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Thermodynamic properties of nuclear matter with three-body forces
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We calculate thermodynamic quantities in symmetric nuclear matter within the self-consistent Green’s
functions method including three-body forces. The thermodynamic potential is computed directly from a
diagrammatic expansion, implemented with the CD-Bonn and Nijmegen nucleon-nucleon potentials and the
Urbana three-body forces. We present results for entropy and pressure up to temperatures of 20 MeV and
densities of 0.32 fm−3. While the pressure is sensitive to the inclusion of three-body forces, the entropy is not.
The unstable spinodal region is identified and the critical temperature associated to the liquid-gas phase transition
is determined. When three-body forces are added we find a strong reduction of the critical temperature, obtaining
Tc � 12 MeV.
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The determination of thermodynamic properties of hot
nuclear matter is extremely relevant for its applications in
astrophysics and heavy-ion reactions. Pressure and entropy
at finite temperature are crucial ingredients in the modeling
of core-collapse supernovae and protoneutron stars, which
involve processes characterized by densities up to several
time the nuclear saturation density and temperatures up to
few tens of MeV’s. The nuclear equation of state (EOS) plays
an important role also in the interpretation of nucleus-nucleus
collisions, in which a hot and dense state of matter is formed.
Of particular interest is the study of a possible phase transition
occurring at subsaturation densities. Because of the van der
Waals nature of nucleon-nucleon (NN ) interactions, at low
densities and high temperatures nuclear matter is expected
to undergo a first-order transition to a gas phase [1]. It
is claimed that an evidence for such behavior is found in
intermediate-energy heavy-ion collisions, as a plateau of the
caloric curve derived for the light fragments as a function of
the reaction energy [2].

The liquid-gas transition in nuclear matter presents some
differences with respect to the case of finite nuclei where, as
the temperature increases, Coulomb forces together with the
decrease of the surface tension trigger the onset of mechanical
instabilities. One can try to relate the limiting temperature of
nuclei Tl to the critical temperature in infinite matter Tc by
properly taking into account Coulomb and surface effects [3].
Different estimates from effective models based on Skyrme
forces [4] and more microscopic approaches [5,6] are in
agreement and yield a ratio Tl/Tc of about 1/3.

A reliable many-body theory is called for the interpretation
of the heavy-ion reactions in the goal of extracting the
equation of state and the critical point of the nuclear liquid-gas
phase transition [7] and to extrapolate to higher densities and
arbitrary isospin asymmetries. There exist only few realistic
calculations of the nuclear matter EOS at finite temperature.
The variational approach, which yields reliable results at

*vittorio.soma@ifj.edu.pl
†piotr.bozek@ifj.edu.pl

T = 0, is usually extended to finite temperatures by neglecting
the modifications of the correlation functions [8]. There are
attempts of developing a finite T variational technique [9]
but no calculations of thermodynamic quantities are avail-
able so far. The Brückner-Hartree-Fock method generalized
by means of the Bloch-de Dominicis formalism has been
applied to finite temperature nuclear matter [10,11]. The
Green’s functions in-medium T -matrix [12,13] approach is
suitable for computing consistently microscopic properties and
thermodynamic observables and naturally takes into account
finite temperature correlations [14]. Thermodynamic relations
such as the Hugenhotlz-van Hove and Luttinger identities
[15,16] are automatically fulfilled by the �-derivable T -matrix
approximation [17,18].

In two recent articles we presented the first calculations
of entropy and pressure at finite temperature within the
thermodynamically consistent T -matrix approach [19] and
the first results that include three-body forces in the finite
temperature Green’s functions method in nuclear matter [20].
Following these works we compute here pressure and entropy
without and with three-body forces in the case of symmetric
nuclear matter for two different realistic NN potentials,
in particular addressing the unstable region related to the
liquid-gas phase transition.

Let us briefly recall the adopted computational method,
whose details can be found in Refs. [19,20]. We solve the set
of coupled equations that involve the calculation of the
T -matrix, summing the ladder diagrams at all orders, the
determination of the nucleon self-energy, and the single-
particle Green’s function. The full off-shell propagation of
particles in the medium is taken into account. We employ two
different realistic nucleon-nucleon interactions, the CD-Bonn
[21] and the Nijmegen [22] parametrizations, together with
the semimicroscopic Urbana three-nucleon potential [23].
Three-body forces, necessary for a reliable description of the
saturation properties in symmetric nuclear matter, are included
via an effective two-body interaction derived after averaging
out the third particle. The effect on the two remaining nucleons
results in a mean field whose two parameters are fixed by
requiring the correct saturation density and binding energy.
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FIG. 1. Diagrammatic expansion of the generating functional �.
The sum includes ladder-type diagrams up to infinite order (n is the
number of interaction lines in each diagram).

The range of temperatures and densities studied is well above
the superfluid transition in symmetric nuclear matter [24].

After calculating the single-particle propagator G and
the nucleon self-energy � from the iterative scheme of the
T -matrix equations one can compute the grand canonical
potential, expressed as

� = −Tr{ln[G−1]} − Tr{�G} + �. (1)

The generating functional � has a diagrammatic expansion
similar to the one for the interaction energy in the T -matrix
approximation, differing by a factor 1/n (n is the number
of interaction lines) in front of each diagram (see Fig. 1).
Therefore we derive � from the expression for 〈Hint〉 by
multiplying the potential V by a numerical factor λ and
integrating

� =
∫ 1

0

dλ

λ
〈Hint(λV,Gλ=1)〉, (2)

where G is the dressed single-particle propagator computed in
the system with the full strength interaction. The expectation
value 〈Hint〉 itself can be easily obtained from the T matrix
[19]. From the grand canonical potential (dividing by the
volume V) we obtain the pressure

P = −�

V , (3)

which is then computed directly from its diagrammatic
expansion without the use of numerical derivatives.

In Figs. 2 and 3 we present the pressure for symmetric
nuclear matter without and with three-body forces for the
CD-Bonn and for the Nijmegen potential, respectively. Results
are shown for different temperatures as function of the density.
When looking at the curves obtained with the two-body
NN potentials (upper panels) we notice that they cross the
thermodynamically forbidden region in which the derivative
of the pressure with respect to the density is negative. For
both CD-Bonn and Nijmegen interactions the inclusion of
three-body forces (lower panels) leads to a stiffening of
the dependence of the pressure on density. The spinodal
instability region below saturation density is still present but
gets substantially reduced.

To address more in details the critical behavior and the
effect of three-body forces on the critical temperature for the
liquid-gas phase transition we study the limits of the instability
region in the density-temperature plane. The spinodal region
is characterized by the negative derivatives of the pressure and
the chemical potential

∂P

∂ρ

∣∣∣∣
T

< 0,
∂µ

∂ρ

∣∣∣∣
T

< 0. (4)
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FIG. 2. (Color online) Pressure as function of density in sym-
metric nuclear matter for different temperatures with the CD-Bonn
potential (upper panel) and the CD-Bonn potential plus three-body
forces (lower panel).

Inside this region the system is unstable and tends to separate
in two different phases, gas at a lower and liquid at a higher
density. The two phases may coexist in an interval of densities
and temperatures up to the point in which

P (ρgas) = P (ρliquid) (5)

and

µ(ρgas) = µ(ρliquid). (6)

The two regions end up in a coincident point that defines
the critical density and temperature of the liquid-gas phase
transition.

We compute the spinodal and the coexistence lines for the
CD-Bonn and the Nijmegen potential without and with the
inclusion of three-body forces. The limits of the spinodal
region defined by Eq. (4) are found as local maxima and
minima of the pressure. The conditions on the pressure
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FIG. 3. (Color online) Pressure as function of density in sym-
metric nuclear matter for different temperatures with the Nijmegen
potential (upper panel) and the Nijmegen potential plus three-body
forces (lower panel).

and chemical potential are equivalent for a one-component
system such as symmetric or pure neutron matter. For the
case of arbitrary isospin asymmetries one should in principle
consider both of them, but there is evidence that chemical and
mechanical instabilities coincide also for asymmetric nuclear
matter [25].

We use two methods for determining the spinodal line: we
compute the pressure derivative directly from the interpolation
of P and apply the one suggested by Baldo and Ferreira
[10] that consists in plotting the chemical potential as a
function of the pressure, looking for the back bending of
the curves. The results obtained with the two techniques do
coincide, confirming the stability of the calculations even in
the low-density regime. The critical lines are displayed in
Figs. 4 and 5 for CD-Bonn and Nijmegen, respectively. At low
temperatures the unstable and coexistence phases are present
over a large range of densities. As the temperature increases the
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FIG. 4. (Color online) Coexistence and spinodal lines for the CD-
Bonn potential without and with three-body forces.

instability region becomes smaller, ending up with the point
defining the critical temperature for the liquid-gas transition.
The critical temperature is Tc = 18 MeV for the CD-Bonn
and Tc = 20.5 MeV for the Nijmegen potential. Both the
spinodal and the coexistence regions get strongly reduced
when three-body forces are included, with the critical point
at Tc = 12.5 MeV when CD-Bonn is employed and Tc =
11.5 MeV if we consider the Nijmegen potential.

Another quantity that characterizes the liquid-gas phase
transition is a dimensionless parameter that comprises the
critical pressure, density, and temperature, Pc/(ρcTc), which
assumes the value 3/8 for a van der Waals equation of
state. In Table I we summarize these critical quantities for
the various potentials without and with three-body forces. The
values for the CD-Bonn and the Nijmegen potentials are rather
similar, with a strong decrease of the dimensionless parameter
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FIG. 5. (Color online) Coexistence and spinodal lines for the
Nijmegen potential without and with three-body forces.
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TABLE I. Critical values of the temperature, density and pressure
of the liquid-gas phase transition for the CD-Bonn and Nijmegen
potentials without and with three-body forces.

Potential Tc (MeV) ρc (fm−3) Pc (MeV fm−3)
Pc

ρcTc

CD-Bonn 18 0.107 0.43 0.22
CD-Bonn + TBF 12.5 0.096 0.14 0.12
Nijmegen 20.5 0.094 0.50 0.26
Nijmegen + TBF 11.5 0.088 0.15 0.14

after the inclusion of three-body forces, signaling a departure
from the van der Waals equation of state.

Our estimates with the two-body nucleon-nucleon
interactions are in agreement only with other microscopic
calculations. Rios et al. [26] use a self-consistent Green’s
functions approach but compute the free energy from the
Carneiro-Pethick quasiparticle entropy [27], obtaining for the
CD-Bonn potential a critical temperature Tc = 18.5 MeV and
Pc/(ρcTc) = 0.20. When using the Argonne V18 parametriza-
tion, however, they find that Tc is reduced to about 11 MeV
and Pc/(ρcTc) = 0.14. Baldo and Ferreira [10] performed
calculations within the Bloch-de Dominicis finite temperature
generalization of the Brückner-Hartree-Fock method. Using
the Argonne V18 potential they estimate the critical tem-
perature to be Tc � 21 MeV. However, when they include
the Urbana three-nucleon potential in the calculations they
find, in contrast with our result, that three-body forces do
not strongly affect the critical temperature, which is reduced
to Tc � 20 MeV. Other calculations within the Bloch-de
Dominicis formalism [28] or the relativistic Dirac-Brückner-
Hartree-Fock approach [5,29], however, yield lower values of
Tc, respectively 9, 12, and 10.4 MeV, closer to our result with
three-body forces.

We compute the entropy per particle in the interacting
system from the thermodynamic relation

S

N
= 1

T

[
E

N
+ P

ρ
− µ

]
. (7)

The results for symmetric nuclear matter at ρ = ρ0 are shown
in Fig. 6 for different temperatures. The effects of three-body
forces are very small, as well as the dependence on the nucleon-
nucleon potential. The entropy appears to be independent of
the details of the interaction, supporting the conclusion that it
is not much affected by nucleon correlations. The reliability
of calculations of the entropy at the level of a quasiparticle
approximation has been checked also by Rios et al. [30] using
the Carneiro-Pethick dynamical quasiparticle formula [27].
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FIG. 6. (Color online) Entropy per particle for symmetric nuclear
matter at ρ = ρ0 with the CD-Bonn and Nijmegen potentials without
and with three-body forces.

Existing estimates of the critical temperature for the
liquid-gas transition in infinite nuclear matter are in the
range Tc � 9–21 MeV. Within the finite temperature Green’s
functions approach we calculate thermodynamic properties of
symmetric matter and study the spinodal instability region
related to the first-order phase transition. We observe that
three-body forces have a strong effect on the pressure of the
interacting system, reducing the size of the unstable region
in the density-temperature plane. With the CD-Bonn and the
Nijmegen potential we find that the critical temperature
decreases respectively from Tc = 18 MeV to Tc = 12.5 MeV
and from Tc = 20.5 MeV to Tc = 11.5 MeV. In all cases
the critical density lies in the range ρc � 0.09–0.11 fm−3.
The pressure at which the phase transition takes place
decreases from Pc � 0.43–0.50 MeV fm−3 to about Pc =
0.15 MeV fm−3 after the inclusion of the three-nucleon
potential.

Three-body forces do not affect the entropy, which turns
out to be independent of the potential used in the calculations.
This last results confirms that entropy is not much sensitive to
nucleon-nucleon correlations (cf. Refs. [19,30]).
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[13] P. Bożek, Phys. Rev. C 59, 2619 (1999).
[14] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

(Benjamin, New York, 1962).
[15] N. Hugenholtz and L. Von Hove, Physica 24, 363 (1958).
[16] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
[17] G. Baym, Phys. Rev. 127, 1391 (1962).
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