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On-shell consistency of the Rarita-Schwinger field formulation
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(Received 17 December 2008; published 12 August 2009)

We prove that any bilinear coupling of a massive spin-3/2 field can be brought into a gauge-invariant form
suggested by Pascalutsa by means of a nonlinear field redefinition. The corresponding field transformation is
given explicitly in a closed form and the implications for chiral effective field theory with explicit �(1232) isobar
degrees of freedom are discussed.
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A consistent formulation of a field theory involving in-
teracting spin-3/2 degrees of freedom is an old and much
studied problem (see, e.g., Refs. [1–3]). Recently, it has
attracted renewed interest in the context of chiral effective
field theory of QCD with explicit �(1232) isobar degrees of
freedom and its applications to, for example, pion-nucleon
scattering or photonuclear processes (see Refs. [4,5] for recent
review articles). In the commonly used Rarita-Schwinger
formalism, the spin-3/2 field is represented by a vector-spinor
ψµ (where here and in what follows, we omit the spinor
indices). It is well known how to write the most general
free Lagrangian for ψµ that describes the proper number
of degrees of freedom [6]. The unphysical spin-1/2 degrees
of freedom are projected out in the resulting free equations of
motion. It is much more difficult to ensure the decoupling of
the unphysical degrees of freedom in the case of interacting
spin-3/2 fields. An elegant way to achieve this goal is to require
that all interactions have the same type of gauge invariance as
the kinetic term of the spin-3/2 field [7]. This requirement
of gauge invariance is, however, not compatible with the
nonlinear realization of the chiral symmetry [8,9], which is
commonly adopted in chiral effective field theory and ensures
the chiral invariance of the effective Lagrangian on a term-by-
term basis. In this context, an important observation was made
in Ref. [10], where it was shown that any gauge-noninvariant
linear coupling of the spin-3/2 fields can be brought into the
gauge-invariant form via a suitably chosen field redefinition. In
that work, a conjecture was made that such a field redefinition
should also be possible for bilinear couplings, but no explicit
form for this transformation was given. In this work we fill
this gap and prove that such a transformation indeed exists for
arbitrary bilinear couplings. Moreover, we are able to give the
transformation explicitly in a closed form.

The most general Lagrangian for spin-3/2 fields can
be written in the following form (after setting the point-
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transformation parameter A = −1) [6,11]:

L = ψ̄µ((i/∂)µν − mµν + Vµν)ψν = ψ̄(i/∂ − m + V )ψ. (1)

Here and in what follows, we use the short-hand notation

(i/∂)µν = γ µναi∂α, mµν = γ µνm, (2)

with m being the mass of the spin-3/2 field and γ ν the Dirac
matrices. The quantities γ µν, γ µνα are defined according to
γ µν = [γ µ, γ ν]/2, γ µνα = {γ µν, γ α}/2 and are completely
antisymmetric with respect to the Dirac indices. We will
also need the inverse of the mass operator mµν , which in d

dimensions takes the form[
1

m

]µν

= − 1

m

(
gµν + 1

1 − d
γ µγ ν

)
. (3)

Notice that because of the completely antisymmetric nature
of γ µνα , the free massless Lagrangian is invariant under the
gauge transformation ψµ → ψµ + ∂µε, where ε is an arbitrary
spinor. We call the interacting field theory gauge invariant if all
interaction terms are invariant under this gauge transformation.
A gauge-invariant theory can be easily quantized using the
standard path-integral technique. Indeed the path-integral
formulation leads, by using the Faddeev-Popov trick, very
naturally to the constraints that have the same form as in the
free field theory. Let us denote the action of a gauge-invariant
theory by

S = S[ψ̄µ, ψµ, φ] = S0[ψ̄µ, ψµ, φ] −
∫

d4xψ̄mψ. (4)

Here we denote by S0 the gauge invariant part of the
theory,

S0[ψ̄µ + ∂µε̄, ψµ + ∂µε, φ] = S0[ψ̄µ, ψµ, φ], (5)

and φ represents all other fields that interact with the spin-3/2
particle. The partition function in the path-integral formulation
is given by

Z =
∫

DψµDψ†
µDφ eiS. (6)
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Inserting the Faddeev-Popov one-operator we get

Z =
∫

DψµDψ̄µDφ DεDε̄δ[(ψ̄µ + ∂µε̄)γ µ]

× δ[γµ(ψµ − ∂µε)]
1

Det[−γµ∂µ]2
eiS. (7)

Using gauge invariance we can rewrite the action as

S[ψ̄µ, ψµ, φ] = S[ψ̄µ + ∂µε̄, ψµ − ∂µ ε, φ]

+ ψ̄µγ µνm∂νε + ε̄ ∂µγ µνm ψν. (8)

Substituting additionally the spin-3/2 fields by ψ̄µ → ψ̄µ −
∂µε̄, ψµ → ψµ + ∂µε, we obtain for the partition function

Z = 1

Det[−γµ∂µ]2

∫
DψµDψ̄µDφ DεDε̄δ(ψ̄µγ µ)

× δ(γµψµ) e{i S}e−im
∫

d4x[ψ̄µ∂µε+ε̄ ∂µψµ]. (9)

Finally, integrating over the spinor fields ε and ε̄ yields

Z = const
∫

DψµDψ̄µDφ

× δ(γµψµ) δ(ψ̄µγ µ)δ(∂µψµ) δ(∂µψ̄µ) ei S. (10)

This is exactly the same expression as given in Eq. (46) of
Ref. [7], which was derived for a specific gauge-invariant
model using the Dirac-Faddeev quantization framework
[12–14] (see also Ref. [15] for a related work). Notice that
the interacting theory has the same constraints as the free one.
Clearly, this is the consequence of the fact that the gauge
invariance is only broken by the mass term in both theories
(see Ref. [7] for an extended discussion).

We now approach our main goal and demonstrate the on-
shell equivalence of gauge-invariant and gauge-noninvariant
formulations of the interacting theories with the massive spin-
3/2 fields extending the earlier work [10] to the case of bilinear
couplings. Consider the Lagrangian for interacting massive
spin-3/2 particles given in its general form

L = ψ̄(i/∂ − m + V )ψ, (11)

where Vµν represents an arbitrary local interaction. We claim
that such a theory1 is on-shell equivalent to the gauge-invariant
one described by the Lagrangian

L′ = ψ̄

{
i/∂ − m + i/∂

1

m
V

1

m

[
1 − (i/∂ + m)

1

m
V

1

m

]−1

i/∂

}
ψ.

(12)

To prove this statement we rely on the equivalence theorem
[8,16], which states that two field theories are equivalent on
mass shell provided there exists a field transformation ψ →
ψ + P [ψ, φ] that transforms one Lagrangian into another.
Here, P [ψ, φ] = O(ψ2, ψφ) denotes a local polynomial of
the fields ψ, φ and their derivatives. In the following, we will

1Throughout this work we refer to the naive Feynman rules in the
case of gauge-noninvariant couplings.

show that the original Lagrangian in Eq. (11) can be brought
into the gauge-invariant form given in Eq. (12) by the following
field transformation:

ψ → S−1[X − 1]−1S ψ, ψ̄ → ψ̄ S̄[X̄ − 1]−1S̄−1, (13)

where the operators X and X̄ are defined via

X = 1 +
[

1 − 1

m
V

1

m
(i/∂ + m)

]1/2

,

X̄ = 1 +
[

1 − (i/∂ + m)
1

m
V

1

m

]1/2

. (14)

Further, the quantities S and S̄ have the form

S = 1

2
X

[
1 − X−1 1

m
V

]
, S̄ = 1

2

[
1 − V

1

m
X̄−1

]
X̄. (15)

To prove the equivalence of the two Lagrangians we have to
show that

S̄[X̄ − 1]−1S̄−1(i/∂ − m + V )S−1[X − 1]−1S

!= i/∂ − m + i/∂
1

m
V

1

m

[
1 − (i/∂ + m)

1

m
V

1

m

]−1

i/∂. (16)

We now use the following useful relation:

i/∂
1

m
V

1

m
[X̄−1]−2i/∂ = [2 S̄[X̄−1]−1 − 1](i/∂ + m)

× [[X−1]−12 S−1]−i/∂−m + V

, (17)

to rewrite the right-hand side of Eq. (16), so that the relation
to be verified becomes

S̄−1(i/∂ − m + V )S−1

!= [X̄ − 1]S̄−1(i/∂ − m + V )S−1[X − 1] + 4(i/∂ + m)

− 2[X̄ − 1]S̄−1(i/∂ + m) − 2(i/∂ + m)S−1[X − 1]. (18)

The left-hand side of this relation can be rewritten in the
following way:

S̄−1(i/∂ − m + V )S−1 = 2[X̄−1(i/∂ + m)S−1 − S̄−1m]. (19)

Here we used i/∂ − m + V = 2S̄X̄−1(i/∂ + m) − 2mS. The
relation to prove then becomes

4(i/∂ + m) − 2[X̄ − 1]S̄−1(i/∂ + m) − 2X̄−1(i/∂ + m)

× S−1X + 2S̄−1mX − 2X̄S̄−1m[X − 1]
!= 0. (20)

Using the commutation-like relation

m

[
1 − X−1 1

m
V

]−1

=
[

1 − V
1

m
X̄−1

]−1

m (21)

we can express S−1 as follows:

S−1 = 1

m
V

1

m
S̄−1mX−1 + 2X−1. (22)

Let us denote the left-hand side of Eq. (20), which we want
to show to be equal to zero, by Y . Inserting this expression
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for S−1 from Eq. (22) into the third term in Eq. (20) we
obtain

Y = 4(i/∂ + m) − 2[X̄ − 1]S̄−1(i/∂ + m)

− 2X̄−1(i/∂ + m)
1

m
V

1

m
S̄−1m − 4X̄−1(i/∂ + m)

+ 2S̄−1mX − 2X̄S̄−1m[X − 1]. (23)

Applying the relations

X̄−1(i/∂ + m)
1

m
V

1

m
= 2 − X̄,

X−1 1

m
V

1

m
= 1

m
V

1

m
X̄−1 (24)

allows us to rewrite Eq. (23) in the form

Y = 4(i/∂ + m) − 2[X̄ − 1]S̄−1(i/∂ + m) − 4X̄−1(i/∂ + m)

+ 2[X̄ − 1]S̄−1V
1

m
X̄−1(i/∂ + m). (25)

Finally, putting together the second and the last term in
Eq. (25) yields the desired result:

Y = 4(i/∂ + m) − 4[X̄ − 1]S̄−1S̄X̄−1(i/∂ + m)

− 4X̄−1(i/∂ + m) = 0. (26)

Thus, the redefinition of the spin-3/2 field specified in Eq. (13)
in the underlying gauge-noninvariant Lagrangian L in Eq. (11)
leads to the gauge-invariant form L′ given in Eq. (12). Notice
that even if there is only a finite number of interaction terms in
the original Lagrangian, the transformed Lagrangian always
contains an infinite number of terms.

Let us now briefly discuss possible linear couplings such
as the couplings of the � to nucleon fields. Once the
bilinear terms are gauge invariant the entire Lagrangian can
be transformed into gauge-invariant form by much simpler
transformation (which was extensively discussed by Pascalutsa
[10]). We briefly repeat the arguments. We start with the
Lagrangian

L = ψ̄(i/∂ − m + V )ψ + ψ̄O�NN + N̄ON�ψ + . . . , (27)

where N and N̄ represent nucleon fields, the operators
V,O�N , and ON� represent interactions between nucleons
and deltas and pions or other fields, and the ellipses represent
all other possible interactions that do not include delta degrees
of freedom. After the transformation given in Eq. (13) we
obtain the Lagrangian

L′ = ψ̄(V�� − m)ψ + ψ̄Ṽ�NN + N̄ṼN�ψ + . . . , (28)

where the operators V��, Ṽ�N , and ṼN� are given as follows:

V�� = i/∂ + i/∂
1

m
V

1

m

[
1 − (i/∂ + m)

1

m
V

1

m

]−1

i/∂,

Ṽ�N = S̄[X̄ − 1]−1S̄−1O�N, (29)

ṼN� = ON�S−1[X − 1]−1S.

Note that the interaction V�� includes only gauge-invariant
vertices. However the interactions Ṽ�N and ṼN� are in general

not gauge invariant. To bring them into a gauge-invariant form
let us shift the delta fields like

ψ̄µ → ψ̄µ + ξ̄µ, ψµ → ψµ + ξµ, (30)

where ξ̄µ and ξµ are not yet specified but assumed to have the
property of not depending on the delta fields. The transformed
Lagrangian reads

L′′ = ψ̄(V�� − m)ψ + ξ̄V��ψ + ψ̄V��ξ

+ ψ̄(Ṽ�NN − mξ ) + (N̄ṼN� − ξ̄m)ψ + · · · . (31)

To get a gauge-invariant form we now fix the fields ξµ and ξ̄µ

to

ξ̄ = N̄ṼN�

1

m
, ξ = 1

m
Ṽ�NN. (32)

With this choice the Lagrangian becomes gauge invariant:

L′′ = ψ̄(V�� − m)ψ + ψ̄V�NN + N̄VN�ψ + . . . , (33)

where the gauge-invariant delta-nucleon interactions are given
by

V�N = V��

1

m
Ṽ�N, VN� = ṼN�

1

m
V��. (34)

The equivalence of the two formulations by means of the
nonlinear field redefinition as discussed here has important
consequences for calculations within chiral effective field
theory. It implies that S-matrix elements can be calculated from
the standard effective Lagrangian with the chiral symmetry
being realized on a term-by-term basis using naive Feynman
rules.

Let us briefly discuss what happens with the off-shell
parameters, which account for the unphysical spin-1/2 degrees
of freedom. The original interaction ψ̄V ψ can be written as
a series of interactions with different off-shell parameters Zi

and Z′
i :

ψ̄V ψ =
∑

i

ψ̄�(Z′
i)Vi�(Zi)ψ + h.c., (35)

with �(Zi)µν = gµν + Ziγµγν . Multiplication of the off-shell
function �(Zi) with 1

m
i/∂ψ or ψ̄i/∂ 1

m
from right or left,

respectively, projects out the off-shell parameters Zi :[
�(Zi)

1

m
i/∂ψ

]
µ

=
[

1

m
i/∂ψ

]
µ

. (36)

Similarly one can show that

[
ψ̄i/∂

1

m
�(Z′

i)

]
µ

=
[
ψ̄i/∂

1

m

]
µ

. (37)

Because of these relations all the off-shell parameter con-
tributions on the most left- and most right-hand sides of the
gauge-invariant interactions V��, V�N , and VN� are projected
out. However, all the other off-shell parameter contributions
are not zero but can be accounted for by counterterms. So
for a given field theory to be independent of the off-shell
parameters counterterms are needed to absorb all the off-shell
dependence. The theory becomes automaticaly an effective
field theory with infinitely many counterterms. In this picture,
the off-shell parameters play the role of renormalization
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scale: The counterterms do explicitely depend on the off-shell
parameters in a way that all the calculated observables remain
independent of them. In the case of the theory with the chiral
Lagrangian it remains to be clarified whether the originally
present counterterms are sufficient to absorb all the off-
shell parameter contributions. Note that the gauge-invariant
interactions V��, V�N , and VN� involve not only covariant
derivatives that appear in the chiral Lagrangian. For this
reason, it is not obvious that the chiral-invariant counterterms
in the original Lagrangian can completely compensate the
off-shell dependence. For a related discussion we refer to
the work of Ellis and Tang [11,17]. Notice further that at
least in the case of pion-nucleon scattering at leading one-loop
order the off-shell parameters can be absorbed in low-energy
constants accompanying certain local interaction operators.
This was confirmed in the explicit calculation by Fettes and
Meißner [18] based on the so-called small-scale expansion
[19].

The general result proved algebraically here can also be
understood on the level of Feynman diagrams. The underlying
mechanism is even more evident in that case. We now show
that the manipulations discussed here simply correspond
to the partial fraction decomposition of the free Feynman
propagator. Consider, for example, a tree diagram with two
insertions of V . The corresponding expression in operator form
reads

i/∂
1

m
i V

i

i/∂ − m
i V

1

m
i/∂ = i/∂

1

m
i V

1

m
m

i

i/∂ − m
m

1

m
i V

1

m
i/∂.

(38)

Using the partial fraction decomposition

m
1

i/∂ − m
m = −(i/∂ + m) + i/∂

1

i/∂ − m
i/∂ (39)

we can rewrite this diagram in a gauge-invariant form:

i/∂
1

m
i V

i

i/∂ − m
i V

1

m
i/∂ = i/∂

1

m
i V

1

m
i/∂

i

i/∂ − m

× i/∂
1

m
i V

1

m
i/∂ + i/∂

1

m
i V

1

m
(i/∂ + m)

1

m
V

1

m
i/∂. (40)

Notice that because of the appearance of the operators 1
m

i/∂ and
i/∂ 1

m
the first part includes only gauge-invariant vertices, which

cannot depend on off-shell parameters. The second term is just
a vertex that accounts for all the off-shell parameters. So by
partial fraction decomposition one can naturally split the true
spin-3/2 propagating structures, which are gauge-invariant,
and all nonpropagating spin-1/2 contributions, which are
collected into additional vertices.

In this paper, we have explicitly constructed a nonlinear
field transformation that brings the interaction Lagrangian of
spin-3/2 fields as given in Eq. (11) in a form that is invariant
under gauge transformation. This proves a conjecture made
in Ref. [10] where it was shown how a gauge-noninvariant
Lagrangian with linear couplings in the spin-3/2 fields
can be brought into a gauge-invariant form via a suitably
chosen field redefinition. We have also given a diagrammatic
explanation of our main result, which allows us to split the truly
propagating spin-3/2 components from the nonpropagating
spin-1/2 contributions that are subsumed in local operators
existing in the most general Lagrangian of deltas coupled to
nucleons, pions, and external fields.
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