�

(ρ)
(p=1)

]
,

(2.12)

where the sum is restricted to the values 	′
1, 	′

2, and n′ such
that 	′

1 + 	′
2 + 2n′ = G. The coefficients a

(p),L
	1,	2,n; 	′

1,	
′
2,n

′ relating
the two sets of HH functions are known as the Raynal-Revai
coefficients [18] and could be computed rather easily using the
orthonormality property of the HH functions, namely

a
(p),L
	1,	2,n;	′

1,	
′
2,n

′

=
∫

d�
(ρ)
(p=1)

{
Y

LLz

[	1,	2;n]

[
�

(ρ)
(p=1)

]}∗
Y

LLz

[	′
1,	

′
2;n′]

[
�(ρ)

p

]
. (2.13)

Also the spin-isospin states can be recoupled to obtain states
where the spin and isospin quantum numbers are coupled in a
given order of the particles. The result is that the antisymmetric
functionsY{G} can be expressed as a superposition of functions
constructed in terms of a given order of particles i, j, k,
each one having the pair i,j in a definite spin and angular
momentum state. When the two-body potential acts on the
pair of particles i,j , the effect of the projection is easily taken
into account.

The expansion states of Eq. (2.1) in momentum space can
be obtained as follows. Let h̄k1p, h̄k2p be the conjugate Jacobi
momenta of the Jacobi vectors, given by

h̄k2p = 1√
2

( pj − pi)

(2.14)

h̄k1p =
√

2

3

[
pk − 1

2
( pi + pj )

]
,

pi being the momentum of the i-th particle. We then define
a hypermomentum Q and a set of angular-hyperangular
variables as

Q =
√

k2
1p + k2

2p

(2.15)
�(Q)

p = [k̂2p, k̂1p; ϕp],

where

tan ϕp = k1p

k2p

. (2.16)

Then, the momentum-space version of the wave function given
in Eq. (2.8) is ∣∣�JJz(Q)

µ

〉 = gG,l(Q)Y{G}[�(Q)], (2.17)

where Y{G}[�(Q)] is the same as Y{G}[�(ρ)] of Eq. (2.10) with
xip → kip, and

gG,l(Q) = (−i)G
∫ ∞

0
dρ

ρ3

Q2
JG+2(Qρ) fl(ρ). (2.18)

With the adopted form of fl(ρ) given in Eq. (2.9), the
corresponding functions gG,l(Q) can be easily calculated, and
they are explicitly given in Ref. [15].

B. The HH method for scattering states below deuteron
breakup threshold

We consider here the extension of the HH technique
to describe N -d scattering states below deuteron breakup
threshold, when both local and nonlocal interaction models
are considered.

Following Ref. [12], the wave function �
LSJJz

N-d describing
the N -d scattering state with incoming orbital angular momen-
tum L and channel spin S, parity π = (−)L, and total angular
momentum J, Jz, can be written as

�
LSJJz

N-d = �
LSJJz

C + �
LSJJz

A , (2.19)

where �
LSJJz

C describes the system in the region where the
particles are close to each other and their mutual interactions
are strong, while �

LSJJz

A describes the relative motion between
the nucleon N and the deuteron in the asymptotic region,
where the N -d nuclear interaction is negligible. The function
�

LSJJz

C , which has to vanish in the limit of large intercluster
separations, can be expanded on the HH basis as it has been
done in the case of bound states. Therefore, applying Eq. (2.1),
the function �

LSJJz

C can be casted in the form

∣∣�LSJJz

C

〉 =
∑

µ

cµ

∣∣�JJz

µ

〉
, (2.20)

where |�JJz
µ 〉 is defined in Eqs. (2.8) and (2.17) in coordinate

and momentum space, respectively.
The function �

LSJJz

A is the appropriate asymptotic solution
of the relative N -d Schrödinger equation. It is written as a
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linear combination of the following functions,

�λ
LSJJz

=
3∑

p=1

�λ
LSJJz

(p), (2.21)

where the sum over p has to be done over the three
even permutations necessary to antisymmetrize the functions
�λ

LSJJz
and

�λ
LSJJz

(p) =
∑
l=0,2

wl(x2p) Rλ
L(yp)

{[
[Yl(x̂2p) ⊗ S2]1 ⊗ 1

2

]
S

⊗ YL( ŷp)
}

JJz

[
T2 ⊗ 1

2

]
T Tz

. (2.22)

Here the spin and isospin quantum numbers of particles i

and j have been coupled to S2 and T2, with S2 = 1, T2 = 0
for the deuteron, wl(x2p) is the deuteron wave function
component in the waves l = 0, 2, yp is the distance between

N and the center of mass of the deuteron, i.e., yp =
√

3
2 x1p,

Yl(x̂2p) and YL( ŷp) are the standard spherical harmonic
functions, and the functions Rλ

L(yp) are the regular (λ ≡ R)
and irregular (λ ≡ I ) radial solutions of the relative two-body
N -d Schrödinger equation without the nuclear interaction.
These regular and irregular functions, denoted as FL(yp) and
GL(yp), respectively, have the form

RR
L (yp) ≡ FL(yp) = 1

(2L + 1)!!qLCL(η)

FL(η, ξp)

ξp

RI
L(yp) ≡ GL(yp) = (2L + 1)!!qL+1CL(η)fR(yp)

GL(η, ξp)

ξp

,

(2.23)

where q is the modulus of the N -d relative momentum (related
to the total kinetic energy in the center-of-mass system by
Tc.m. = q2

2µ
, µ being the N -d reduced mass), η = 2µe2/q

and ξp = qyp are the usual Coulomb parameters, and the
regular (irregular) Coulomb function FL(η, ξp) [GL(η, ξp)]
and the factor CL(η) are defined in the standard way [19].
The factor (2L + 1)!!qLCL(η) has been introduced so that F
and G have a finite limit for q → 0. The function fR(yp) =
[1 − exp(−byp)]2L+1 has been introduced to regularize GL

at small values of yp. The trial parameter b is determined
by requiring that fR(yp) → 1 for large values of yp, thus
not modifying the asymptotic behavior of the scattering
wave function. A value of b = 0.25 fm−1 has been found
appropriate. The non-Coulomb case of Eq. (2.23) is obtained in
the limit e2 → 0. In this case, FL(η, ξp)/ξp and GL(η, ξp)/ξp

reduce to the regular and irregular Riccati-Bessel functions
and the factor (2L + 1)!!CL(η) → 1 for η → 0.

With the above definitions, �
LSJJz

A can be written in the
form

�
LSJJz

A =
∑
L′S ′

[
δLL′δSS ′�R

L′S ′JJz
+ RJ

LS,L′S ′ (q)�I
L′S ′JJz

]
,

(2.24)

where the parameters RJ
LS,L′S ′ (q) give the relative weight

between the regular and irregular components of the wave
function. They are closely related to the reactance matrix
(K-matrix) elements, which can be written as

KJ
LS,L′S ′ (q) = (2L + 1)!!(2L′ + 1)!!qL+L′+1

×CL(η)CL′(η)RJ
LS,L′S ′(q). (2.25)

By definition of theK matrix, its eigenvalues are tan δLSJ , δLSJ

being the phase shifts. The sum over L′ and S ′ in Eq. (2.24)
is over all values compatible with a given J and parity π . In
particular, the sum over L′ is limited to include either even or
odd values, because (−1)L

′ = π .
The matrix elements RJ

LS,L′S ′ (q) and the linear coefficients

cµ occurring in the expansion of �
LSJJz

C of Eq. (2.20) are
determined applying the Kohn variational principle [20],
which states that the functional[

RJ
LS,L′S ′ (q)

] = RJ
LS,L′S ′ (q) − 〈

�
L′S ′JJz

N-d |L| �LSJJz

N-d
〉

L = m

2
√

3h̄2
(H − E) (2.26)

has to be stationary with respect to variations of the trial
parameters in �

LSJJz

N-d . Here E is the total energy of the system,
m is the nucleon mass, and L is chosen so that〈

�R
LSJJz

∣∣L∣∣�I
LSJJz

〉 − 〈
�I

LSJJz

∣∣L∣∣�R
LSJJz

〉 = 1. (2.27)

As described in Ref. [21], using Eqs. (2.20) and (2.24), the
variation of the diagonal functionals of Eq. (2.26) with respect
to the linear parameters cµ leads to the following system of
linear inhomogeneous equations:∑

µ′

〈
�JJz

µ

∣∣L∣∣�JJz

µ′
〉
cµ′ = −Dλ

LSJJz
(µ). (2.28)

Two different terms Dλ corresponding to λ ≡ R, I are intro-
duced and are defined as

Dλ
LSJJz

(µ) = 〈
�JJz

µ

∣∣L∣∣�λ
LSJJz

〉
. (2.29)

The matrix elements RJ
LS,L′S ′ (q) are obtained varying the

diagonal functionals of Eq. (2.26) with respect to them. This
leads to the following set of algebraic equations∑

L′′S ′′
RJ

LS,L′′S ′′ (q)XL′S ′,L′′S ′′ = YLS,L′S ′ (2.30)

with the coefficients X and Y defined as

XLS,L′S ′ = 〈
�I

LSJJz
+ �

LSJJz,I

C

∣∣L∣∣�I
L′S ′JJz

〉
(2.31)

YLS,L′S ′ = −〈
�R

LSJJz
+ �

LSJJz,R

C

∣∣L∣∣�I
L′S ′JJz

〉
.

Here �
LSJJz,λ

C is the solution of the set of Eq. (2.28) with
the corresponding Dλ term. A second-order estimate of
RJ

LS,L′S ′ (q) is given by the quantities [RJ
LS,L′S ′ (q)], obtained

by substituting in Eq. (2.26) the first order results. Such second-
order calculation provides a symmetric reactance matrix. This
condition is not a priori imposed, and therefore it is a useful
test of the numerical accuracy.

In the particular case of q = 0 (zero-energy scattering),
the scattering can occur only in the channel L = 0 and the
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observables of interest are the scattering lengths. Within the
present approach, they can be easily obtained from the relation

(2J+1)aNd = − lim
q→0

RJ
0J,0J (q). (2.32)

An alternative way to solve the scattering problem, used
when q �= 0, is to apply the complex Kohn variational principle
to theS matrix, as in Ref. [21]. In this way, the Kohn variational
principle of Eq. (2.26) becomes[

SJ
LS,L′S ′ (q)

] = SJ
LS,L′S ′ (q) + i

〈
�

+,L′S ′JJz

N-d
∣∣S∣∣�+,LSJJz

N-d
〉
.

(2.33)

Here

�
+,LSJJz

N-d = �
LSJJz

C + �
+,LSJJz

A (2.34)

with �
LSJJz

C given in Eq. (2.20) and

�
+,LSJJz

A =
3∑

p=1

�+
LSJJz

(p)

�+
LSJJz

(p) = [
i�̃R

LSJJz
(p) − �̃I

LSJJz
(p)

]
+

∑
L′S ′

SJ
LS,L′S ′ (q)

[
i�̃R

L′S ′JJz
(p) + �̃I

L′S ′JJz
(p)

]
.

(2.35)

The functions �̃λ
LSJJz

(p) are the same as in Eq. (2.22), with
RR

L (yp) = FL(η, ξp)/ξp and RI
L(yp) = fR(yp)GL(η, ξp)/ξp.

Note that, with the above definition, the reactance K-matrix
elements can be related to the S-matrix elements as

KJ
LS,L′S ′ (q) = (−i)

[
SJ

LS,L′S ′ (q) − δLL′δSS ′
]

× [
SJ

LS,L′S ′ (q) + δLL′δSS ′
]−1

. (2.36)

The calculation involving �
LSJJz

C has been performed with
the HH expansion in coordinate or in momentum space,
depending on what is more convenient, as it has been
explained for the bound state in the previous subsection. Some
difficulties arise for the calculation of the potential energy
matrix elements that involve �λ

LSJJz
, i.e., 〈�JJz

µ |V |�λ
LSJJz

〉
present in Eq. (2.29), and 〈�λ′

L′S ′JJz
+ �

L′S ′JJZ,λ′
C |V |�λ

LSJJz
〉 of

Eq. (2.31), with λ, λ′ = R, I . In the present work, we consider
both two- and three-nucleon interactions, and therefore

V =
∑
i<j

Vij +
∑

i<j<k

Vijk. (2.37)

We first focus on the two-body contribution. Due to the
antisymmetry of the wave function, the following relation
holds

〈�|
∑
i<j

Vij |�λ
LSJJz

(p)〉 = 3〈�|V12|�λ
LSJJz

(p)〉, (2.38)

where |�〉 can be either |�JJz
µ 〉 of Eq. (2.20) or �λ′

L′S ′JJz
(p′) of

Eq. (2.22), depending on which term among Dλ, X, and Y is
considered. The potential V12 acts on the particle pair 1,2 with
total angular momentum j , and orbital angular momentum and
spin quantum numbers 	′

12, s
′
12 (on the bra) and 	12, s12 (on the

ket), and can be written as

V12 = v
j

12[x ′
2 (p=1), x2 (p=1); 	

′
12, s

′
12, 	12, s12], (2.39)

in coordinate space and

V12 = v
j

12[k′
2 (p=1), k2 (p=1); 	

′
12, s

′
12, 	12, s12], (2.40)

in momentum space, where x2 (p=1) and k2 (p=1) are the moduli
of the vectors defined in Eqs. (2.4) and (2.14), respectively.
When local potential models are considered, such as the AV18,
then

v
j

12[x ′
2 (p=1), x2 (p=1); 	

′
12, s

′
12, 	12, s12]

→ v
j

12[x2 (p=1); 	
′
12, s

′
12, 	12, s12]δ[x2 (p=1) − x ′

2 (p=1)].

(2.41)

The first difficulty that needs to be overcame arises from the
fact that when the V12 operator acts on �λ

LSJJz
(p �= 1), the

particle pair 12 does not have a well-definined orbital and spin
angular momenta. However, the following relation holds:

wl[x2(p �=1)] Rλ
L(yp �=1)[Yl(x̂2(p �=1)) ⊗ YL( ŷp �=1)]�,�z

=
∑
l′,L′

F
λ,p �=1
lL;l′L′ [x1 (p=1), x2 (p=1)]

× [
Yl′(x̂2(p=1)) ⊗ YL′( ŷp=1)

]
�,�z

. (2.42)

where �,�z are the total orbital angular momentum and its
third component. The functions F

λ,p �=1
lL;l′L′ [x1(p=1), x2(p=1)] are

given by

F
λ,p �=1
lL;l′L′ [x1(p=1), x2(p=1)]

=
∫

d x̂2(p=1)d x̂1(p=1)
[
Y ∗

l′ (x̂2(p=1)) ⊗ Y ∗
L′( ŷp=1)

]
�,�z

×wl[x2(p �=1)] Rλ
L(yp �=1)

[
Yl(x̂2(p �=1)) ⊗ YL( ŷp �=1)

]
�,�z

.

(2.43)

Once the functions F
λ,p �=1
lL;l′L′ [x1(p=1), x2(p=1)] have been cal-

culated and the spin-isospin states have been also properly
recoupled, the effect of the projection operator in V12 is easily
taken into account.

A second difficulty arises in the calculation of the potential
matrix element, when nonlocal potentials expressed in mo-
mentum space are used. On the contrary to the core part of the
scattering wave function �

LSJJz

C , which can be alternatively
expressed in coordinate or in momentum space, the asymptotic
states �λ

LSJJz
have no easy expression in momentum space

and are more conveniently expressed and used in coordinate
space. This is especially true when the Coulomb interaction
is considered, as for the p-d case. Therefore, we have
decided to perform the Fourier transform of the potential
v

j

12(k′, k; 	′, s ′, 	, s) to work only in coordinate space, namely

v
j

12(r ′, r; 	′, s ′, 	, s)

= 2

π

∫
k2dk k′2dk′ j	′(k′r ′) v

j

12(k′, k; 	′, s ′, 	, s) j	(kr),

(2.44)

where j	(kr) and j	′(k′r ′) are the standard spherical Bessel
functions. The integrations over k and k′, which run from 0 to
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∞, are easily performed when the potential model considered
does not have a high-momentum tail but goes rapidly to zero at
rather low values of k and k′. This is true for the N3LO-Idaho
and Vlow−k potential models but not for the CDBonn. Because
the main goal of the present work is to perform a first test of
the applicability of the HH method to the A = 3 scattering
problem using nonlocal realistic interactions, only the N3LO-
Idaho and Vlow−k two-body potentials have been considered.

Some remarks about the calculation of the three-body
contribution to the potential energy operator of Eq. (2.37)
are in order. The TNIs considered in the present work are the
Urbana IX [5] (UIX) and the N2LO [7] potentials. The first one
is used in conjunction with both the AV18 and N3LO-Idaho
two-nucleon interactions. In the second case, the parameter
in front of the spin-isospin independent part of the UIX TNI
has been rescaled by a factor of 0.384 to fit the triton binding
energy [22] (UIXp). The N2LO TNI has been used only in
conjunction with the N3LO-Idaho potential model. All these
TNIs are local potentials, and have a well-defined operatorial
structure. Therefore, the projection procedure of Eqs. (2.42)
and (2.43) is not needed and the present approach follows the
footsteps of the PHH technique [12,23].

III. RESULTS

In this section we present our results for n-d and
p-d scattering observables at center-of-mass energies below
deuteron breakup threshold. The interaction models that have
been used are the AV18 and the N3LO-Idaho two-nucleon
interactions and the AV18/UIX, N3LO-Idaho/UIXp, and the
N3LO-Idaho/N2LO two- and three-nucleon interactions. Note
that the AV18 and AV18/UIX results are the same as those
ones first obtained in Ref. [24], using the PHH expansion.
We have considered also the Vlow−k model, obtained from the
AV18 two-nucleon interaction with a cutoff parameter � equal
to 2.2 fm−1. The cutoff parameter has been chosen so that
the triton binding energy is 8.477 MeV, when the complete
electromagnetic interaction is used, including neutron charge
distribution and MM interaction effects. However, when no
electromagnetic effects are considered, the triton binding
energy has been found to be 8.519 MeV. In the scattering
problem, only the point Coulomb interaction has been consid-
ered, except when differently indicated.

Before presenting the results for the considered low-energy
N -d observables, we discuss the pattern of convergence for
some representative quantities, i.e. the n-d doublet zero-energy
scattering length 2and and the p-d J π = 1/2+, 1/2− phase
shifts and mixing angles at center-of-mass energy Ec.m. =
2.0 MeV, calculated with the N3LO-Idaho two-nucleon inter-
action model. The angular momentum-spin-isospin channels
considered for Jπ = 1/2+ and 1/2− are given in Tables I and
II, respectively. The notation is the same as in Eq. (2.11). To be
noticed that the scattering channels in the case of Jπ = 1/2−
are ordered for increasing values of 	1 + 	2. This is true also for
all the channels here considered, except those for Jπ = 1/2+
(see Table I), where the ordering respects a “historical choice,”
first done in the case of the three-nucleon bound state in
Ref. [25].

TABLE I. Angular-momentum, spin, and isospin quantum
numbers for the first 23 channels considered in the expansion
of the J π = 1/2+ core wave function.

α 	1α 	2α Lα S2α T2α Sα Tα

1 0 0 0 1 0 1/2 1/2
2 0 0 0 0 1 1/2 1/2
3 0 2 2 1 0 3/2 1/2
4 2 0 2 1 0 3/2 1/2
5 2 2 0 1 0 1/2 1/2
6 2 2 2 1 0 3/2 1/2
7 2 2 1 1 0 1/2 1/2
8 2 2 1 1 0 3/2 1/2
9 1 1 0 1 1 1/2 1/2
10 1 1 1 1 1 1/2 1/2
11 1 1 1 1 1 3/2 1/2
12 1 1 2 1 1 3/2 1/2
13 1 1 0 0 0 1/2 1/2
14 1 1 1 0 0 1/2 1/2
15 2 2 0 0 1 1/2 1/2
16 2 2 1 0 1 1/2 1/2
17 3 1 2 1 1 3/2 1/2
18 1 3 2 1 1 3/2 1/2
19 0 0 0 0 1 1/2 3/2
20 1 1 0 1 1 1/2 3/2
21 1 1 1 1 1 1/2 3/2
22 1 1 1 1 1 3/2 3/2
23 1 1 2 1 1 3/2 3/2

TABLE II. Same as in Table I but for the first 25 channels
considered in the expansion of the J π = 1/2− core wave function.

α 	1α 	2α Lα S2α T2α Sα Tα

1 1 0 1 1 0 1/2 1/2
2 1 0 1 0 1 1/2 1/2
3 1 0 1 1 0 3/2 1/2
4 0 1 1 1 1 1/2 1/2
5 0 1 1 0 0 1/2 1/2
6 0 1 1 1 1 3/2 1/2
7 2 1 1 1 1 1/2 1/2
8 2 1 1 0 0 1/2 1/2
9 2 1 1 1 1 3/2 1/2
10 2 1 2 1 1 3/2 1/2
11 1 2 1 1 0 1/2 1/2
12 1 2 1 0 1 1/2 1/2
13 1 2 1 1 0 3/2 1/2
14 1 2 2 1 0 3/2 1/2
15 3 2 1 1 0 1/2 1/2
16 3 2 1 0 1 1/2 1/2
17 3 2 1 1 0 3/2 1/2
18 3 2 2 1 0 3/2 1/2
19 1 0 1 0 1 1/2 3/2
20 0 1 1 1 1 1/2 3/2
21 0 1 1 1 1 3/2 3/2
22 2 1 1 1 1 1/2 3/2
23 2 1 1 1 1 3/2 3/2
24 2 1 2 1 1 3/2 3/2
25 1 2 1 0 1 1/2 3/2
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TABLE III. n-d doublet scattering length 2and in fm and p-d J π = 1/2+, 1/2− phase shifts δLSJ and
mixing angles ε at Ec.m. = 2.0 MeV, calculated with the HH technique using the N3LO-Idaho interaction
model, for increasing values of the Laguerre polynomials M . All the channels of Tables I and II are included
with grand angular momentum for all the channels set equal to 20 for J π = 1/2+ and 21 for J π = 1/2−.

M = 4 M = 8 M = 12 M = 16 M = 20 M = 24 M = 28

2and 3.029 1.630 1.329 1.259 1.240 1.234 1.233
δ0, 1

2 , 1
2

−3.611 −3.583 −3.572 −3.570 −3.570 −3.569 −3.569
δ2, 3

2 , 1
2

−43.28 −34.69 −32.41 −31.96 −31.82 −31.78 −31.77
ε 1

2
+ 0.525 0.975 1.150 1.189 1.201 1.205 1.206

δ1, 1
2 , 1

2
−8.270 −7.756 −7.608 −7.581 −7.576 −7.575 −7.575

δ1, 3
2 , 1

2
20.82 21.73 21.97 22.00 22.00 22.01 22.01

ε 1
2

− 4.947 5.542 5.628 5.641 5.643 5.644 5.644

In Table III we present the results for 2and and p-d
J π = 1/2+, 1/2− phase shifts and mixing angles (δLSJ , ε)
at Ec.m. = 2.0 MeV for increasing values of the Laguerre
polynomials M in the hyperradial functions [see Eqs. (2.9)
and (2.18)]. All the 23 (25) angular momentum-spin-isospin
channels of Table I (II) are considered for Jπ = 1/2+ (1/2−),
and HH functions up to grand angular momentum G = 20 (21)
for all the channels have been included. From inspection of
the table, we can conclude that the use of M = 28 is enough
to reach an accuracy of at least 0.002 fm for the scattering
length and four significant digits for the phase shifts and
mixing angles. In fact, for other p-d scattering channels at
some of the considered values of Ec.m., even M = 24 and
M = 20 has been found enough to reach the same degree of
accuracy.

To study the convergence on the HH expansion, as it has
been done in Ref. [14], we have separated the HH functions
into classes having particular properties and we have taken
into account the fact that the convergence rates of the different
classes are rather different. For instance, we expect that the
contribution of the HH functions with lower values of 	12,α =

TABLE IV. Convergence of the n-d doublet scattering length 2and

in fm and p-d J π = 1/2+ phase shifts δLSJ and mixing angles ε at
Ec.m. = 2.0 MeV, corresponding to the inclusion in the wave function
of the different classes in which the HH basis has been divided. The
N3LO-Idaho interaction model is used, and the number of Laguerre
polynomials included is M = 28.

G1 G2 G3 G4 G5
2and δ0, 1

2 , 1
2

δ2, 3
2 , 1

2
ε 1

2
+

50 1.245 −3.577 −32.11 1.248
60 1.243 −3.577 −32.09 1.248
70 1.242 −3.577 −32.08 1.248
80 1.242 −3.577 −32.08 1.248
80 16 1.112 −3.572 −31.18 1.240
80 20 1.112 −3.572 −31.17 1.238
80 20 16 1.100 −3.569 −31.09 1.239
80 20 20 1.100 −3.569 −31.09 1.239
80 20 20 16 1.099 −3.569 −31.09 1.239
80 20 20 20 1.099 −3.569 −31.09 1.239
80 20 20 20 16 1.099 −3.569 −31.04 1.241
80 20 20 20 20 1.099 −3.569 −31.04 1.241

	1,α + 	2,α to be the most important. Therefore, for all the
Jπ -scattering states, except Jπ = 1/2+, the different classes
are classified with increasing value of 	12,α , up to 	12,α � 6,
and among those ones with the same 	12,α , we have included
first the contributions of the HH functions with lower 	2,α .
Finally, the Tα = 3/2 states are considered. With these criteria,
in the Jπ = 1/2− case, the channels have been classified into
six classes, including channels 1–3, 4–6, 7–10, 11–14, 15–18,
and 19–25 of Table II, respectively. In the case of Jπ = 1/2+,
the classification follows the footsteps of Ref. [25], and
therefore the channels have been classified into five classes,
including channels 1–3, 4–8, 9–12, 13–18, and 19–23 of
Table I, respectively. We have then called Gi , for each class
i, a number such that each state of class i has the grand
angular momentum G � Gi , and we have increased Gi until
we have reached convergence. Then, keeping Gi fixed at this
value, we have included the states of the following class and
increased Gi+1 again until we have reached convergence. The
results for the zero-energy scattering length and the low-energy
phase shifts and mixing angles obtained with this procedure
are given in Table IV for Jπ = 1/2+ and V for Jπ = 1/2−.

TABLE V. Same as in Table IV but for p-d J π = 1/2− phase
shifts δLSJ and mixing angles ε at Ec.m. = 2.0 MeV.

G1 G2 G3 G4 G5 G6 δ1, 1
2 , 1

2
δ1, 3

2 , 1
2

ε 1
2

−

61 −7.416 21.24 5.544
71 −7.413 21.25 5.545
81 −7.412 21.25 5.545
91 −7.411 21.25 5.545
91 11 −7.382 21.53 5.619
91 21 −7.380 21.55 5.622
91 31 −7.379 21.55 5.622
91 31 15 −7.367 21.77 5.704
91 31 21 −7.367 21.77 5.705
91 31 21 31 −7.372 22.02 5.799
91 31 21 41 −7.370 22.03 5.798
91 31 21 51 −7.369 22.04 5.798
91 31 21 51 15 −7.369 22.04 5.798
91 31 21 51 21 −7.369 22.04 5.798
91 31 21 51 21 15 −7.342 22.05 5.818
91 31 21 51 21 21 −7.340 22.05 5.819
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Here, M = 28 Laguerre polynomials in the expansion of the
hyperradial function are included and again the N3LO-Idaho
two-nucleon potential is used.

From the cases presented in the tables, and as well as
for all cases taken in consideration, we can observe that (i)
the last classes of channels, corresponding to the Tα = 3/2
states, give sizable contributions to the p-d phase shifts and
mixing angles but negligible ones to the n-d ones. (ii) The
Tα = 1/2 channels with the largest values of 	12,α (fourth class
for Jπ = 1/2+ and fifth one for Jπ = 1/2−) give negligible
contributions. This implies that 	12,α � 6 is enough to have
accurate results. (iii) The convergence with respect to the grand
angular momentum for the first class is the most problematic
and it depends noticeably on the interaction. For example,
for Jπ = 1/2+, when the nonlocal potential N3LO-Idaho is
used, values of G1 up to 80 have been found to be necessary
(see Table IV). However, in the case of the local AV18, we
have verified that within the HH expansion (i.e., without the
correlation) G1 = 160 is needed to reach the same degree of
accuracy. This is related to the fact that the AV18 potential is
more repulsive at short interparticle distances, and therefore
the corresponding wave functions in that region are more
difficult to be constructed. In fact, when the calculation is
performed using the Vlow−k potential model, which is very soft
at short interparticle distances, it is sufficient to set G1 = 40.
A completely identical pattern of convergence is found for
all other Jπ waves. (iv) The convergence of the other classes
is usually faster than for the first class, as it is evident for the
cases reported in Tables IV and V. For the Jπ = 1/2+ case, we
obtain convergence with just G2,3,4,5 = 20. For Jπ = 1/2−,
we have to consider fairly large values of G only for the fourth
class (up to G4 = 51), because the channels belonging to this
class (the channels 11–14 as reported in Table II) are needed to
describe pairs in orbital angular momentum 	2 = 2. Namely,
together with the channels of the first class, they are needed
to have a good descriptions of the pairs in the deuteron waves.
We have also found that the convergence rate of these classes
does not depend much on the nonlocal interaction model. For
example, with the Vlow−k potential, convergence is achieved
with G2,3,4,5 = 20 for Jπ = 1/2+ and G2,4 = 31, G3,5,6 = 21
for Jπ = 1/2−. However, note that for the AV18 potential
model, we need to set G2 = 90, G3,4,5 = 40 for Jπ = 1/2+
and G2 = 61, G3,6 = 41, G4 = 91, G5 = 21 for Jπ = 1/2−.

A similar pattern of convergence has been found for all the
calculated quantities. From now on, all the results which will
be presented have been obtained at convergence in the basis
expansion.

The results for the n-d and p-d doublet and quartet
scattering lengths are given in Table VI and are compared
with the available experimental data [26,27]. The results for
the AV18 and AV18/UIX have been taken from Ref. [10].
Comparing the theoretical and experimental results for 2and

and 4and , we can conclude that 4and is very little model-
dependent (as well as 4apd ), and there is a satisfactory
agreement between theory and experiment. On the contrary,
2and is strongly model dependent, and only the inclusion of
the TNI brings the theoretical value close to the experimental
one. However, some disagreement still remains, and the recent
measurement of Ref. [27] is not well described by any of the
potential models considered. Though, the N3LO-Idaho/UIXp
and N3LO-Idaho/N2LO models give slightly better results.
Note that the AV18/UIX results obtained including also MM
interaction effects are 2and = 0.590 fm and 4and = 6.343 fm.
Finally, the Vlow−k results are in remarkable disagreement
with the experimental data, and a sizable difference from the
AV18/UIX results is also observed. Therefore, even when the
cutoff parameter of the Vlow−k interaction model is fixed to
reproduce the triton binding energy, the doublet scattering
length is not well reproduced. This observation seems to
suggest that the S-wave sensitive scattering observables, like
the scattering lengths, are not properly described by simply
increasing the attraction, but a right balance between attraction
and repulsion of the nuclear force has to be reached. Such a
balance cannot be achieved with just one parameter, as the
cutoff � of the Vlow−k interaction. Further analysis of these
aspects is currently underway [28].

The p-d elastic-scattering observables have been studied
at different values of center-of-mass energy Ec.m.. Because
we have considered several interaction models, we first focus
our attention on the two-nucleon only models, i.e., the AV18
and the N3LO-Idaho. The differential cross section dσ/d�,
the proton vector analyzing power Ay , and the deuteron
vector and tensor analyzing powers iT11, T20, T21, and T22,
as function of the center-of-mass angle θc.m., are given in
Figs. 1–6, respectively. The data are taken from Refs. [29–35],
as indicated in detail in the figure captions. By inspection of

TABLE VI. n-d and p-d doublet and quartet scattering lengths in fm calculated with the HH technique
using different Hamiltonian models.

Interaction 2and
4and

2apd
4apd

AV18 1.275 6.325 1.185 13.588
AV18/UIX 0.610 6.323 −0.035 13.588
N3LO-Idaho 1.099 6.342 0.876 13.646
N3LO-Idaho/UIXp 0.623 6.343 −0.007 13.647
N3LO-Idaho/N2LO 0.675 6.342 0.072 13.647
Vlow−k 0.572 6.321 −0.001 13.571
Exp. [26] 0.65 ± 0.04 6.35 ± 0.02
Exp. [27] 0.645 ± 0.003 ± 0.007 –
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FIG. 1. p-d differential cross section calculated with the AV18 (dashed lines) and the N3LO-Idaho (solid lines) two-nucleon potential
models. Panels (a)–(f) correspond to center-of-mass energies Ec.m. = 0.266, 0.431, 0.666, 1.33, 1.66, and 2.0 MeV, respectively. Data
are from Ref. [29] at Ec.m. = 0.266 MeV; from Ref. [30] at Ec.m. = 0.431 MeV; from Refs. [29] (solid circles), [31] (empty circles),
and [32] (empty squares) at Ec.m. = 0.666 MeV; from Refs. [32] (empty squares: Ep = 1.993 MeV), [33] (solid circles), and [34]
(empty circles: Ep = 2.08 MeV) at Ec.m. = 1.33 MeV; from Refs. [33] (solid circles) and [34] (empty circles: Ep = 2.53 MeV) at
Ec.m. = 1.66 MeV; and from Refs. [33] (solid circles), [32] (empty squares: Ep = 2.995 MeV), and [34] (empty circles) at Ec.m. =
2.0 MeV.
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FIG. 2. Same as in Fig. 1 but for the proton vector analyzing power Ay . Data are from Ref. [30] at Ec.m. = 0.431 MeV, from Ref. [35] at
Ec.m. = 0.666 MeV, and from Ref. [33] at Ec.m. = 1.33, 1.66, and 2.0 MeV.
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FIG. 3. Same as in Fig. 1 but for the deuteron vector analyzing power iT11. Data are from Ref. [30] at Ec.m. = 0.431 and 1.33 MeV, from
Ref. [35] at Ec.m. = 0.666 MeV, and from Ref. [33] at Ec.m. = 1.66 and 2.0 MeV.

the figures, we can observe that (i) theory and experiment
are in disagreement for the Ay and iT11 observables (the
well-known “Ay-puzzle” [24,36]); (ii) no differences between
the AV18 and the N3LO-Idaho curves can be seen for the
differential cross sections; (iii) the N3LO-Idaho curves are

systematically closer to the data than the AV18 ones for
the polarization observables, especially for Ay and iT11. The
reason of this behavior is well known [16] and is related to the
MM interaction. In fact, the AV18 potential model has been
constructed keeping the electromagnetic interaction separated
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FIG. 4. Same as in Fig. 1 but for the deuteron tensor analyzing power T20. Data are from Ref. [30] at Ec.m. = 0.431 MeV, from Ref. [35] at
Ec.m. = 0.666 MeV, and from Ref. [33] at Ec.m. = 1.66 and 2.0 MeV.
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FIG. 5. Same as in Fig. 1 but for the deuteron tensor analyzing power T21. Data are from the same references as in Fig. 4.

from the nuclear one. The electromagnetic interaction includes
the MM one, as well as higher-order corrections to the pp

Coulomb potential as two-photon exchange, Darwin-Foldy,
and vacuum polarization terms. The MM interaction effects
are known to be sizable in N -d elastic scattering [16].
On the contrary, the N3LO-Idaho potential model keeps as
electromagnetic interaction only the point Coulomb potential

and MM effects are indirectly included in the nuclear part of
the interaction by the fitting procedure. From this observation,
we can guess that the results obtained with the two-nucleon
potentials AV18 and N3LO-Idaho should be comparable when
the AV18 calculation includes also the MM effects. To verify
this hypothesis, we have calculated the p-d elastic-scattering
observables at two values of Ec.m., 1.33 and 2.0 MeV, using
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FIG. 6. Same as in Fig. 1 but for the deuteron tensor analyzing power T22. Data are from the same references as in Fig. 4.
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FIG. 7. Theoretical results for p-d differ-
ential cross section dσ/d�, and polarization
observables Ay , iT11, T20, T21, and T22, at Ec.m. =
1.33 MeV are compared to the experimental data.
The calculation are done using the AV18 (dashed
lines), the AV18 + MM (dotted-dashed lines),
and the N3LO-Idaho (solid lines) interactions.
The data are from Refs. [32] (empty squares:
Ep = 1.993 MeV), [33] (solid circles), and [34]
(empty circles: Ep = 2.08 MeV) for the differ-
ential cross section and from Refs. [33] and [30]
for the Ay and iT11 polarization observables,
respectively. The incident proton (deuteron) is
Ep = 2.0 MeV (Ed = 4.0 MeV).

the AV18, AV18 + MM, and N3LO-Idaho potential models.
The results are given in Figs. 7 and 8, respectively. From
inspection of the figures, we can notice that the AV18 + MM
results for the Ay and iT11 vector polarization observables are
larger than the AV18 alone ones in the maximum region and
that the AV18 + MM and N3LO-Idaho curves are quite close
to each other for all the observables considered. Although
this analysis should be performed systematically at any value
of Ec.m. and for any observable, given the conclusions of
Ref. [16], it can be expected that a similar behavior still holds.
Therefore, we can conclude that the nonlocal N3LO-Idaho and
the local AV18 two-nucleon interactions give similar results

once the MM effects are included in the AV18 calculation.
For this reason, we have chosen to use the N3LO-Idaho
two-nucleon interaction model in the continuation of our
study.

To have a meaningful comparison with the data, the TNI
cannot be neglected in the calculation. Therefore, we present
in Figs. 9–14 the results for the different observables, obtained
with the N3LO-Idaho two-nucleon interaction models and the
N3LO-Idaho/UIXp and N3LO-Idaho/N2LO two- and three-
nucleon interaction models. From inspection of the figures,
we can observe that the TNI effects are sizable, especially
for the polarization observables, and the N3LO-Idaho/N2LO

TABLE VII. χ 2/datum of the p-d elastic-scattering observables at Ec.m. = 0.666, 1.33, 1.66, and 2.0 MeV, calculated with the
N3LO-Idaho two-nucleon only, and the N3LO-Idaho/UIXp and N3LO-Idaho/N2LO two- plus three-nucleon Hamiltonian models.
The different number N of experimental data is also indicated. The data are from Refs. [31,35] at Ec.m. = 0.666 MeV and from
Ref. [33] at Ec.m. = 1.33, 1.66, and 2.0 MeV.

0.666 MeV 1.33 MeV 1.66 MeV 2.0 MeV

Ay iT11 T20 T21 T22 Ay Ay iT11 T20 T21 T22 Ay iT11 T20 T21 T22

N 7 8 24 24 24 38 44 50 50 50 50 38 51 51 51 51

N3LO-Idaho 197.7 68.7 4.0 2.6 1.5 108.4 227.9 92.6 1.0 2.2 2.7 186.0 108.3 1.9 2.8 4.4
N3LO-Idaho/UIXp 171.2 53.1 2.6 2.2 0.9 89.2 185.9 67.0 2.0 3.2 3.2 152.5 81.8 3.0 5.5 1.6
N3LO-Idaho/N2LO 139.9 49.5 2.7 2.5 0.9 70.0 159.4 84.3 2.1 4.0 2.8 114.0 85.8 3.6 8.3 1.6
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FIG. 8. Same as in Fig. 7 but for Ec.m. =
2.0 MeV. The data are from Refs. [33] (solid
circles), [32] (empty squares: Ep = 2.995 MeV),
and [34] (empty circles) for the differential cross
section, and from Ref. [33] for the polarization
observables. The incident proton (deuteron) is
Ep = 3.0 MeV (Ed = 6.0 MeV).
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FIG. 9. p-d differential cross section calculated with the N3LO-Idaho (dashed lines), the N3LO-Idaho/UIXp (dotted-dashed lines),
and the N3LO-Idaho/N2LO (solid lines) two- and three-nucleon interaction models. Panels (a)–(f) correspond to center-of-mass energies
Ec.m. = 0.266, 0.431, 0.666, 1.33, 1.66, and 2.0 MeV, respectively. Data are from the same references as in Fig. 1.
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FIG. 10. Same as in Fig. 9, but for the proton vector analyzing power Ay . Data are from the same references as in Fig. 2.

potential model gives a slightly better description of the data
than the N3LO-Idaho/UIXp one. In particular, it is interesting
to note that the Ay and iT11 observables are better described
at every value of Ec.m., except for iT11 at Ec.m. = 1.66 MeV,
although even in this case all the curves are very close to each
other.

For a better comparison between the different potential
models and the data, a χ2 analysis has been carried only for
those observables, except the differential cross section, for

which the number of data N is N � 7. In particular, following
Ref. [31],

χ2/datum = 1

N

∑
i

(
f

exp
i − f th

i

)2

(�fi)2
(3.1)

where f
exp
i is the ith datum at center-of-mass angle θi , �fi

is its experimental error, and f th
i is the theoretical value

at the same angle. The results are given in Table VII for
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FIG. 11. Same as in Fig. 9, but for the deuteron vector analyzing power iT11. Data are from the same references as in Fig. 3.
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FIG. 12. Same as in Fig. 9 but for the deuteron tensor analyzing power T20. Data are from the same references as in Fig. 4.

Ec.m. = 0.666, 1.33, 1.66, and 2.0 MeV. The N3LO-Idaho,
N3LO-Idaho/UIXp, and N3LO-Idaho/N2LO interaction
models have been considered. From inspection of the table
we can note that all the values for χ2/datum are comparable,

although the ones obtained with the N3LO-Idaho two-nucleon
interaction are usually higher than the ones obtained with two-
and three-nucleon interactions, except for the tensor analyzing
power T20 and T21. This is a well-known and still unclear
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FIG. 13. Same as in Fig. 9 but for the deuteron tensor analyzing power T21. Data are from the same references as in Fig. 5.
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FIG. 14. Same as in Fig. 9 but for the deuteron tensor analyzing power T22. Data are from the same references as in Fig. 6.
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FIG. 15. The theoretical values of the
p-d differential cross section dσ/d�,
Ay , iT11, T20, T21, and T22, at E.m. =
0.666 MeV are compared to the ex-
perimental data. The calculations are
done with the AV18 (dashed lines), the
AV18/UIX (dotted-dashed lines), and the
Vlow−k two-nucleon interaction, obtained
from the AV18 with a cutoff parameter
� = 2.2 fm−1 (solid lines). The data are
from Refs. [29] (solid circles), [31] (empty
circles), and [32] (empty squares) for
the differential cross section and from
Ref. [35] for the polarization observables.
The incident proton (deuteron) is Ep =
1.0 MeV (Ed = 2.0 MeV).
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FIG. 16. Same as in Fig. 15 but at
Ec.m. = 2.0 MeV. The data are from
Refs. [33] (solid circles), [32] (empty
circles), and [34] (empty squares) for
the differential cross section and from
Ref. [33] for the polarization observ-
ables. The incident proton (deuteron)
is Ep = 3.0 MeV (Ed = 6.0 MeV).

issue, i.e., T20 and T21 are better described, as the energy
increases, by two-nucleon only interaction models, even at
30.0 MeV [37]. Among the two- plus three-nucleon interaction
models, the N3LO-Idaho/N2LO performs slightly better than
the N3LO-Idaho/UIXp.

The p-d elastic-scattering observables at Ec.m. = 0.666 and
2.0 MeV have been calculated also using the two-nucleon
only potential model Vlow−k , obtained from the AV18 with
a cutoff parameter � equal to 2.2 fm−1, as already used
for the calculation of the scattering lengths. The results are
given in Figs. 15 and 16, respectively. Together with the Vlow−k

results, we have shown also the bare AV18 and the AV18/UIX
ones. From inspection of the figures, we can observe that the
Vlow−k results are very similar to the AV18/UIX ones. This
can be understood noticing that the considered observables
are sensitive to P - and D-wave scattering. The P -wave
phase shifts and mixing angles are influenced by the UIX
TNI attraction term, which is reproduced, within the Vlow−k

approach, by fitting the cutoff parameter �. In fact, the
Jπ = 1/2− phase shifts and mixing angle (δ1 1

2
1
2
, δ1 3

2
1
2
, ε 1

2
−)

obtained at Ec.m. = 2.0 MeV with the AV18, AV18/UIX,

and Vlow−k potential models are (−7.358, 22.11, 5.718),
(−7.366, 22.32, 5.835), and (−7.343, 22.26, 5.811), respec-
tively. From this first analysis of Vlow−k results for N -d
scattering at low energies, we can conclude that the Vlow−k

and AV18/UIX results are close to each other for observables
sensitive to P - and D-wave scattering, like vector and tensor
analyzing powers. Further work on these aspects is currently
underway.

The n-d elastic-scattering observables, including differ-
ential cross section, neutron vector analyzing power Ay ,
deuteron vector and tensor analyzing powers iT11, T20,
T21, and T22, at Ec.m. = 1.33 and 2.0 MeV are given in
Figs. 17 and 18, respectively. The experimental data are from
Refs. [38–40] and Refs. [41,42] at Ec.m. = 1.33 MeV and
2.0 MeV, respectively. The different curves are obtained
using the N3LO-Idaho, N3LO-Idaho/UIXp, and N3LO-
Idaho/N2LO potential models. From inspection of the figures,
we can observe that all the curves are very close to each other,
especially for the differential cross section dσ/d� and the
tensor analyzing powers T20, T21, and T22, although some small
differences are appreciable. Moreover, some differences are

034003-17



MARCUCCI, KIEVSKY, GIRLANDA, ROSATI, AND VIVIANI PHYSICAL REVIEW C 80, 034003 (2009)

0 30 60 90 120 150 180
θ

c.m.
 [deg]

0

200

400

600

800

1000

dσ
/d

Ω
 [

m
b/

sr
]

0 30 60 90 120 150 180
θ

c.m.
 [deg]

0

0.01

0.02

0.03

0.04

0.05

A
y

0 30 60 90 120 150 180
θ

c.m.
 [deg]

0

0.005

0.01

0.015

0.02

0.025

iT
11

0 30 60 90 120 150 180
θ

c.m.
 [deg]

-0.02

-0.01

0

0.01

0.02

T
20

0 30 60 90 120 150 180
θ

c.m.
 [deg]

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

T
21

0 30 60 90 120 150 180
θ

c.m.
 [deg]

-0.03

-0.02

-0.01

0

T
22

FIG. 17. n-d differential cross sec-
tion dσ/d�, Ay , iT11, T20, T21,
and T22, at Ec.m. = 1.33 MeV are
calculated with the N3LO-Idaho
(dashed line), the N3LO-Idaho/UIXp
(dotted-dashed line), and the N3LO-
Idaho/N2LO (solid line) potential
models. The experimental data are
of Refs. [38] (solid circles) and [39]
(empty squares: En = 2.016 MeV) for
dσ/d� and Ref. [40] for Ay . The
incident neutron (deuteron) is En =
2.0 MeV (Ed = 4.0 MeV).

present for the Ay and iT11 vector polarization observables
at the peak, even if TNI effects are small. Comparing the
calculations with the data, we can observe that the calculated
dσ/d� at Ec.m. = 1.33 MeV is much lower than the measured
one for large values of the center-of-mass angle θc.m.. Such a
discrepancy, however, disappears at Ec.m. = 2.0 MeV. This
difference has been observed before and its origin has still to
be clarified [23]. As in the p-d case, the n-d vector analyzing
powers Ay are poorly described by the theory in the maximum
region, but it should be noted that the N3LO-Idaho/N2LO
gives again a better description of the observables than the
N3LO-Idaho/UIXp Hamiltonian model.

IV. CONCLUSIONS

Following our previous studies on the HH method revisited
to work in momentum space [10,15], we have implemented
our technique to study the N -d elastic-scattering problem at
center-of-mass energies below deuteron breakup threshold,
using both local and nonlocal realistic nuclear interactions.

Using this method, it is possible to accurately calculate
N -d scattering observables at very low energies, including
the contribution from the Coulomb potential as well as
from higher-order electromagnetic terms, such as the MM
interaction. In particular, it is the first time that nuclear model
including nonlocal two-nucleon interactions plus TNIs are
used to describe p-d scattering at very low energies. We have
studied several observables, as scattering lengths, differential
cross section, and vector and tensor analyzing powers, and
we have compared our results with the available experimental
data. Our main conclusions can be summarized as follows:
(i) the results obtained from the local AV18 and the nonlocal
N3LO-Idaho two-nucleon interaction differ substantially from
each other, especially for the vector polarization observables
Ay and iT11 in the maximum region. (ii) The differences
between AV18 and N3LO-Idaho results are strongly reduced
when the MM effects are included in the AV18 calculation.
To be noticed that the MM effects are indirectly included
in the nuclear N3LO-Idaho interaction, because in the fitting
procedure for this model only the point Coulomb interaction
between pp is used. (iii) Among the TNIs here considered,
the N2LO model performs slightly better than the UIX
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FIG. 18. Same as in Fig. 17 but for Ec.m. =
2.0 MeV. The experimental data are from Ref.
[41] for dσ/d� and Ref. [42] for Ay . The
incident neutron (deuteron) is En = 3.0 MeV
(Ed = 6.0 MeV).

one. The N3LO-Idaho/N2LO results are in fact generally
closer to the experimental data than the N3LO-Idaho/UIXp
ones. (iv) The Vlow−k two-nucleon interaction model has
also been considered, obtained from AV18 with a cutoff
parameter � = 2.2 fm−1, fitted to reproduce the triton binding
energy. The Vlow−k results for those observables sensitive to
S-wave scattering, such as the scattering lengths, are in strong
disagreement with the experimental data and quite different

from the corresponding AV18/UIX ones. On the contrary,
the results for those observables sensitive to P - and D-wave
scattering, such as vector and tensor analyzing powers, are very
similar to the corresponding AV18/UIX ones. Further studies
on these aspects are currently underway. We expect to extend
the present approach to the A = 4 scattering problem below
breakup threshold, as already done for zero-energy scattering
in Ref. [10].

[1] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[2] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
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