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Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field
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It is revealed that in the normal phase of dense relativistic matter in a magnetic field, there exists a contribution
to the axial current associated with a relative shift of the longitudinal momenta in the dispersion relations of
opposite chirality fermions. Unlike the topological contribution in the axial current at the lowest Landau level,
recently discussed in the literature, the dynamical one appears only in interacting matter and affects the fermions
in all Landau levels, including those around the Fermi surface. The induced axial current and the shift of the
Fermi surfaces of the left-handed and right-handed fermions are expected to play an important role in transport
and emission properties of matter in various types of compact stars as well as in heavy ion collisions.
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Introduction. At zero density and temperature, the structure
of the ground state in relativistic chiral invariant theories in
a magnetic field is dictated by the magnetic catalysis phe-
nomenon: the magnetic field is a strong catalyst of spontaneous
chiral symmetry breaking [1,2]. The situation becomes much
more complicated in the case of dense relativistic matter in a
magnetic field [3]. The main goal of this Rapid Communication
is to reveal and describe some universal properties of such
dynamics.

The recent studies [4] of similar dynamics in graphene
in 2 + 1 dimensions have revealed several types of order
parameters whose analogs have not been discussed in the
context of relativistic models in 3 + 1 dimensions. (For
earlier applications of the magnetic catalysis phenomenon in
graphene, see Ref. [5].) This motivated us to reexamine the
properties of dense relativistic matter in an external magnetic
field in 3 + 1 dimensions. As we show, an external magnetic
field induces two qualitatively different contributions to the
net axial current in the normal phase of dense relativistic
matter. The first one is a topological contribution due to the
lowest Landau level (LLL) that was previously discussed in
the literature [6–9]. It exists even in free theories. (For related
studies in hot quark-gluon plasma, see Ref. [10].) In this
Rapid Communication we find that there is also an additional
dynamical contribution to the axial current that appears only
in interacting matter. The crucial new point is that all Landau
levels, including those around the Fermi surface, contribute
to this interaction-driven contribution. Its origin is related to
a relative shift of the longitudinal momenta in the dispersion
relations of opposite chirality fermions. The amount of the
shift is proportional to a coupling constant, the magnetic
field, and the fermion chemical potential. Notably, it is almost
independent of temperature. As we discuss below, this effect
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may have profound implications for the physics of compact
stars as well as heavy ion collisions.

Model. In this Rapid Communication, in order to illustrate
the effect in the clearest way, a simple model will be utilized.
We perform a study of a Nambu-Jona-Lasinio model with the
Lagrangian density

L = ψ̄
(
iDν + µ0δ

0
ν

)
γ νψ + Gint

2
[(ψ̄ψ)2 + (ψ̄iγ 5ψ)2], (1)

where γ 5 ≡ iγ 0γ 1γ 2γ 3 and µ0 is the chemical potential. This
model possesses the chiral U (1)L × U (1)R symmetry. The
covariant derivative Dν = ∂ν − ieAν is taken in the Landau
gauge, i.e., Aν = xBδ2

ν where B is the strength of the external
magnetic field pointing in the z direction.

The structure of the full fermion propagator is given by a
(3 + 1)-dimensional generalization of the ansatz used for the
description of the quantum Hall effect dynamics in graphene
[4], namely,

iG−1(u, u′) = [(i∂t + µ)γ 0 − (π · γ ) − π3γ 3

+ iµ̃γ 1γ 2 + �γ 3γ 5 − m]δ4(u − u′), (2)

where πk = i(∂k − ieAk) is the canonical momentum and
u = (t, r). The above propagator contains several dynamical
parameters that are absent in the tree level propagator,

iS−1(u, u′) = [(i∂t + µ0)γ 0 − (π · γ ) − π3γ 3]δ4(u − u′).
(3)

The physical meaning of the parameters m and µ is straightfor-
ward: m is the Dirac mass and µ is the full chemical potential in
interacting theory. From the structure of the inverse propagator
in Eq. (2), it is clear that µ̃ plays the role of the anomalous
magnetic moment [in graphene, it also can be interpreted
as a chemical potential related to a conserved (pseudospin)
current [4]].

The meaning of the last parameter, �, is more subtle. In
the context of graphene, � is a mass parameter that is odd
both under time-reversal and parity transformations. In 2 + 1
dimensional models, this mass is responsible for inducing the
Chern-Simons term in the effective action for gauge fields [11].
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In 3 + 1 dimensions, as suggested by Eq. (2), it is related to an
induced axial current along the direction of the magnetic field,
ψ̄γ 3γ 5ψ . As will be shown below, � determines a shift of the
longitudinal momenta in the dispersion relations of opposite
chirality fermions in the chiral limit. We will call it a chiral shift
parameter. Let us emphasize that, in the presence of an external
magnetic field, the time-reversal and parity symmetries are
broken and a state with the vanishing � is not protected by
any symmetry.

The parameters m, µ, �, and µ̃ are self-consistently
determined from the gap equation, which takes the following
form in the mean field approximation:

G−1(u, u′) = S−1(u, u′) − iGint{G(u, u) − γ 5G(u, u)γ 5

− tr[G(u, u)] + γ 5 tr[γ 5G(u, u)]}δ4(u − u′).
(4)

While the parameters � and µ do not break the chiral U (1)L ×
U (1)R symmetry, nonzero values of m and µ̃ break it down to
U (1)L+R . In the mean field approximation used here, we find
that µ̃ = 0 in a self-consistent solution to the gap equation.
While this fact simplifies the analysis, we note that µ̃ may be
nonvanishing in more refined approximations and in models
with other types of interactions [4,12]. On the other hand, as
suggested by the analysis in graphene, a nonzero µ̃ should
not change the main qualitative features of the phase with an
induced � [4].

The spectrum of fermionic quasiparticles is determined
by the poles in the full propagator (2) with µ̃ = 0. As in
Refs. [2,4], expanding the propagator over the Landau levels,
we arrive at the following dispersion relation:

ωn,σ = −µ ±
√[√

m2 + k2
3 + σ� sign(eB)

]2 + 2n|eB|,
(5)

where n labels the Landau levels, σ = ±1, and k3 is the
momentum along the direction of the magnetic field. In
the chiral limit with m = 0, the states with the quantum
number σ = ±1 have a shifted longitudinal momentum, k3 →
k3 ± � sign(eB). As will be shown below, in this limit, the two
different values of σ correspond to fermions with opposite
chiralities. As a result, the Fermi surfaces for left-handed and
right-handed fermions become shifted.

Results. In accordance with the magnetic catalysis scenario
[1,2], the ground state in the NJL model at vanishing µ0 is
characterized by a nonzero Dirac mass m0 that breaks the
chiral U (1)L × U (1)R symmetry. Such a vacuum state can
withstand a finite stress due to a nonzero chemical potential.
However, when µ0 exceeds a certain critical value µc, the
chiral symmetry restoration and a new ground state are
expected. As we show here, the new state is characterized
by a nonvanishing chiral shift parameter � and a nonzero
axial current in the direction of the magnetic field. Since no
symmetry of the theory is broken, this state describes the
normal phase of matter that happens to have a rather rich
chiral structure.

The value of the Dirac mass m0 in the vacuum state was
calculated in Ref. [2]. In the weakly coupled regime, g ≡

Gint

2/(4π2) � 1, the solution reads

m2
0 = 1

πl2
exp

(
−
2l2

g

)
, (6)

where l = 1/
√|eB| is the magnetic length and 
 is the

ultraviolet cutoff in the model at hand. This zero temperature
solution exists for µ0 < m0. In this solution, the full chemical
potential µ = µ0.

Our analysis shows that, in addition to the solution with a
nonzero Dirac mass m, the gap equation also allows a solution
with m = 0 and a nonzero chiral shift parameter �,

� = gµ
eB


2[1 + 2ag] + g|eB| , (7)

where a is a dimensionless constant of order 1, which is
determined by the regularization scheme used in the analysis
(see below). Interestingly, the temperature dependence of �

comes only through the chemical potential, which has a weak
temperature dependence when T � µ [13]. At T = 0, the
chemical potential satisfies the following equation:

µ = µ0 − g

(
l)2
[µ − � sign(eB)]

− 2g sign(µ)

(
l)2

∞∑
n=1

√
µ2 − 2n|eB| θ (µ2 − 2n|eB|). (8)

The approximate solution to this equation is µ � µ0 up to
power corrections in small g.

The free energies of the two states are given by [13]

�m � − m2
0

2(2πl)2
(1 + (m0l)

2 ln |
l|) (9)

and

�� � − µ2
0

(2πl)2

(
1 − g

|eB|

2

)
, (10)

respectively. In deriving the last expression, we used the
approximate relations µ � µ0 and � � gµ0eB/
2. By com-
paring the free energies in Eqs. (9) and (10), we see that
the ground state with a nonzero � becomes favorable when
µ0 >∼ m0/

√
2. This is analogous to the Clogston relation in

superconductivity [14].
The properties of the two types of quasiparticles corre-

sponding to σ = ±1 in the dispersion relation in Eq. (5)
with m = 0 are further clarified by the structure of the full
propagator:

G(u, u) = G−
0 P− +

∞∑
n=1

(G−
n P− + G+

n P+), (11)

where P± ≡ 1
2 [1 ± iγ 1γ 2 sign(eB)] are the spin projectors.

(For u′ 	= u, the propagator will be presented elsewhere [13].)
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The functions G±
n with n � 0 are given by

G±
n = i|eB|γ 0

2π

∫
dωdk3

(2π )2

×
[

ω + µ ± [k3 − � sign(eB)]

(ω + µ)2 − 2n|eB| − [k3 − � sign(eB)]2
P−

5

+ ω + µ ∓ [k3 + � sign(eB)]

(ω + µ)2 − 2n|eB| − [k3 + � sign(eB)]2
P+

5

]
,

(12)

where P±
5 ≡ 1

2 [1 ± γ 5 sign(eB)] are the chirality projectors
for a fixed sign of eB. As follows from this equation, the
quasiparticles of opposite chiralities have dispersion relations
that differ from those in the free theory by the shift of
their longitudinal momentum k3 → k3 ± � sign(eB). This has
profound implications for the physical properties of matter.

The ground state with � 	= 0 is characterized by a nonvan-
ishing expectation value of the axial current density,

〈
j 3

5 (u)
〉 = −tr[γ 3γ 5G(u, u)] = eB

2π2
µ − |eB|

2π2
�

− |eB|
π2

�

∞∑
n=1

κ(
√

2n|eB|,
), (13)

where κ(x,
) is a smooth cutoff function defined by the value
of the cut-off energy 
 and a certain width of the region
in which the value of the function drops from 1 down to 0
[i.e., κ(x,
) � 1 for x � 
 and κ(x,
) � 0 for x � 
].
Taking this into account, we find that

∑∞
n=1 κ(

√
2n|eB|,
) =

a
2/|eB| and a = O(1).
While the first two terms in the current density (13) come

from the LLL, the last term is due to the higher Landau
levels, n � 1. Notably, all higher Landau levels below the
(smeared) cut-off energy give (nearly) identical contributions
to the induced axial current. The contribution proportional to µ

is topological in nature and appears even in the free theory [7].
All other terms, which are proportional to �, are the result of
interactions and have not been revealed in the literature before.

We expect that the interaction-driven contributions can
strongly modify transport and emission properties of dense
relativistic matter in a magnetic field. Indeed, the correspond-
ing induced axial currents are the consequence of a relative
longitudinal flow of opposite chirality quasiparticles, including
those in higher Landau levels around the Fermi energy. This
is in contrast to the role of the topological contribution that is
exclusively due to the LLL, which is to a large degree quenched
from the low-energy dynamics by the Pauli exclusion principle
in many realistic cases.

Discussion and Summary. In this Rapid Communication we
found that, in accordance with the magnetic catalysis scenario,
the vacuum state of relativistic matter in a magnetic field
is characterized by a nonzero Dirac mass given by Eq. (6)
at weak coupling. However, when the chemical potential
exceeds a certain critical value, µc � m0/

√
2, such a state

is replaced by the normal ground state that is characterized by
the following two properties: (i) the presence of an induced
axial current along the magnetic field and (ii) the presence of
the dynamically generated chiral shift parameter �, which is

a 3 + 1 dimensional analog of the parity odd mass term in
2 + 1 dimensions leading to the Chern-Simons term. We find
that, in addition to the previously known topological term in the
induced current, there are also interaction-driven contributions
from the lowest as well as from the higher Landau levels.
In fact, the newly found contributions are directly related to
a dynamically generated value of the chiral shift parameter
� � gµ0eB/
2. This parameter quantifies the relative shift
of the longitudinal momenta in the dispersion relations of
opposite chirality quasiparticles.

It might be appropriate to mention that, for instructional
purposes, our study here is simplified: we used an NJL-type
local interaction and utilized the mean-field approximation.
These limitations may lead to the results that are not always
quantitatively reliable, e.g., in the context of stellar matter.
Nevertheless, it is expected that our results should remain
qualitatively the same even when more realistic models are
used. Indeed, the fact that the expression for � in Eq. (7) is
linear in g in the lowest order indicates that the corresponding
dynamics is essentially perturbative. Apparently this is a gen-
eral feature that should not depend on whether the interactions
are short range, as in the NJL model, or long range, as in QCD
or QED. In either case, a vanishing � is not protected by any
symmetry.

Another limiting assumption of this study is the exact chiral
symmetry. However, most of the results are not modified much
when the symmetry is at least approximate, i.e., when the
fermions have nonzero bare Dirac masses, but such masses are
small compared to the value of the chemical potential [13].
For the applications in protoneutron stars suggested below,
this approximation is justified, but the general study will be of
interest, e.g., in relation to the electron plasma in white dwarfs.

In the future, it will be also of interest to address a possible
interference of the dynamics responsible for the generation
of the chiral shift parameter with color superconductivity
in quark matter [15]. Here we just mention that the normal
ground state with a nonzero � seems to be the only possibility
at higher temperatures, which are of main interest for us
here.

We expect that the generation of the chiral shift parameter
may affect physical properties of the quark matter in quark
and/or hybrid stars, the electron gas in neutron stars, and pos-
sibly even the electron gas in white dwarfs. The corresponding
fermionic systems are degenerate (T � µ) and the results of
this Rapid Communication apply directly. It is appropriate
to mention, however, that the chiral shift parameter does not
vanish even in the nondegenerate limit (T � µ), although
the analysis of the dynamics becomes more involved [13].
Therefore, the generation of a nonzero � can also affect the
chiral magnetic effect in heavy ion collisions [10].

One of the consequences of the phenomenon discussed in
this Rapid Communication is the possibility of a qualitatively
new mechanism for the pulsar kicks [16]. In the presence
of a magnetic field, almost any type of relativistic matter
inside a protoneutron star should develop axial currents as
in Eq. (13). The main carriers of such currents are the
electrons in the nuclear matter, and the quarks together with
the electrons in the deconfined quark matter. Since the induced
currents and the chiral shift parameter have only a weak
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temperature dependence (assuming T � µ), this phenomenon
may provide a robust anisotropic medium even at the earliest
stages of the protoneutron star. This is important because
moderately hot matter with 10 MeV <∼ T <∼ 50 MeV, present
during the first few tens of seconds of the protoneutron
star evolution [17], may have a large enough amount of the
thermal energy to power the strongest (with v >∼ 1000 km/s)
pulsar kicks observed [16]. In contrast, the constraints of
the energy conservation make it hard, if not impossible, to
explain such kicks if the interior matter is cold (T <∼ 1 MeV).
The common difficulty of using a hot matter, however, is
the very efficient thermal isotropization that washes out a
nonisotropic distribution of neutrinos produced by almost any
mechanism [18,19]. In the mechanism proposed in this Rapid
Communication, however, the asymmetric distribution of the
neutrinos develops as a result of their multiple elastic scattering
on the left-handed electrons or quarks, flowing in the whole
bulk of the stellar matter in one direction along the magnetic
field.

In passing, let us mention that the robustness of the
axial currents in hot magnetized matter may also provide
an additional neutrino push to facilitate successful supernova
explosions as suggested in Ref. [20]. Further details of this
mechanism will be discussed elsewhere [13].
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Mod. Phys. 80, 1455 (2008).
[16] A. G. Lyne and D. R. Lorimer, Nature (London) 369, 127 (1994);

J. M. Cordes and D. F. Chernoff, Astrophys. J. 505, 315 (1998);
B. M. S. Hansen and E. S. Phinney, Mon. Not. Roy. Astron. Soc.
291, 569 (1997); C. Fryer, A. Burrows, and W. Benz, Astrophys.
J. 496, 333 (1998); Z. Arzoumanian, D. F. Chernoffs, and J. M.
Cordes, ibid. 568, 289 (2002); S. Chatterjee et al., Astrophys. J.
Lett. 630, L61 (2005).

[17] D. Page and S. Reddy, Annu. Rev. Nucl. Part. Sci. 56, 327
(2006).

[18] A. Kusenko, G. Segre, and A. Vilenkin, Phys. Lett. B437, 359
(1998).

[19] I. Sagert and J. Schaffner-Bielich, J. Phys. G 35, 014062 (2008);
arXiv:astro-ph/0612776; arXiv:0708.2352.

[20] C. L. Fryer and A. Kusenko, Astrophys. J. Suppl. 163, 335
(2006).

032801-4


