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Neutron Fermi liquids under the presence of a strong magnetic field with effective nuclear forces
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Landau’s Fermi liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a
strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization
may be present, are characterized by these parameters in the framework of a multipolar formalism. We use
either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi
liquid parameters, the contribution of a strong magnetic field on some bulk magnitudes such as isothermal
compressibility and spin susceptibility is also investigated.
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I. INTRODUCTION

The description of low temperature homogeneous fermion
systems was developed by Landau in 1957 [1] with the
characterization of the low energy properties of the system in
terms of a set of parameters, i.e., the Landau parameters, which
determine the effective interaction of two quasiparticles near
the Fermi surface. Since then, there have been many attempts to
characterize nuclear and quark matter as Fermi liquids. Even if
the general framework of the Fermi liquid theory (FLT) is well
defined, there are some issues in the context of nuclear Fermi
liquids because the microscopic derivation of the Landau
parameters is not yet fully solved and their values depend
on many-body effects and details of the nucleon-nucleon
(NN ) interaction that need to be treated carefully. Microscopic
calculations of Landau parameters for nuclear and neutron
matter for realistic interactions have been the subject of
several investigations [2–4]. These calculations have also been
evaluated in the framework of effective interactions, which
allow for a Hartree-Fock description of the system and for a
clean definition of the quasiparticle excitations. In this context
they have been calculated for symmetric and asymmetric
nuclear matter [5,6].

Because of the tiny value of the nuclear magneton
µN = 3.1524512326(45) × 10−18 MeV G−1) [7] the values
of magnetic field strength needed to provide some degree
of polarization in a nuclear plasma are of the order B >∼
1016 G [8]. The only place where we have experimental
indication of the existence of such intense magnetic fields
is in astrophysical objects called magnetars [9]. On their
surface magnetic field strengths can be of the order Bmagnetar ≈
1014–1015 G. According to the scalar virial theorem [10]
allowed field strengths could be, in principle, as big as
B ≈ 1018 G; however, a full detailed study of the gravitational
stability condition of the maximum sustainable magnetic field
strength in a star remains to be carried out.
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From a theoretical point of view, FLT constitutes an
excellent tool for the study of the properties of fermionic
components of matter in the interior of neutron stars where the
low temperature approximation is relevant. In the intermediate
or high density regime, (1–4)ρ0(ρ0 being the nuclear saturation
density), where the nucleon picture is expected to be valid,
some works have approached the contribution of magnetic
fields to properties of β-equilibrated matter in a relativistic
fashion, for example, analyzing some plasma properties using
relativistic mean field theories like in Ref. [11] or equations of
state (EOS) like in Refs. [12–14]. For higher densities, where
quark matter may be relevant, there have been some attempts
like those described in Refs. [15–17] where they find that only
very large fields, B >∼ 1019 G, seem to affect the EOS in a
non-negligible way. In the opposite density limit, the solid
outer crustal properties have been somewhat explored in the
absence of magnetic fields, such as in the non-homogeneous
pasta phases [18–21], or in the presence of strong quantizing
magnetic fields as described in Ref. [22].

In a previous contribution we analyzed the effects of
a strong magnetic field of astrophysical origin in a non-
superfluid pure neutron system [8]. There, we found that using
different parametrizations for the nonrelativistic effective NN

interaction, such as Skyrme and Gogny forces and in the
context of Hartree-Fock calculations, a net magnetization is
energetically allowed. One should notice that some effective
nuclear interactions such as Skyrme forces predict that even in
the absence of a magnetic field a spontaneous magnetization
at sufficiently high densities may arise [23–26]. However,
modern calculations using realistic NN potentials, such as the
auxiliary field diffusion Monte Carlo (AFDMC) method [27],
the lowest order constrained variational (LOCV) method [28],
Brueckner-Hartree-Fock calculations [29,30], and relativistic
mean field [31] or relativistic Brueckner-Hartree-Fock cal-
culations [32], which have studied the energetics of spin
polarized neutron matter in the absence of magnetic fields,
seem to prevent a spontaneous ferromagnetic phase transition
and therefore there is the tendency to consider this fact as
a pathology of the model used for the effective interaction.
Notice also that the modern finite-range Gogny effective
interactions do not predict this instability [25]. In any case,
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the transition into a ferromagnetic state could have important
consequences for the evolution of a protoneutron star, in
particular, for the spin correlations in the medium that do
strongly affect the neutrino opacities inside the star [33,34].

In this work we evaluate the Landau parameters of polarized
neutron matter up to dipolar order, characterized for having
two Fermi spheres corresponding to the two possible spin
orientations of neutrons. This study requires the use of an
extension of the FLT to a two component system, which
is presented in Sec. II, together with the derivation of the
Landau parameters for two parametrizations of the nuclear
interaction, namely, effective Skyrme and Gogny forces. Using
a multipolar expansion of the particle-hole matrix elements we
examine Landau’s Fermi liquid parameters up to dipolar order.
This allows one to see the residual contribution of energy and
momentum because they do not appear in the commonly used
monopolar calculation. Additionally, the consistent treatment
of the induced magnetization in the plasma, already discussed
in a previous publication [8], allows one to see what are
the limits of validity of present non-magnetized neutron
matter calculations. In this sense, this work constitutes a first
step into future applications to systems with more particle
flavors and will be interesting to compare to for the sake of
completeness. To size up the relative contribution of Landau
parameters and other in-medium observables to bulk properties
we compute magnitudes such as isothermal compressibility
and spin susceptibility for this type of magnetized one flavor
plasma. Results are presented in Sec. III, and a summary and
conclusions are given in Sec. IV.

II. POLARIZED NEUTRON MATTER AS A FERMI LIQUID

In this section we briefly review the basic formalism of
the normal FLT [35] for a homogenous neutron system in the
presence of a strong magnetic field.

We consider a uniform magnetic field in the z direction,
B = Bk, which also defines the quantization axis for the spin.
In such a fermionic system particles can have spin projection
on the z axis, σ , which can be either σ = +1 or σ = −1
for spins aligned parallel or antiparallel to the magnetic field,
respectively. Let us remind the reader here that for a neutron
the magnetic moment is antiparallel to the spin. The neutron
number density, ρ, is the sum of spin up (+) and down (−)
particles,

ρ = ρ+ + ρ−. (1)

These densities define the Fermi momenta, i.e., the Fermi
surface of each fermion component with spin projection σ .
At zero temperature the number density for each component
is given by (we set h̄ = c = 1)

ρσ = k3
F,σ

6π2
. (2)

In the neutron system the net magnetization density is defined
as

m = µn�ρ, (3)

where µn = −1.9130427(5)µN is the neutron magnetic
moment in units of the nuclear magneton [7] and � is the
spin excess or polarization of the system.

� = ρ+ − ρ−
ρ

. (4)

The total magnetization of a given volume is then M =∫
mdV . The relevant thermodynamical potential to study

neutron matter at zero temperature under an external magnetic
field, H , is the Helmholtz free energy, F , defined as [36]

F = E − HM, (5)

where E is the energy of the system. Note that previously we
have used B to designate the magnetic field strength; however,
the total magnetic field is the sum of the external magnetic
field and the induced magnetization, B = H + 4πM. In this
work we will assume that the ratio |H/B| will always be close
to unity. In what follows we will keep the notation using B to
designate the total magnetic field strength.

In the context of FLT it is assumed that ph excitations
happen around the Fermi surface; therefore, this treatment
is valid, in principle, for the low temperature regime where
T � TF,σ [35]. Then, there is a one-to-one correspondence of
states in the interacting system with states in a free Fermi gas.
As particles with given momentum k and spin projection σ are
added addiabatically to the system, an eigenstate of the real
gas is obtained and, thus, a distribution of quasiparticles, nk,σ .

Because the lifetime of the quasiparticle varies inversely to
the square of the departure of its energy from the Fermi energy
[35] we consider that the ph perturbation mechanism takes
place around the available polarized Fermi seas. Assuming
small deviations of the distribution function of the σ -polarized
quasiparticles in the plasma, nk,σ , with respect to the ground
state distribution, n0

k,σ we have δnk,σ = nk,σ − n0
k,σ .

In the FLT the variation of the free energy, δF , can be
written up to second order in δnk,σ as

δF =
∑
k,σ

(εk,σ − µnσB)δnk,σ

+ 1

2

∑
k,k′,σ,σ ′

fk,σ,k′,σ ′δnk,σ δnk′,σ ′ + O(δn3). (6)

As seen in Ref. [8] the change in free energy under the presence
of a magnetic field is due to the energy of (anti)alignment
of spins in the field and to the change in the quasiparticle
distribution function. The single particle energy can be
obtained as a functional derivative,

εk,σ − µnσB = ∂F

∂nk,σ

, (7)

as well as the quasiparticle interaction coefficients,

fk,σ,k′,σ ′ = ∂2F

∂nk,σ ∂nk′,σ ′
. (8)

In the general case of polarized neutron matter, the ph
matrix element can be written as [37,38]

Vph(q1, q2, q) = 〈q + q1σ1, q1σ3|V |q + q2σ4, q2σ2〉, (9)
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where we keep the same notation as defined in Refs. [5,6,37,38]
to designate k1 = q + q1, k2 = q2, k3 = q1, and k4 = q + q2
as the participating momenta of the ph interaction with initial
momenta q1, q2 and q is the transferred three-momentum. As-
suming that the ph perturbation mechanism takes place around
each Fermi surface, each quasiparticle incoming momentum,
qi, must be replaced by the corresponding polarized Fermi
momentum kF,σ and the momentum transfer is supposed to be
small q ≈ 0.

When computing the quasiparticle interaction matrix
elements we must note that they only depend on the Fermi
momentum of each polarized component and the relative
angle, θ , of interacting quasiparticles’ three-momenta q1, q2.
For a nonpolarized system it is usually written as an expansion
in Legendre polynomials [35],

Vph =
∞∑
l=0

[fl + glσ1 · σ2]Pl(cos θ ). (10)

Previous works [5,34,38,39] have studied a nonpolarized
pure neutron system using a ph interaction at the monopolar
and dipolar (l = 0, 1) level. In that case, it is convenient to
define dimensionless parameters Fl = flN0 and Gl = glN0,
where N0 is the quasiparticle level density at the Fermi
surface at T = 0. For non polarized neutron matter density
is given by ρ = gk3

F /(6π2) where N0 = gm∗kF

2π2 , g = 2 is the
spin degeneracy and m∗ is the effective mass at the Fermi
surface.

Considering the two possible spin orientations σ = ±1 the
polarized interaction matrix elements can be written using
coefficients depending on the polarizations involved, f

(σ,σ ′)
l .

On a nonpolarized system they fulfill the following relations,

fl = f
(σ,σ )
l + f

(σ,−σ )
l

2
, (11)

gl = f
(σ,σ )
l − f

(σ,−σ )
l

2
. (12)

In the same way, as mentioned for the nonpolarized case, one
can define dimensionless coefficients in the form F

(σ,σ ′)
l =

f
(σ,σ ′)
l

√
N0σN0σ ′ , where N0σ is the quasiparticle level density

at the Fermi surface of each component at T = 0, N0σ =
m∗

σ kF,σ

2π2 . The Landau coefficients for the nonpolarized case can
be recovered from the general polarized coefficients as � → 0,

F
(σ )
l ≡ F

(σ,σ )
l + F

(σ,−σ )
l

2
→ Fl

2
(B = 0), (13)

G
(σ )
l ≡ F

(σ,σ )
l − F

(σ,−σ )
l

2
→ Gl

2
(B = 0), (14)

where we have defined F
(σ )
l and G

(σ )
l . Note that some works

define combinations of coefficients in a different way [40].
Contrary to the nonpolarized case, now the F

(σ,σ ′)
l interaction

displays a 2 × 2 matrix structure depending on the spin
projections considered. To size up the importance of the
polarization in neutron matter it is useful to consider a ratio of
these coefficients (F (σ )

l , G
(σ )
l ) with respect to the B = 0 case.

We define

Rσ
Fl = 2F

(σ )
l − Fl(B = 0)

|Fl(B = 0)| (15)

and

Rσ
Gl = 2G

(σ )
l − Gl(B = 0)

|Gl(B = 0)| . (16)

In this work we concentrate on R−
F l, R

−
Gl , which correspond to

the energetically favorable dominant population fraction with
magnetic moments (spins) aligned parallel (antiparallel) to the
magnetic field.

In this work we are interested in retaining just the terms
with l � 1. Notice that constraining results just to dipolar
multipolarity is exact for the zero-range Skyrme forces but
for the finite-range Gogny forces the coefficients at higher
multipolarities are not zero, although they decrease rather
rapidly.

Within the context of the Landau FLT, additional static
physical quantities of interest [41,42] can be obtained. We have
derived the expressions for these quantities for the polarized
neutron matter case. The quasiparticle effective mass is related
via Galilean invariance with the dipolar matrix elements [35],

m∗
σ /m = 1 + 1

3
N0σ

[
f

(σ,σ )
1 +

(
k2
F,−σ

k2
F,σ

)
f

(σ,−σ )
1

]
. (17)

The isothermal compressibility, K = 9 ∂P
∂ρ

, is related to the
study of the variation of the pressure and density profiles for a
neutron star. At zero temperature it can be written as

K = 9

ρ

∑
σ

ρ2
σ

N0σ

(
1 + N0σ

[
f

(σ,σ )
0 +

(
k2
F,−σ

k2
F,σ

)
f

(σ,−σ )
0

])
.

(18)

The thermodynamical magnitude that characterizes the change
in the magnetization of the medium when an external magnetic
field exists is the spin susceptibility χ . It is obtained by con-
sidering the change of the quasiparticle distribution functions
for the up and down components [43],

m = χB = µn(δρ+ − δρ−). (19)

For a polarized system we have obtained

χ =
∑

σ

µ2
nN0σ

1 + N0σ

[
f

(σ,σ )
0 −

(
k2
F,−σ

k2
F,σ

)
f

(σ,−σ )
0

] . (20)

The bulk magnitudes K and χ for polarized neutron matter
are affected by a factor involving the quasiparticle interaction
matrix elements and the level densities with respect to the
polarized free Fermi gas value for each population component.

A necessary ingredient in the calculation of the free
energy functional in the neutron system, F , is the nuclear
interaction. In the next subsections of the present article
we consider either zero-range Skyrme or finite-range Gogny
forces as illustrative examples of effective nuclear interactions.
Using the nonrelativistic Hartree-Fock approximation, the free
energy per particle in neutron matter under the presence of
a magnetic field B can be calculated minimizing F as a
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function of B for given thermodynamical conditions to obtain
�min (polarization at the minimum). As a rule of thumb,
for the maximum magnetic field strength considered in this
work, B = 1018 G, a �min < 40% is allowed for densities
0.5 < ρ/ρ0 < 3.3 at zero temperature [8].

A. Skyrme force

We have considered, in the first place, the phenomenologi-
cal Skyrme interaction that appears in the literature under the
rather general form [44]

V
Skyrme
NN (r1,r2) = t0(1 + x0P

σ )δ(r)

+ 1
2 t1(1 + x1P

σ )[k′2δ(r) + δ(r)k2]

+ t2(1 + x2P
σ )k′ · δ(r)k

+ 1
6 t3(1 + x3P

σ )ρα(R)δ(r), (21)

where r = r1 − r2, R = (r1 + r2)/2, and k = (∇1 − ∇2)/2i is
the relative momentum acting on the right and k′ its conjugate
acting on the left. P σ is the spin exchange operator. Note
that we have omitted the spin-orbit term not relevant for
the total energy of homogeneous systems. Its effect on the
RPA response function has been shown to be sizable only at
values of the momentum transfer much higher than the Fermi
momentum [45].

As is widely known, this effective interaction allows for
a good reproduction of finite nuclei observables and bulk
matter EOS relevant to neutron stars [44]. In the Skyrme
model the ph interaction matrix elements retain the density and
polarization dependence and their multipolar decomposition
gives contribution up to l = 1. We have derived analytical
expressions for both parallel and antiparallel coefficients for
an arbitrary polarization in neutron matter.

The monopolar terms can be written as

f
(σ,σ )
0 = 1

6 t3(1 − x3)[α(α − 1)ρα−2ρ+ρ+

+ 2αρα−1(ρ − ρσ )] + t2(1 + x2)k2
F,σ , (22)

f
(σ,−σ )
0 = t0(1 − x0) + 1

6 t3(1 − x3)[α(α − 1)ρα−2ρ+ρ−

+ (α + 1)ρα] + 1
4 [t1(1 − x1)

+ t2(1 + x2)]
(
k2
F,σ + k2

F,−σ

)
, (23)

and the dipolar terms can be written as

f
(σ,σ )
1 = −t2(1 + x2)k2

F,σ , (24)

f
(σ,−σ )
1 = − 1

2 [t1(1 − x1) + t2(1 + x2)]kF,σ kF,−σ . (25)

In this article we use the SLy7 parametrization [44] of the
Skyrme force, which not only provides good values for binding
of nuclei but also a neutron matter EOS in agreement with
microscopic calculations obtained using realistic interaction
and giving values of maximum neutron star masses around
1.5M. In Table I we summarize the values of some observ-
ables for symmetric nuclear matter (SNM) for the effective
interaction models used in this work: saturation density, ρ0;
binding energy for symmetric nuclear matter, av; symmetry
energy, as ; and incompressibility modulus, K∞.

TABLE I. Values of some observables for symmetric nuclear
matter in the absence of magnetic field with the Skyrme and Gogny
forces considered in this work [44,46].

Model ρ0 (fm−3) K∞ (MeV) av (MeV) as (MeV)

SLy7 0.158 229.7 −15.89 31.99
D1P 0.1737 266 −16.19 34.09

B. Gogny force

The Gogny force has also been extensively used in the
literature. In this article we use the D1P parametrization [46],
which allows for a good description of both finite nuclei and
EOS of pure neutron matter [25]. It includes a sum of two
Gaussian-shaped terms that mimic the finite-range effects of a
realistic interaction in the medium. Usually, it also contains a
density-dependent zero-range term. The interaction potential
is written as

V
Gogny
NN (r1,r2) =

2∑
i=1

{[Wi + BiP
σ − HiP

τ − MiP
σP τ ]

× e−|r1−r2|2/µ2
i + t3i(1 + x3iP

σ )ραi δ(r)}.
(26)

The two first finite-range terms contain the usual mixing of
exchange operators for spin, P σ , isospin, P τ , and spin-isospin,
P σP τ , and the second contact term is a functional of the
nuclear density, ρ. The values of the parameters can be found
in Ref. [46]. Some observables for SNM with the Gogny D1P
force appear in Table I. We have derived the expressions of
the monopolar and dipolar Landau parameters with the Gogny
interaction,

f
(σ,σ )
0 =

∑
i=1,2

(Wi − Hi + Bi − Mi)π
3/2µ3

i

×
[

1 − 1

k2
F,σµ2

i

(
1 − e−k2

F,σ µ2
i

)]

+ t3i(1 − x3i)[2αiρ
αi−1(ρ − ρσ )

+αi(αi − 1)ραi−2ρ+ρ−], (27)

f
(σ,−σ )
0 =

∑
i=1,2

(Wi − Hi)π
3/2µ3

i − (Bi − Mi)
π3/2µi

kF (σ )kF (−σ )

× [
e− 1

4 (kF,σ −kF,−σ )2µ2
i − e− 1

4 (kF,σ +kF,−σ )2µ2
i

]
+ t3i(1−x3i)

[
(αi + 1)ραi + αi(αi −1)ραi−2ρ+ρ−

]
,

(28)

and for the f1 terms,

f
(σ,σ )
1 =

∑
i=1,2

− (Wi − Hi + Bi − Mi)
3π3/2µi

k2
F,σ

[
1 − 2

k2
F,σµ2

i

+
(

1 + 2

k2
F,σµ2

i

)
e−k2

F,σ µ2
i

]
, (29)
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f
(σ,−σ )
1 =

∑
i=1,2

− (Bi − Mi)
3π3/2µi

kF,σ kF,−σ

×
[(

1 − 2

kF,σ kF,−σµ2
i

)
e− 1

4 (kF,σ −kF,−σ )2µ2
i

+
(

1 + 2

kF,σ kF,−σµ2
i

)
e− 1

4 (kF,σ +kF,−σ )2µ2
i

]
. (30)

It is worth mentioning at this point that, once the ph interaction
matrix elements have been calculated, the response functions
of neutron matter can be obtained along the lines described in
Ref. [45].

III. RESULTS

In this section we discuss the properties of polarized
neutron matter at zero temperature under the presence of a
strong magnetic field. Such properties are described in terms
of (l = 0, 1) Landau parameters, which are calculated from
Skyrme and Gogny effective interactions. Under each thermo-
dynamic condition (ρ, T = 0, B) the corresponding induced
magnetization of the neutron system has been obtained by
minimizing the free energy within a Hartree-Fock calculation,
as described in Ref. [8]. To be physically meaningful we have
considered that the nucleon picture holds up to a maximum
limiting density ρ = 4ρ0(ρ0 = 0.1737fm−1). Similarly, more
detailed calculations are needed when considering densities
below ρ = 0.5ρ0, where nuclear pasta [18–21] may be present.

To measure the effects of the magnetic field on the Landau
parameters we calculate the variation ratios Rσ

Fl and Rσ
Gl

as defined in Eqs. (15) and (16) for the dominant neutron
component with magnetic moment aligned parallel to the
magnetic field. This corresponds to the spin anti-aligned
component due to the fact that µn < 0.

In Fig. 1 we show the ratios R−
F0, R

−
G0, R

−
F1, and R−

G1
(we omit the superscript) computed with the Skyrme SLy7
(a) and with the Gogny D1P (b) interactions for a characteristic
low density of ρ = 0.5ρ0 as a function of the logarithm
of the magnetic field. At this low density the change due
to the magnetic field strength in the monopolar and dipolar
coefficients is very mild. For Skyrme the ph interactions are
mostly slightly more repulsive in the density and spin channel
but for Gogny this behavior is reversed. The variation of the
dipolar terms, as computed with the Gogny interaction, is
larger than that for the monopolar case. However, dipolar terms
are about one order of magnitude smaller [38] so the overall
effect is mostly unchanged with respect to the monopolar
description. For magnetic field strengths below B ≈ 1016 G,
the change in the ratios is negligible because of the tiny value
of the neutron magnetic moment, which results in a vanishing
value of the induced magnetization, i.e., of the polarization of
the neutron matter.

In Fig. 2 we show the same ratios shown in Fig. 1 as
computed with the Skyrme (a) and Gogny D1P (b) interactions
for a high density case, ρ = 3.3ρ0 as a function of the
logarithm of the magnetic field. We can see that for the Skyrme
SLy7 interaction the presence of a ferromagnetic transition at
density close to the one selected [8] induces a change larger
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FIG. 1. Variation ratio of Landau coefficients with the SLy7
(a) and D1P (b) parametrizations at density ρ = 0.5ρ0 and zero
temperature as a function of the logarithm of the magnetic field
strength.

than that at lower densities in the monopolar and dipolar
terms as the magnetic field grows. The attraction in the ph
density excitation channel increases while in the spin channel
it becomes more repulsive as the magnetic field strength grows.
For the dipolar terms this tendency is reversed. For the Gogny
interaction the variation of the ratios is very small except for the
G1 term. However, the large variation of G1 does not modify
the tendency shown by the monopolar terms because in this
range of densities it is also an order of magnitude smaller
than G0.

We now analyze some other quantities related to the Landau
parameters in polarized neutron matter. In Fig. 3 we show the
effective neutron mass for the Skyrme SLy7 (a) and Gogny
D1P (b) interactions as a function of the logarithm of the
magnetic field strength. In each plot the spin down (upper
curve) and spin up (lower curve) polarized components at
saturation density ρ0 are shown. Skyrme interaction predicts
smaller effective masses and a larger relative variation for the
spin up and down components than in the Gogny case. These
two effects will, in turn, largely affect the level density at the
Fermi surfaces of the spin components in magnetized neutron
matter.

In Fig. 4 the two spin contributions to the isothermal
compressibility for neutron matter are shown as a function of
density for a magnetic field strength B = 5 × 1017 G and zero
temperature for the Skyrme SLy7 (solid line) and Gogny D1P
(dashed line) interactions. Contributions from the spin down
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FIG. 2. Same as Fig. 1 computed at density ρ = 3.3ρ0.

(up) polarized particles correspond to the upper (lower) curves
for each interaction model. In some works compressibility
values are plot related to the Fermi gas value; in our case,
because at each density the relative populations of the up and
down spin polarized particles change, we have chosen to plot
absolute values. Because of the mild variation of the Landau
coefficients with the magnetic field (lower than 20%) we can
see that the main effect of the magnetization in the system is
the change in the level densities. As the density increases
the dominant spin down fraction of the polarized plasma
becomes stiffer. However, there is a dramatic decrease in the
global compressibility in the proximity of the ferromagnetic
transition in the Skyrme case. This transition density decreases
as the magnetic field grows [8]. In fact, the results beyond this
density are not physically meaningful but we show them for
the sake of completeness in the density range considered in
this work.

In Fig. 5 contributions to the isothermal compressibility
for both spin components in neutron matter are shown as
a function of the logarithm of the magnetic field strength
at saturation density for the Skyrme SLy7 (solid line) and
Gogny D1P (dashed line) interactions. For each model, upper
(lower) curves refer to spin down (up) polarized particles.
As the magnetic field strength increases there is a splitting
of the spin up and down component behavior with respect
to the unpolarized case (� = 0). Global compressibility is
obtained by adding the contributions of both spin fractions
and changes very mildly with the magnetic field. The relative
variation of both components at the maximum field strength is
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FIG. 3. Effective neutron mass at density ρ0 as a function of the
logarithm of the magnetic field strength for the Skyrme SLy7 (a) and
Gogny D1P (b) interactions. For each model, upper (lower) curves
correspond to spin down (up) polarized particles.

of 20% (28%) for the Skyrme SLy7 (Gogny D1P) interaction
at this density.

We now consider the effect of a strong magnetic field on the
static magnetic susceptibility. In Fig. 6 we plot the magnetic
susceptibility for neutron matter as a function of density in
units of the nuclear magnetic moment squared, µ2

n, for a
magnetic field B = 5 × 1017 G. The results obtained with the
Skyrme SLy7 (Gogny D1P) interaction are shown with solid

 500

 1000

 1500

 2000

 2500

 3000

 0  0.5  1  1.5  2  2.5  3  3.5  4

K
σ 

(M
eV

)

ρ/ρ0

B=5 x 1017 G

SLy7
D1P

FIG. 4. Isothermal compressibility components obtained for the
Skyrme SLy7 (solid curve) and Gogny D1P (dashed line) models as
a function of density. Spin down (upper curve) and up (lower curve)
polarized components are shown for each model.
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FIG. 5. Isothermal compressibility components obtained for the
Skyrme SLy7 (solid line) and Gogny D1P (dashed line) models as a
function of the logarithm of the magnetic field strength at density ρ0.
Upper (lower) curves refer to spin down (up) polarized contributions.

(dashed) lines. For Skyrme results we can see that the onset of a
ferromagnetic transition (that for this specific parametrization
takes place at a density around ρ = 3.3ρ0 and is signaled
with a vertical dotted line on the plot) drives a divergence
of the susceptibility and the subsequent second-order phase
transition. In this model the upper curve corresponds to
the χ−/µ2

n value and the lower curve to the χ+/µ2
n value. The

onset of the ferromagnetic transition is due to the vanishing
values approached by the quantities in the denominator of
Eq. (20). For the Skyrme SLy7 interaction the meaningful
regime, though, is limited for values before the transition takes
place. For the Gogny D1P interaction (dashed line) the splitting
between the contributions from the two spin orientations is
less than 1%, therefore, indistinguishable on the plot. There
is no ferromagnetic transition for this parametrization and the
susceptibility keeps finite values for the whole density range.

In Fig. 7 we show the magnetic susceptibility in units of
the nuclear magnetic moment squared, µ2

n, for neutron matter
as a function of the logarithm of the magnetic field strength at
saturation density. We plot results obtained with the Skyrme
SLy7 (Gogny D1P) interaction with solid (dashed) lines. Upper
(lower) curves for each model refer to spin down (up) polarized
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FIG. 6. Magnetic susceptibility as a function of density for the
Skyrme SLy7 (solid line) and Gogny D1P (dashed line) models. See
text for details.
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FIG. 7. Magnetic susceptibility for a pure neutron system as a
function of the logarithm of the magnetic field strength for the Skyrme
SLy7 (solid line) and Gogny D1P (dashed line) at saturation density.
For each model upper (lower) curves refer to down (up) spin polarized
components. See text for details.

population fractions. We see that contributions from the down
(up) polarized components give larger (smaller) contributions
to the total susceptibility that can be obtained as the sum
of both. Notice that the global susceptibility remains almost
unchanged as the magnetic field grows. As B increases the
Skyrme model predicts a higher tendency of the system to
achieve a net magnetization than in the Gogny case at this
density. No transition is near at this density for the Skyrme
model and a smooth behavior is observed in the full range of
variation of the magnetic field.

IV. SUMMARY AND CONCLUSIONS

In this work we have investigated, in the context of the
Landau theory of normal Fermi liquids, the variation of
monopolar (l = 0) and dipolar (l = 1) Landau parameters that
describes the particle-hole interaction matrix elements for pure
neutron matter in the presence of a strong magnetic field at zero
temperature. We have used effective nuclear interactions such
as the zero-range Skryme SLy7 and finite-range Gogny D1P
and obtained their analytical expressions valid in the case of a
polarized Fermi sea. We have computed the ratios of variation
of these coefficients with respect to the B = 0 case for the
dominant spin component in the system. For the Skyrme and
Gogny interactions the variation is very mild, keeping below
|R| ≈ 20% for the maximum magnetic field strength studied
in this work, B ≈ 1018 G. This is a direct consequence of the
small polarization induced by such strong fields in the system
in the meaningful range of densities considered in this work.

We have also analyzed the effect of the presence of a
strong magnetic field in some other static properties in the
neutron plasma as deduced from the Landau theory of Fermi
liquids. Effective neutron masses at the Fermi surface for each
spin polarized component are calculated for both interactions
from the dipolar F1 coefficients. The magnetization in the
plasma causes a splitting in the values of the up and down
spin polarized components. Spin down (up) polarized particles
show an increase (decrease) in their effective masses with
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respect to the nonpolarized case as the magnetic field strength
grows. This will affect the level densities in polarized neutron
matter. In addition, Skyrme interactions predict a variation
in the splitting larger than that of the Gogny forces with
increasing magnetic field B. Other magnitudes, such as the
isothermal compressibility K , relate to the dipolar Landau
coefficients. In the presence of a strong magnetic field the
compressibility is a growing function of density, stiffer in the
Skyrme case than in the Gogny case. When a ferromagnetic
transition is near, as it happens for the Skyrme interaction
used in this work (as a representative case of almost all
Skyrme parametrizations), there is a dramatic decrease of
the compressibility around the density of the onset of the
ferromagnetic instability. The magnetic susceptibility, χ ,
shows a divergent behavior at densities close to that of the onset
of the phase transition for the Skyrme case. The contribution
to the total susceptibility from the polarized populations in the
system is related to the Landau coefficients in the spin channel
that approach values driving the system to an instability. For
the Gogny case there is no divergence because magnetization

of the system stays very mild. For densities in the intermediate
range, not close to the transition, spin down (up) contributions
give a higher (lower) susceptibility as it is more (less) easy to
polarize the system as the external field strengthens. Although
a lot of work has been devoted to the study of polarized
nuclear systems, additional effort should be made to explore
properties of nuclear asymmetric matter at finite temperature.
The presence of magnetic fields should be carefully studied
in the future with direct simulation techniques for the low
density case. This will allow exploration of the possibilities
that exotic matter shapes in the crust of neutron stars may give
as an additional source of opacity to the neutrino cooling in
the early stages of supernova cooling.
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M. Girod, J. Phys. G 25, 863 (1999).

025802-8


