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Mass dispersion in transfer reactions with a stochastic mean-field theory
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Nucleon transfer in symmetric heavy-ion reactions at energies below the Coulomb barrier is investigated in the
framework of a microscopic stochastic mean-field theory. Although mean field alone is known to significantly
underpredict the dispersion of the fragment mass distribution, a considerable enhancement of the dispersion is
obtained in the stochastic mean-field theory. The variance of the fragment mass distribution deduced from the
stochastic theory scales with the number of exchanged nucleons. Therefore, the new approach provides the first
fully microscopic theory consistent with the phenomenological analysis of the experimental data.
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The mean-field theory, otherwise known as the time-
dependent Hartree-Fock (TDHF) model [1–6], has been
widely used in describing reaction dynamics at low energies
in nuclear collisions and other many-body systems. It is well
known that the mean-field theory provides a good description
of mean values of one-body observables in low energy
reactions. However, it completely fails in the description
of the dynamics of fluctuations of one-body observables.
During the past decades, much effort has been devoted to
overcoming this difficulty and to developing transport theories
that are able to describe not only mean values but also
fluctuations (for a review, see Refs. [7,8]). Among them,
the variational principle proposed by Balian and Vénéroni
(BV) appears as one of the most promising methods [9–11].
However, even nowadays it remains difficult to apply [12,13].
More than 30 years after the first application of TDHF, the
absence of a practical solution to include fluctuations beyond
mean field in a fully microscopic framework strongly restricts
applications of mean-field-based theories.

There are mainly two mechanisms for density fluctuations:
(i) collisional fluctuations generated by two-body collisions
and (ii) one-body mechanisms or mean-field fluctuations. At
low bombarding energies, the mean-field fluctuations provide
the dominant mechanism for fluctuations of collective motion
and collisional effects could be neglected. Restricting the
treatment at low energies, recently, a stochastic mean-field
(SMF) approach was proposed for nuclear dynamics [14]. It
was demonstrated that the approach incorporates the one-
body dissipation and associated fluctuation mechanism in
accordance with the quantal dissipation-fluctuation relation.
Furthermore, in the limit of small amplitude fluctuations, the
SMF approach gives the same result for the dispersion of
one-body observables as that of the formula derived from the
BV approach [9,10]. Therefore, the SMF approach provides
a powerful tool for describing low energy nuclear processes
including induced fission, heavy-ion fusion near barrier ener-
gies, deep-inelastic collisions, and spinodal decomposition of
nuclear matter [15]. In this work, by extending the previous
work [16], we study nucleon exchange in low energy nuclear
collisions and calculate the dispersion of the fragment mass
distribution [2–4,6,17]. Diffusion coefficients for nucleon

exchange as well as for momentum transfer extracted from the
SMF approach have the same structure as the result familiar
from the phenomenological nucleon exchange model.

The SMF approach is based on a very appealing stochas-
tic model proposed for describing deep-inelastic heavy-ion
collisions and sub-barrier fusion [18–20]. In that model, the
dynamics of relative motion is coupled to collective surface
modes of colliding ions and treated in a classical framework.
The initial quantum zero-point fluctuations are incorporated
into the calculations in a stochastic manner by generating
an ensemble of events according to the initial distribution
of collective modes. In the mean-field evolution, couplings
of relative motion with all other collective and noncollective
modes are automatically taken into account. In the stochastic
extension of the mean-field approach, the zero-point (and
thermal) fluctuations of the initial state are taken into account
in a stochastic manner, which is similar to the spirit presented
in Refs. [18–20]. The initial fluctuations are simulated by con-
sidering an ensemble of initial single-particle density matrices.
In this manner, the single Slater determinantal description is
replaced by a superposition of Slater determinants. A member
of the ensemble, indicated by event label λ, can be expressed
as

ρλ(r, r ′, t) =
∑
ijστ

�∗
iσ τ (r, t ; λ)ρλ

ij (στ )�jστ (r ′, t ; λ), (1)

where summations i and j run over a complete set of
single-particle states �iστ (r, t ; λ), and σ and τ denote spin
and isospin quantum numbers. According to the description
of the SMF approach [14], the elements of density matrices
ρλ

ij (στ ) are assumed to be time-independent random Gaussian

numbers with mean value ρλ
ij (στ ) = δijn

στ
i and the variance

of the fluctuating part δρλ
ij (στ ) is specified by

δρλ
ij (στ )δρλ

j ′i ′(σ
′τ ′)

= 1
2δjj ′δii ′δττ ′δσσ ′

[
nστ

i

(
1 − nστ

j

) + nστ
j

(
1 − nστ

i

)]
. (2)

Here, nστ
i denotes the average single-particle occupation

factor. At zero temperature occupation factors are 0 and
1, and at finite temperature they are determined by the
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Fermi-Dirac distribution. The great advantage of the SMF
theory is that each Slater determinant λ evolves indepen-
dently from each other following the time evolution of its
single-particle wave functions in its self-consistent mean-field
Hamiltonian, denoted by h(ρλ), according to

ih̄
∂

∂t
�iστ (r, t ; λ) = h(ρλ)�iστ (r, t ; λ). (3)

Following Refs. [21,22], we project the mean-field evo-
lution on a collective degree of freedom associated with
nucleon transfer. For the projection, it is useful to introduce the
Wigner distribution for the event λ defined as a partial Fourier
transform of the density matrix,

f λ(r, p, t) =
∫

d3s exp

(
− i

h̄
p · s

)

×
∑
ijστ

�∗
jστ

(
r + s

2
, t ; λ

)
ρλ

ji(στ )

×�iστ

(
r − s

2
, t ; λ

)
. (4)

In this work, we focus on the particular case of head-on
collisions along the x axis. We indicate the position of the
separation plane between the two collision partners at x = x0.
Then, the mass number of the projectile-like fragment in the
event λ is defined by

Aλ
P (t) =

∫
d3rd3p

(2πh̄)3
θ (x − x0)f λ(r, p, t). (5)

Other macroscopic variables such as the separation distance
between fragments and the associated momentum can be
defined in a similar manner (see Ref. [22]). In the diffusion
model, time evolution of the mass number of the projectile-like
fragment Aλ

P is described by a Langevin equation [23],

d

dt
Aλ

P = v
(
Aλ

P , t
) + ξλ

A(t), (6)

where v(Aλ
P , t) denotes the drift coefficient for nucleon

transfer. Ignoring memory effects, we consider the quantity
ξλ
A(t) as a Gaussian white noise, which is determined with

zero mean value ξλ
A(t) = 0 and a correlation function,

ξλ
A(t)ξλ

A(t ′) = 2δ(t − t ′)DAA, (7)

where DAA is the diffusion coefficient associated with nucleon
exchange. To extract the diffusion coefficient, we calculate the
rate of change of Aλ

P employing the SMF equations. The rate
of change of Aλ

P involves only the kinetic part of the mean-field
Hamiltonian and it can be expressed in terms of the reduced
Wigner distribution on the window as

d

dt
Aλ

P = −
∫

dpx

2πh̄

px

m
f λ(x, px, t)|x=x0 , (8)

where the reduced Wigner distribution f λ(x, px, t) is obtained
by integrating over the phase-space variables y, z, py , and pz

according to

f λ(x, px, t) =
∫∫

dydz
dpydpz

(2πh̄)2
f λ(r, p, t). (9)

Small fluctuations of the mass number are connected to small
amplitude fluctuations of the Wigner distribution according to

d

dt
δAλ

P = −
∫

dpx

2πh̄

px

m
δf λ(x, px, t)|x=x0 = ξλ

A(t). (10)

In Ref. [16], we derived an expression for the correlation
function of the reduced Wigner distribution in the semiclassical
approximation. Employing the result derived in that reference,
we have the following expression for the nucleon diffusion
coefficient,

DAA(t) =
∫

dpx

2πh̄

|px |
m

1

2

×
∑
στ

{
f στ

P (x0, px, t)
[
1−f στ

T (x0, px, t)
/
�(x0, t)

]

+ f στ
T (x0, px, t)

[
1 − f στ

P (x0, px, t)
/
�(x0, t)

]}
.

(11)

Here �(x0, t) is the phase-space volume over the window and

f στ
P/T (x0, px, t) =

∫∫
dydz

∫
dsx exp

(
− i

h̄
pxsx

)

×
∑

i∈P/T

�∗
iσ τ

(
x + sx

2
, y, z, t

)
nστ

i

×�iστ

(
x − sx

2
, y, z, t

)
(12)

is the averaged value of the reduced Wigner distribution
associated with single-particle wave functions originating
from the projectile/target. Details on the determination of
�(x0, t) can be found in Ref. [16].

We note that the expression of the diffusion coefficient
has the same form as that given by the phenomenological
nucleon exchange model in Ref. [24]. We also note that
diffusion coefficients not only for nucleon exchange but also
associated with other macroscopic variables are evaluated
in terms of the average evolution specified by the standard
TDHF evolution. In computations, to employ fully quantum
mechanical expression for the reduced Wigner distribution
does not provide a consistent description because the diffusion
coefficient is derived in the semiclassical approximation. A
semiclassical form of the reduced Wigner distribution can be
obtained by approximating the sx dependence of the integrand
of Eq. (4) by a Gaussian. The mean value and the second
moment of this Gaussian are determined by carrying out a
Taylor expansion of the integrand up to second order in sx .

We carry out calculations for head-on collisions of sym-
metric 40Ca + 40Ca, 56Ni + 56Ni, and 90Zr + 90Zr systems
at energies just below the Coulomb barrier. Calculations are
performed using the three-dimensional TDHF code developed
by P. Bonche and co-workers with the SLy4d Skyrme effective
force [25]. For technical details, see Ref. [21]. Colliding ions
approach each other, exchange a number of nucleons, and then
re-separate. In symmetric collisions by TDHF, there is no net
nucleon transfer; i.e., drift is zero. According to the Langevin
equation, the variance σ 2

AA(t) = δAλ
P δAλ

P of fragment mass
distribution, neglecting contributions from the drift term, is
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FIG. 1. (Color online) Evolution of diffusion coefficients cal-
culated in the SMF approach for 40Ca + 40Ca (top), 56Ni + 56Ni
(middle), and 90Zr + 90Zr (bottom) collisions at different center-of-
mass energies.

related to the diffusion coefficient according to [23,26]

σ 2
AA(t) � 2

∫ t

0
DAA(s)ds = Nexc(t). (13)

In this expression Nexc(t) denotes the accumulated total
number of exchanged nucleons until time t . The relation
σ 2

AA(t) = Nexc(t) follows from the nucleon exchange model
and it was often used to analyze the experimental data. In
the SMF model, we can calculate both sides of this relation
independently.

Figure 1 illustrates the dependence of diffusion coefficients
for collisions of three different symmetric systems at different
center-of-mass energies. The Coulomb barrier energies, which
are obtained in the frozen density approximation [27], are 54.7,
103, and 184 MeV for the 40Ca, 56Ni, and 90Zr systems, respec-
tively. The magnitude of the diffusion coefficient essentially
depends on the size of the window, the larger the window
the larger the rate of change of nucleon exchange [26]. At a
given center-of-mass energy, the diffusion coefficient becomes
maximum at the turning point where the size of the window is
the largest. Also, as seen from the figure, because of increasing
overlap of the projectile and the target, the magnitude of the
diffusion coefficient increases with energy.

Figure 2 illustrates the variances of the fragment mass
distributions as a function of time for the same symmetric
systems at the same center-of-mass energies as those in
Fig. 1. Lines are the results obtained by the integration
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FIG. 2. (Color online) Evolution of σ 2
AA calculated in the SMF

approach for 40Ca + 40Ca (top), 56Ni + 56Ni (middle), and 90Zr +
90Zr (bottom) collisions at different center-of-mass energies. Number
of exchanged nucleons is superimposed by the solid circles, solid
triangles, and solid squares from high to low energies.

of the diffusion coefficient in Eq. (13). In each case, the
corresponding evolution of the number of exchanged nucleons
is superimposed by the solid circles, solid triangles, and
solid squares from high to low energies. We also calculate
the variances of fragment mass distribution using standard
TDHF approach. In Table I, for the same systems at the same
energies, the asymptotic values σ 2

TDHF(+∞) of the variances
obtained from TDHF is compared with the asymptotic values
σ 2

AA(+∞) calculated in the SMF approach. In the same table,

TABLE I. Asymptotic values of the fragment mass variances for
40Ca + 40Ca, 56Ni + 56Ni, and 90Zr + 90Zr collisions in SMF (σ 2

AA)
and TDHF (σ 2

TDHF). Asymptotic values of the number of exchanged
nucleons are also given in the last column.

Reaction Ec.m. (MeV) σ 2
TDHF(+∞) σ 2

AA(+∞) Nexc(+∞)

40Ca + 40Ca 51.0 0.004 0.730 0.432
52.5 0.008 1.718 1.441
53.0 0.008 3.790 3.634

56Ni + 56Ni 98 0.024 1.288 0.667
99.5 0.088 2.594 2.111

100 0.142 5.606 5.567
90Zr + 90Zr 178 0.774 12.98 14.19

179 1.046 24.09 27.51
180 1.085 40.40 41.56
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the asymptotic values of the number of exchanged nucleons
Nexc(+∞) are also given.

The semi-empirical relation σ 2
AA(t) � Nexc(t) has been

extensively used to analyze experimental data [28,29]. As
seen in Table I, the mass variance estimated from the
SMF approach is consistent with this relation. Looking
at the asymptotic values, in all cases, the TDHF results
σ 2

TDHF(+∞) for the variance are much smaller than the
results σ 2

AA(+∞) obtained in the SMF approach and are
also much smaller than the results Nexc(+∞). The failure of
TDHF on the description of variances of the fragment mass
distribution has been recognized for a long time as a major
limitation of the mean-field theory. It appears that the SMF
approach cures this shortcoming of the mean-field theory. As
seen from Fig. 2, both the asymptotic value of σ 2

AA and the
entire time evolution are very close to the evolution of Nexc(t).
The small differences may arise from the estimation of the
phase-space volume on the window and/or from the Gaussian
approximation for the reduced Wigner distribution.

In summary, we investigate the variances of fragment
mass distributions in heavy-ion collisions at energies near
the Coulomb barrier by employing the microscopic SMF
approach. By projecting the SMF equation on the mass-
asymmetry macroscopic variable, we deduce the diffusion
coefficient associated with nucleon exchange. The expression
of the diffusion coefficient has a structure similar to that of

those familiar from the phenomenological nucleon exchange
model. Comparison between the calculated variance and the
number of exchanged nucleons supports a strong confirmation
for the fact that the SMF approach provides a realistic
description of dissipation and fluctuation dynamics at low
energies. The stochastic extension of the mean-field theory
provides a practical solution to the estimate of fluctuations
of observables at low energies. We have shown here that
fluctuations comparable with macroscopic models can be
recovered using the SMF approach. A quantitative comparison
with experimental data requires that our work be extended to
off-central collisions. In the continuation of this work, we plan
to carry out calculations for grazing deep-inelastic collisions
of symmetric and nonsymmetric heavy ions, for which plenty
of experimental data are available for comparison. It can be
applied not only to nuclear dynamics but also to the description
of fluctuating dynamics of many-body problems in other areas
of physics.
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