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A finite-temperature model of strongly correlated nucleons with underlying isospin symmetries is developed.
The model can be used to study the role of bound states and Feshbach resonances on the thermal properties of
a spin 1/2, isospin 1/2 system of protons and neutrons by varying the proton fraction. An analysis of features
associated with a universal thermodynamic limit or unitary limit is given. In the limit of very large scattering
length, the effective range to quantum thermal wavelength appears as a limiting scale in an interaction energy
and equation of state.
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The behavior of dilute Fermi systems is of recent interest in
both atomic systems and in nuclear systems. Early theoretical
interest arose when Bertsch [1] formulated a many-body
challenge problem for systems with large scattering length
compared to interparticle spacings. This regime is referred
to as the unitary limit. Experimental studies of cold gases
in the unitary regime in atomic physics were carried out by
several groups [2–5]. In atomic systems Feshbach resonances
have provided a unique tool for studies of such systems.
In particular, tuning across a Feshbach resonance via a
magnetic field has been a very successful method in the
study of the transition from a Bose-Einstein condensate
of tightly bound dimers to a Bardeen Schrieffer Cooper
(BSC) superfluid state. Some early theoretical studies of
atomic systems were carried out by Ho and collaborators
both at T = 0 [6] and T �= 0 [7]. Moreover, the results in
Ref. [7] showed that several of the features of a degenerate
T = 0 Fermi gas are present in the high-temperature Boltz-
mann limit. In nuclear physics, a Monte Carlo investigation of
the superfluid properties of a system of pure neutrons was done
in Ref. [8]. Further theoretical understanding of the pure neu-
tron system came from the extensive work of Bulgac and col-
laborators (see Ref. [9] and references therein and Ref. [10]).
Early work on the Bertsch problem was done by Barker
[10] and Heiselberg [11]. The equation of state of neutron
matter [12] and nuclear matter [13] using nonperturbative
lattice methods has also been developed. The results in
Ref. [13] showed a sharp transition from an uncorrelated Fermi
gas to a clustered system. The inner crust of a neutron star is
an example where dilute Fermi gases occur [14]. References
[15–18] contain discussions of the virial expansion approach
to nondegenerate Fermi systems, which forms the basis of
the present work. Recursive methods to obtain the nuclear
canonical partition function in a cluster-virial expansion [19]
have also been developed and used to study nuclear liquid-gas
phase transitions [20,21].

The focus of this paper centers around thermodynamic
properties of strongly correlated fermions and in particular
to a two-component hadronic system made of protons and
neutrons, each with two spin states and underlying isospin
symmetries. Real hadronic systems contain both neutrons and
protons even in the limit of neutron stars, which contain a small
fraction of protons. Moreover, future FRIB (Facility for Rare

Isotope Beams) experiments will study properties of nuclei
with large neutron and proton excess. An investigation of a
two-component system is a rich extension of results from a
one-component system. For example, in a system of protons
and neutrons both isospin symmetries and features associated
with spin structure come into play. The np system has a
bound state in the spin S = 1, isospin I = 0 state, whereas
the nn S = 0, I = 1 system and np S = 0, I = 1 system have
resonant-like virtual states with very large scattering lengths.
Also, the formation of deuterons in a dilute Fermi system [15]
is a precursor to the liquid-gas phase transition [20,21]. In
a liquid-gas phase transition clusters of all sizes appear. The
specific heat shows a singular behavior around the first-order
liquid-gas phase transition [21]. The nuclear system does not
allow tuning with a magnetic field nor having the feature of
an infinite scattering length as in atomic systems. However,
variations of the proton fraction changes the scattering length
from a large negative number for pure neutrons to a system
where bound-np deuterons and higher clusters are also present
as the proton fraction is increased. Temperature also plays an
important part in the number of bound and virtual states as
does the proton fraction y.

The equation of state (EOS) around a nondegenerate
limit has a virial expansion that is PV/kBT =
A − (x2/x

2
1
) A2 + [(4x2

2 − 2x1x3) / x4
1 ] A3 + [(−20x3

2 +
18x1x2x3 − 3x2

1x4)/x6
1 ]A4 · · · with xk correlation or cluster

coefficients. For a one-component system of identical
fermions, antisymmetrization effects result in xk = (−1)k+1/

k5/2(V/λ3
T ). The thermal wavelength is λT = h/

√
2πmkBT .

A virial expansion is valid when (A/V )λ3
T is small. These

results can be extended to include interactions by considering
the following model with two components made of protons
and neutrons. The pressure in a dilute interacting gas to
second order in the density is PV/kBT = A − b2A

2, where
the coefficient b2 ∼ 1/V has contributions from nn, pp, and
np components. To see the structure of b2 a simple example
will be given where all three systems can form an s-wave
bound state, with the np system having two possibilities
with spin S = 1, the deuteron, or S = 0. This will then be
corrected for continuum interactions and the nn and pp bound
states will be turned off. The law of partial pressures leads to
a total pressure PV/kBT = Np + Nn + Nnn + Npp + Nnp,
with Z = Np + Nnp + 2Npp,N = Nn + Nnp + 2Nnn, and
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A = Z + N . The number of particles Nij (S) as a function of
spin S

Nij (S) = 2S + 1

22
23/2 λ3

T

V
exp

[
EB(ij, S)

kBT

]
NiNjZ

≡ a2(ij, S)NiNj , (1)

with i = p, n and j = p, n. This law expresses chemical
equilibrium [15]. Nij (S) is strongly T dependent with higher T

breaking the bound state into its constituents. EB (ij ) equals the
binding energy of the pair. Writing Np = Z − Nnp − 2Npp,
Nn = N − Nnp − 2Nnn, proton fraction yp = y = Z/A, and
neutron fraction yn = N/A = 1 − yp = 1 − y leads to an
EOS to order A2 that is

PV

kBT
= A + 1

25/2

λ3
T

(2S + 1)V
[y2 + (1 − y)2]A2

−
∑

S

∑
i&j=p,n

yiyja2(ij, S)A2. (2)

Antisymmetrization corrections in the pp and nn channels are
included in this equation. As noted the pp, nn, and np S =
0, I = 1 channels have no bound states. However, a resonance-
like virtual state acts as a bound state and makes a contribution
to the A2 term through a term due to Beth and Ulhenbeck
[22–24] that changes the bound-state Boltzmann factor to a
continuum correlation integral. Specifically, exp[EB/kBT ] →
(1/π )

∫
(∂δ0/∂k) exp(−h̄2k2/2µkBT )dk, where δ0 is the

s-wave phase shift and µ = m/2 is the reduced mass. Higher
orbital l correlations can also contribute using ∂δ0/∂k →
�l(2l + 1)dδl/dk. Here only s waves will be considered in
detail but some features associated with higher partial waves
will also be mentioned.

The volume dependence of the energy can be obtained
from ∂E/∂V )T = T ∂P/∂T )V − P . For P = kBT (A/V −
b̂2A

2/V 2) with b̂2/V = b2 the volume dependence of the
energy is E(V ) = T (∂b̂2/∂T )kBT (A2/V ), where

b̂2 = − λ3
T

27/2
[y2 + (1 − y)2]Z

+
∑

S

∑
i&j=p,n

yiyj

2S + 1

22
23/2λ3

T

[∑
B

exp

(
EB(ij, S)

kBT

)

+ 1

π

∫
∂δ0(ij, S)

∂k
exp(−h̄2k2/mkBT )dkZ)

]

≡ b̂2,sym + b̂2,int. (3)

This volume dependence comes from antisymmetrization (the
term involving 1/27/2 or b̂2,sym) and from interaction terms
(terms with EB, ∂δ0/∂k, or b̂2,int) with the latter called the
interaction energy. The interaction energy density is

εint = Eint

V
= 3

2
kBT

A2

V 2
λ3

T

∑
S

∑
i&j=p,n

yiyj

2S + 1

22
23/2

×
(

−BB,C(ij, S) + 2

3
T

∂BB,C(ij, S)

∂T

)
, (4)

where BB,C(ij, S) = BB(ij, S) + BC(ij, S) with

BB(ij, S) =
∑
B

exp

(
EB(ij, S)

kBT

)
,

(5)
BC(ij, S) = 1

π

∫
∂δ0(ij, S)

∂k
exp(−h̄2k2/mkBT )dk.

A rescaled energy density is defined as ε̂int ≡ εint/[(3kBT /2)
(A/V )2λ3

T 23/2/4]. The experimental determination of the
interaction energy in the unitary limit in atomic systems can
be found in Refs. [2,3] and a calculation of it is in Ref. [7]
at nonzero T . At T = 0, a numerical coefficient ξ relating
the energy in the unitary limit to the noninteracting Fermi gas
energy is of interest. Specifically, E/N = ξ (3EF /5), where
ξ ≈ 0.3–0.4 [8,11].

The nuclear force has a short-range repulsive part be-
sides an attractive longer range part. A simplified in-
teraction with an infinite repulsive core for 0 � r � c

and an attractive square well of depth V0 for c � r � R

has δ0 = arctan[(k/α) tan(α(R − c))] − k(R − c) − kc, with
α2 = k2 + α2

0 and α0 =
√

2µV0/h̄
2. When the square well has

no bound state then δo = 0 at k = 0 and reaches a maximum
value δ0,m = π/2 −

√
π2/4 − (2µV0R̂

2/h̄2) at kR̂ = kmR̂ =
π/2 − δ0,m, R̂ = R − c. For a well with a single bound
state δo = π at k = 0. When k � α0 the behavior of the
phase shift is given by an effective range theory, which
reads k cot δ0 = −(1/asl) + r0k

2/2. The scattering length is
asl = R[1 − tan α0(R − c)/α0R] and the effective range is r0

(see Table I for values). The effective range r0 and derivative
∂δ0/∂k are

r0 = R − 1

α2
0asl

− 1

3

R3

a2
sl

+ c

(
1 − 2R

asl
+ R2

a2
sl

+ 1

α2
0a

2
sl

)
,

(6)
dδ0

dk
= − asl

1 + asl(asl − r0)k2 + 1
4 (r0asl)2k4

(
1 + r0asl

2
k2

)
.

When the k4 term in Eq. (6) is neglected, the integral BC can
be done analytically:

BC ≡ Z
1

π

∞∫
0

dδ0

dk
exp(−bk2)dk

= − a2
sl(2asl − 3r0)

4
(
a2

sl − aslr0
)3/2 exp

(
b

a2
sl − aslr0

)

× erfc
[√

b
/(

a2
sl − aslr0

)] − a2
slr0

4
(
a2

sl − aslr0
)√

πb
. (7)

Here b = h̄2/2µkBT = λ2
T (µ)/2π and erfc(

√
b/a2

sl) = 1 −
erf(

√
b/a2

sl). The Boltzmann exponential factor exp(−bk2)
suppresses the k4 term in ∂δ0/∂k and makes Eq. (7) a very
good approximation to the complete effective range result.
This is true even at high energies, as shown in Fig. 1 where
calculations of BC using a square well δ0 and an effective range
approximation are shown.

As previously noted, at high temperatures P and higher
order partial waves also contribute. The P -wave phase shift
for a square-well potential in the absence of a hard core is
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FIG. 1. (Color online) The quantity BC vs the parameter b.
(Left) The upper curve is the approximate analytic expression of
Eq. (7); the lower curve is the square-well result using the nn param-
eters of Table I. (Right) The lower curve is the unitary limit of Eq. (7)
(asl → ∞). The upper curve is the exact square well in the unitary
limit with the well depth adjusted to give a zero-energy resonance.
For this comparison, the effective range in Eq. (7) was taken to be
the same as the square well, r0 = R + c = 2.27. In both panels the
error is less than a few percent over a very large range of temperatures
and corresponding energy. For kBT = 40 MeV, b ≈ 1, and for kBT =
4 MeV, b ≈ 10. The effective range approximation result is very close
to the exact square-well result even at high energy or temperature
because of the Boltzmann factor.

given by

tan δ1 = Rkα2 tan αR − Rk2α tan kR − α2
0 tan kR tan αR

Rk2α + α2
0 tan αR + Rkα2 tan kR tan αR

.

(8)

The extension to a square well with a hard core leads to
a more complicated expression. The following features of
higher l values can be noted. The angular momentum P

waves start to become important when the angular mo-
mentum barrier l(l + 1)h̄2/2µR2 is ∼15 MeV. At higher
T (kBT ∼ 40 MeV) the S, P , and D waves have contribu-
tions to the continuum partition function zc ≡ (2J + 1)(2I +
1)/π

∫
(∂δJT /∂k) exp(−h̄2k2/2µkBT )dk as follows. The val-

ues are zc = −1.66, 0.2 for 3S1,
1S0; 0.4,−0.12, 0.14,−0.12

for 3P0,
3P1,

3P2,
1P1; and 0.05, 0.05, −0.15, +0.23 for

1D2,
3D3,

3D1,
3D2, respectively. 3S1 dominates with −1.66;

see Ref. [15], which gives an early application of the Beth-
Uhlenbeck expression to nuclear heavy-ion physics. A recent
detailed study of the role of higher partial waves in the second
virial coefficient for pure neutron matter (y = 0) can also be
found in Horowitz and Schwenk [17]. Higher partial waves
start to become important above 15 MeV, as can be seen in
Fig. 1 of Ref. [17]. Further details of the contribution of higher
partial waves in the present work will be given in a future
study.

The limit asl → ∞ is called the universal thermodynamic
or unitary limit. In this limit the scattering length no longer
appears in expressions such as the energy, but the energy is
also no longer an ideal Fermi gas result. The quantity 	BC ≡
−BC − (2/3)b∂BC/∂b appears in εint and ε̂int. In the limit of
large scattering length asl and infinite scattering length, the
quantity 	BC has the following behavior:

	BC → 1

6

r0√
πb

[
1 + r0

asl
+

(
r0

asl

)2
]

+ sign(asl)

[
1

2
− 4

3
√

π

√
b

asl

(
1 + r0

2asl

)

+ 5

6

b

a2
sl

− 3

16

(
r0

asl

)2
]

, (9)

	BC(asl → ∞) → sign(asl)

(
1

2

)
+ 1

6

r0√
πb

= sign(asl)

(
1

2

)
+ 1

6

√
2

r0

λT

.

The factor ro/λT appears as a correction to the universal
thermodynamic limit of sign[asl]/2. By comparison, for
b/(a2

sl − aslr0) 	 1, BC → −asl/2
√

πb, 	BC = −2BC/3.
The unscaled interaction density is εint = asl(πh̄2/m)(A/V )2

when 	BC = −2BC/3. This form of the unscaled interaction
density is realized in atomic systems by tuning away from the
Feshbach resonance [7]. The value of 	BC using phase shifts
calculated with a square-well/hard-core potential also closely
approximates the results from Eq. (9). When the scattering
length asl becomes infinite, the effective range r0 goes to
R + c. A bound state has −Bb + (2/3) T ∂Bb/∂T =
−exp[Eb/kBT ] [1 + (2/3) Eb/kBT ] → −1 in the unitary
limit of Eb → 0. Thus, in this limit, a bound deuteron has
asl → +∞ and a contribution −1 + 	BC(asl → ∞) = −1 +
(1/2) + r0/6 (πb)1/2 = −1/2 + r0/6(πb)1/2 = 	BC(asl →
−∞), that is, the same contribution for an unbound state
where asl → −∞, assuming that the effective range r0 is the
same. The second virial coefficient becomes

b̂2

λ3
T

=
[
− 1

27/2
+ 1

23/2
− 23/2

4

(
1

4
√

π

r0s√
b

)]

+ y(1 − y)

[
5

25/2
+ 23/2

4

(
1

4
√

π

r0s − 3r0t√
b

)]
. (10)

Here b̂2 includes exchange correlations from antisymmetriza-
tion and the formula is for an isospin-symmetric case with
all nn, pp, and np singlet effective ranges (≡r0s) taken to
be the same. r0t is the np triplet effective range. Figure 2
shows plots of b̂2/λ

3
T versus y in the universal thermodynamic

limit and compares it to b̂2/λ
3
T using the effective range

3
2 /ˆ

Tb λ 3
2 /ˆ

Tb λ
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FIG. 2. (Color online) b̂2/λ
3
T vs y. The left figure is the behavior

of b̂2/λ
3
T with y for an isospin-symmetric case in the universal

thermodynamic limit obtained from Eq. (10). The spread in the three
unitary limit curves comes from r0/

√
b ∼ r0/λT terms, which are

present even in the unitary limit. A triplet r0t = 1.75 fm and singlet
r0s = 2.56 fm (average of nn and np) were used. The three curves
are for kBT = 6, 12, and 20 MeV with higher curves corresponding
to lower kBT . The right figure uses the effective range parameters
of Table I and also includes a bound deuteron state. The same
three kBT values are used with the higher curves having lower
kBT . At high temperatures the deuteron contribution is considerably
reduced.
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TABLE I. Experimental values of asl and r0 [25] followed by square-well parameters and
calculated values. A value of c = 0.27 fm was used throughout. The np S = 1 parameters bind
the deuteron at 2.2 MeV. The pp system has Coulomb terms with asl = −7.821 fm, r0s =
2.83 fm. The units of aslr0, and R are given in femtometers with V0 in MeV. More recent values
of asl and r0 can be found in Ref. [26]. The results given in this paper are insensitive to the
precise values of these quantities, which are similar in Refs. [25] and [26].

np S = 1 np S = 0 nn S = 0

Exp asl = at = 5.4 asl = as,np = −23.7 asl = as,nn = −17.4
Exp r0 = r0t = 1.75 r0 = r0s,np = 2.73 r0 = r0s,nn = 2.4
{V0, R} {57.14, 1.8} {23.18, 2.3} {31.60, 2.0}
Cal asl = at = 5.4 asl = as,np = −23.70 asl = as,nn = −17.4
Cal r0 = r0t = 1.73 r0 = r0s,np = 2.69 r0 = r0s,nn = 2.40

and scattering length parameters of Table I. The EOS is
PV/AkBT = 1 − (b̂2/λ

3
T ) · (A/V ) · λ3

T .
The importance of the bound state can be seen in the height

in the curves on the left compared to those on the right.
In the limiting cases of the square-well plus hard-core

model, one has the following:

(i) A one-component uncharged Fermi gas is obtained by
setting y = 0.

(ii) A purely attractive square well is obtained by setting
c = 0 for the core radius.

(iii) A hard-sphere gas is obtained by taking the limit
R → c and V0 → 0. Then δ0 = −kc and dδ0/dk = −c

and, in general, tan δl = jl(kc)/ηl(kc). P waves have
δ1 = −kc + arctan(kc) and D waves have δ1 = −kc +
arctan[3kc/(3 − (kc)2].

(iv) A Bose gas has a + sign of the exchange term from sym-
metrization, that is, xk = (±1)k+1/k5/2)(V/λ3

T ) with +
for bosons and − for fermions.

The term b̂2/λ
3
T can be compared with a spinless hard-

sphere Bose gas (from l = 0) [23] and a “spinless” hard-sphere
Fermi gas (from l = 1 only since it is spinless in Ref. [24])
having, respectively, b̂2/λ

3
T = (1/25/2 + 2c/λT ) and b̂2/λ

3
T =

[−1/25/2 + 6π (c/λT )3]. The P -wave Fermi gas is a limit of
large λT /c. A system of protons and neutrons has terms that
arise from fermions of the same type (pp and nn) coupled to
S = 0 for l = 0 and fermions that are different (np), which can
couple to both S = 0 and 1. Note that the range of the force
to thermal wavelength appears in these results, which bears a
similarity to the effective range to thermal wavelength result
in the universal thermodynamic limit developed here. Higher
angular momentum appear as (c/λT )2l+1.

The rescaled ε̂int versus y in the unitary limit with one
singlet and one triplet effective range is simply

ε̂int =
[
−1

2
+

(
1

6
√

π

r0s√
b

)]

+ y(1 − y)

[
−1 +

(
1

6
√

π

3r0t − r0s√
b

)]
. (11)

The r0/
√

b ∼ r0/λT part of the rescaled ε̂int leads to a T -
independent εint ∼ T λ3

T ε̂int ∼ r0 part. Properties of ε̂int versus
y are shown in Fig. 3.

Higher order cluster terms in a virial expansion become
important when the d concentration is large enough to

produce further reactions such as the formation of α

particles from d + d ⇔ α or n + d ⇔ t for tritons [15,16].
The Saha equation gives N (ZAN )/N (p)ZN (n)N =
(λ3

T /V )A−1(A3/2/2A)Zint(ZAN ) for the number of
clusters with (Z,N). The ratio of ground-state α

particles to deuterons d is N (αgs)/N (d) = [N (p)
λ3

T /V ][ N (n)λ3
T / V ] (

√
2 / 6) exp{[Eb(α) − Eb(d)]/kBT } =

[N (d)λ3
T /V ](1/9) exp{[Eb(α) − 2Eb (d)] / kBT } . The cluster

yields decrease rapidly with A when the nucleon density
ρN and λ3

T satisfy (ρNλ3
T /4) exp(eb/kBT ) � 1 for y = 1/2,

where eb is the binding energy per particle. Moreover, a
signal for the presence of very large clusters is the formation
of the liquid-gas phase transition, which occurs at kBT ∼
9 MeV for ρN ≡ ρLG ∼ 0.075 nucleons/fm3. At temperatures
kBT ≈ eb = 8 MeV, the Boltzmann factor in binding energy
plays an important role. In fact, because of the large
binding effect of the α particle compared to the deuteron
[Eb(α) − 2Eb(d) ≈ 24 MeV], the α particle can dominate
at low T [16] because of the Boltzmann factor in binding
energy. The proton fraction y also plays a significant role
in systems with small y since N (ZAN(1−y) ∼ yZ(1 − y)N .
Thus an α particle will be more suppressed compared
to a deuteron when y ≈ 0 since N (α) ∼ y2, N (d) ∼ y.
Very small y are present in a neutron star [27]. Low
concentrations of proton and electrons are necessary to

intε̂

0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

y

FIG. 3. (Color online) ε̂int in MeV vs y for various T . The lowest
two curves are obtained from the scattering parameters of Table I
and contain the deuteron bound state. The two curves correspond to
kBT = 6 and 12 MeV. Deeper curves have lower kBT . The upper
flatter curves are the universal thermodynamic limits. These curves
are obtained by setting the scattering lengths equal to infinity and the
deuteron binding energy equal to zero.
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Pauli block neutron β decay. The equilibrium is reached
through n → p + e− + ν̄e and p + e− → n + νe with the
neutrinos escaping. Another higher order consideration
is symmetrization effects of even-A bosonic clusters and
antisymmetrization effects of odd-A fermionic clusters.
Higher order virial coefficients have a complicated structure,
as can be seen in the expansion of the EOS in terms of the
x ′

k values just given. Features associated with the third virial
coefficient and its complexity and difficulties are discussed
in Ref. [28]. Moreover, large cancellations can occur and
it is not clear how to handle the continuum of higher order
terms such as the fourth coefficient. A large cancellation is
especially true for the virial expansion of a one-component
Fermi gas with only antisymmetrization effects included. The
EOS, with xk = (−1)k+1(1/k5/2)V/λ3

T and spin degeneracy
gS , reads P/kBT = ρ[1 + 0.1766( ρλ3

T /gS) − (3.3 ×
10−3)(ρλ3

T /gS)2 + (1.11 × 10−4)(ρλ3
T /gS)4]. The numerical

coefficients decrease by ∼1/30. Bound-state cluster
contributions are reduced by the continuum correlations from
the Levinson theorem: δl(0) − δl(∞) = Nlπ , where Nl is the
number of bound states. In particular, the deuteron contribution
is reduced by the 3S1 decreasing phase shift, which starts
at π since Nl=0 = 1. The ratio |BC(np, 1)|/Bb(np, 1) for
the continuum to bound contributions in Eq. (5) is 0.28,
0.42, 0.52, and 0.69 for kBT = 6, 12, 20, and 40 MeV,
respectively. Since the phase shift 3S1 in the np S = 1 channel
is a decreasing function of k, the value of BC of Eq. (7) is
negative.

A finite-temperature two-component model of strongly
correlated protons and neutrons, each with two spin states
and underlying isospin symmetries, was discussed. The model
is an extension of the one-component two-spin-state fermionic
models in both atomic systems and in nuclear physics where
pure neutron systems are considered. Features associated with
Feshbach resonances and bound states can be studied by tuning
on the proton fraction y and varying the temperature T . In
atomic systems the tuning is done in a controlled way by a
magnetic field, which can change the scattering length across

infinity with associated divergences of the size of the resonant
state. In the nuclear case the bound state is the spin S = 1,
isospin I = 0 state of the np system, the deuteron, which is
loosely bound. Resonant-like virtual structures arise in the
S = 0, I = 1 channels. The nn and np S = 0, I = 1 channels
have very large scattering lengths and approximate the infinite
limit. The mixture with varied neutron/proton asymmetry
has both positive and negative scattering lengths and is
therefore different from the one-component atomic case tuned
by the magnetic field. When the scattering lengths asl are large
compared to interparticle spacings and range of interparticle
forces, a regime called the unitary limit is reached and
this limit was studied and compared to calculations using
experimental values for asl and r0. A simplified interaction
between nucleons was used: an attractive square-well po-
tential with a short-range hard-core repulsion. Properties of
this potential were then related to experimental results for
nucleon-nucleon effective ranges r0 and asl in spin singlet
and triplet states. Analytic results were developed in an
effective range approximation for various features such as the
interaction energy and EOS. A rescaled interaction energy
ε̂int was shown to be relatively flat with variation with y

in the unitary limit. A variation with T in ε̂int comes from
a residual dependence on the ratio r0/λT that appears in
the results even in the limit of infinite scattering length.
The associated εint is T independent. The deuteron bound
state was shown to produce a large departure in the interaction
energy from the unitary limit and give rise to a pronounced T

dependence at low T . Higher order clusters are also important,
and in particular the α particle can dominate [16] in a virial
expansion. Another extreme of large λT /asl was also studied.
In atomic systems this other limit is realized by tuning away
from the Feshbach resonance. Comparisons were also made
with hard-sphere Bose and Fermi gases, which are limiting
cases of the potential used.
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