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Dissociation of quarkonium in a hot QCD medium: Modification of the interquark potential

Vineet Agotiya,"" Vinod Chandra,>' and Binoy K. Patra'-*
' Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247 667, India
2Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016, India
(Received 15 August 2008; published 31 August 2009)

We have studied the dissociation of heavy quarkonium states in a hot QCD medium by investigating
the medium modifications to a heavy quark potential. Our model shows that in-medium modification causes
the screening of the charge in contrast to the screening of the range of the potential. We have then employed the
medium-modified potential to estimate the dissociation pattern of the charmonium and bottomonium states and
also explore how the pattern changes as we go from the perturbative to nonperturbative domain in the Debye
mass. The results are in good agreement with the other current theoretical works both from the spectral function

analysis and the potential model study.

DOI: 10.1103/PhysRevC.80.025210

I. INTRODUCTION

The study of the fundamental forces among quarks and
gluons is an essential key to the understanding of QCD and
the occurrence of different phases which are expected to
show up when going from low to high temperatures and/or
baryon number densities. For instance, at small or vanishing
temperatures quarks and gluons get confined inside a hadron
by the strong force while at high temperatures a quite different
medium consisting of quarks and gluons known as quark-
gluon plasma (QGP) is expected. One of the most important
features of the QGP formation is the color screening of static
chromo-electric fields [1]. The suppression of heavy quarkonia
(J /¥, xe, ¥, Y), due to the color screening analogous to Debye
screening in QED plasma, has long been proposed as a probe of
deconfinement in a dense partonic medium. In the deconfined
state, the interaction between heavy quarks and antiquarks gets
reduced due to color screening leading to a suppressionin J /Y
yields [2,3].

Thus quarkonia at finite temperature are an important tool
to know the status of the matter (confined/deconfined) formed
in heavy ion collisions (see, e.g., Ref. [4]). Many efforts have
been devoted to determine the dissociation temperatures of
Q0 states in the deconfined medium, using either lattice
calculations of quarkonium spectral functions [5-8] or non-
relativistic calculations based upon some effective (screened)
potentials [9-14]. However, the properties of the heavy
quarkonia states determined from the screened potentials do
have a poor matching with the results obtained from the
lattice spectral functions. None of the potential model studies
and spectral functions in lattice to study quarkonia give a
complete framework to study the properties of quarkonia at
finite temperature. It is not yet clear at the moment up to what
extent one may understand the modifications of quarkonium
spectral functions in terms of the Debye screening picture.
One should not expect a precise quantitative agreement with
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the lattice correlators because of the uncertainties coming from
a variety of sources [14]. Not only is the determination of the
effective potential still an open question but also there are other
related issues such as relativistic effects, thermal width of the
states, and contribution from quantum corrections that need to
be taken care of. On the other hand, lattice correlators are also
affected by their own uncertainties. These may be due to the use
of different lattices (isotropic or anisotropic). Additionally, the
finite lattice-spacing might significantly alter the continuum
part of the spectrum. However, some degree of qualitative
agreement had been found for the S-wave correlators. This
finding was somehow ambiguous for the P-wave correlators
and the temperature dependence of the potential model was
even qualitatively different from the lattice one.

In a recent work, Umeda [15] found that lattice calculations
of meson correlators at finite temperature contain a constant
contribution due to the presence of zero modes in the spectral
functions. The presence of a zero mode in the vector channel
had already been discussed in the literature while in the
P-wave channels it had generally been overlooked. Recently
Alberico et al. [16] updated their previous calculation [14] of
quarkonium Euclidean correlators at finite temperatures in a
potential model by including the effect of zero modes in the
lattice spectral functions. These contributions cure most of the
previously observed discrepancies with lattice calculations.
This observation supports the use of potential models at finite
temperature as an important tool to complement lattice studies.

The short and intermediate distance properties of the heavy
quark interaction are important for the understanding of
in-medium modifications of the heavy quark bound states.
On the other hand, the large distance behavior of the heavy
quark interaction plays a crucial role in understanding the
bulk properties of the QCD plasma phase, viz. the screening
property of the quark gluon plasma, the equation of state
[17,18], and the order parameter (Polyakov loop) [19,20].

In all of these studies, deviations from perturbative cal-
culations and the ideal gas behavior are expected and are
indeed found at temperatures which are only moderately larger
than the deconfinement temperature. This calls for quantitative
nonperturbative calculations. The phase transition in full QCD
appears as a crossover rather than a ‘true’ phase transition
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with related singularities in thermodynamic observables (in
the high-temperature and low density regime) [21]. Therefore,
itis reasonable to assume that the string tension does not vanish
abruptly above T;. So one should study its effects on the be-
havior of quarkonia in a hot QCD medium. This issue, usually
overlooked in the literature, is certainly worth investigation.
In the present paper we considered this potentially interesting
issue by correcting the full Cornell potential with a dielectric
function embodying the effects of the deconfined medium and
not only its Coulomb part as usually done in the literature. We
have found that this leads to a long-range Coulomb potential
with a reduced effective charge (inversely proportional to the
square of the Debye mass) of the heavy quark in addition
to the usual Debye-screened form employed in most of the
literature. With such an effective potential, we investigate the
effects of different possible choices of the Debye mass on
the dissociation temperatures of different quarkonium states.
Since a Coulomb interaction always admits bound states, a
criterion has to be adopted to define a dissociation temperature:
a state is then considered to be melted when its binding
energy becomes of the same order as the temperature. For
this purpose, we consider a gauge-invariant, nonperturbative
form of the Debye mass by Kajantie et al. [22] and study
systematically the effects of perturbative and nonperturbative
terms in Debye mass on the dissociation pattern of quarkonia
in pure gauge, two-flavor, and three-flavor QCD, respectively.
Additionally, we consider the lattice parametrized form of the
Debye mass [23].

The paper is organized as follows. In-medium modifications
to heavy quark potential is discussed in Sec. II. In Secs. IT A and
II B, we study the medium dependence of quarkonia binding
energy and then determine their dissociation temperatures in
a hot QCD medium. Finally, we conclude in Sec. III.

II. IN-MEDIUM MODIFICATIONS TO HEAVY-QUARK
POTENTIAL

Because of the large quark mass m = m.; > Aqcp, the
velocity of heavy quarks in the bound state is small and
the binding effects in quarkonia at zero temperature can be
understood in terms of nonrelativistic potential models [24].
More recently, the potential has been derived from QCD using
a sequence of effective field theories (for a review see [25]).
The present analysis also employs this idea to study the
quarkonia with the nonrelativistic potential model.

Let us now turn our attention to study the medium
modifications to a heavy quark potential which is considered
as the Cornell potential

o
Vr)= - +or, (D)

where o and o are the phenomenological parameters. The
former accounts for the effective coupling between a heavy
quark and its antiquark and the latter gives the string coupling.

The medium modification enters in the Fourier transform
of the heavy quark potential as

o~ VO

V(k) = @) 2
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where €(k) is the dielectric permittivity given in terms of the
static limit of the longitudinal part of gluon self-energy [26,27]

2
e(k)=<1+%)z<l+%). 3)

Note that the result for the static limit of the dielectric permit-
tivity is the perturbative one. If one assumes nonperturbative
effects such as the string tension survive even above the
deconfinement point then the dependence of the dielectric
function on the Debye mass may get modified. So there is
a caveat about the validity of the linear dependence of the
dielectric function (€) on the square of the Debye mass M3
For the sake of simplicity we put in all the nonperturbative
effects together in the effective charge (207/ m%,) of the medium
modified potential. The quantity V (k) in (2) is the Fourier
transform (FT) of the Cornell potential. The evaluation of the
FT of the Cornell potential is not so straightforward and can be
done by assuming r as distribution (r — r exp(—yr)). After
the evaluation of FT we let y tend to zero. Note that the FT
of Coulomb part is straightforward to compute. The Fourier
transform of the linear part or exp (—yr) is

_ i 2 2
T kVam {(y —ik)? (y+ik)3}’
If we put y = 0, we obtain the Fourier transform of o7 denoted
as
4o
k42
Now the FT of the full Cornell potential can be written as
4o
B V2rkt

Substituting Egs. (3) and (5) into Eq. (2) and then evaluating
its inverse Fourier transform one obtains the r-dependence of
the medium modified potential [28] as

V) = (g_a)w
m

5 r

20 20

s— +— —amp. (6)
mDr mp

(cr)y=—

4)

Vik) = —\/(2/71)% )

This potential has a long-range Coulombic tail in addition to
the standard Yukawa term. In the limit r > 1/mp, we can
neglect the Yukawa term and for large values of temperature
the product am p will be much greater than 20 /m p. So, finally
the potential (6) becomes

20
5— —amp. (7
mir

V)~ —

The above form (apart from a constant term) is a Coulombic
type as encountered in a hydrogen atom problem with identi-
fying the fine structure constant e¢* with the effective charge
20/ mZD. Since mp is an increasing function of temperature,
the effective charge 20/m?, gets waned as the temperature is
increased and finally results in a screening of the charge. The
constant terms in the full potential (6) are introduced by hand
in order to remove short-distance medium effects. However,
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such terms could arise naturally from the basic computations
of areal time static potential in hot QCD [29] and from the real
and imaginary time correlators in a thermal QCD medium [30].
These terms in the potential are needed in computing the
masses of the quarkonium states and to compare the results
with the lattice studies. Itis equally important while comparing
our effective potential with the free energy in lattice studies.
However, these terms are not needed to compare the values of
the dissociation temperatures obtained in our calculation with
the values in lattice spectral studies because we have used
different criteria to evaluate the dissociation temperatures.

It may not be out of context to mention that the expression
for the potential in a hot QCD medium is not the same as the
lattice parametrized heavy quark free-energy in the deconfined
phase (which is basically a screened Coulomb, for the exact
form we refer the reader to Refs. [31,32]). As emphasized
by Dixit [33] that one-dimensional Fourier transform of the
Cornell potential in the medium yields the similar form as
used in the lattice QCD to study the quarkonium properties
which assumes the one-dimensional color flux tube structure.
However, at finite temperature that may not be the case since
the flux tube structure may expand in more dimensions [31].
Therefore, it is better to consider the three-dimensional form
of the medium modified Cornell potential which has been done
exactly in the present work. The medium modified potential
thus obtained has a Coulomb tail in addition to the screened
Coulomb part. The strength of the Coulombic part decreases
with the increase in temperature and at a certain temperature
one may ignore it.

To compare our in-medium effective potential with the
color-singlet free-energy [34] extracted from the lattice data
which do not display at all any long-range term, we have
plotted a full effective potential from Eq. (6) as a function of r T
in Fig. 1. The lattice free energy goes to zero much faster than
our effective potential due to the presence of the Coulomb tail.
However, our potential employing the nonperturbative form of
the Debye mass deviates largely from the lattice results [34].

Let us now proceed to study the charmonium and bottomo-
nium spectrum and their binding energy with three possible
choices of the Debye mass. Additionally, we take advantage
of all the available lattice data, obtained not only in quenched
QCD (N = 0) but also including two and, more recently, three
light flavors. This enables us to study the flavor dependence of
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the dissociation process, a perspective not yet achieved by the
parallel studies of the spectral functions.

A. Binding energy of heavy quarkonia

Spectral function method defines binding energy of a
quarkonium state as the distance between the peak position
and the continuum threshold, Epin = 2m.p + Voo(T) — M
with M being the resonance mass. In our case, it is defined
as the ‘ionization potential’ because of the similarity of
our approximated effective potential (7) with the hydrogen
atom problem. The Schrédinger equation gives the energy
eigenvalues for the ground states and the first excited states for
charmonium (J /v, v, etc.) and bottomonium (Y, Y, etc.)
spectra. Invoking the translational invariance, we can ignore
the constant term in Eq. (7) and the energy of the nth eigenstate
is given by Bohr’s theory:

®)

where m ¢ is the mass of the heavy quark and E; is the energy
of the QQ state in the first Bohr state. The allowed energies
for QO states are E, = —E, —%, —%, .... These energies
are known as the ionization potentials/binding energies for the
nth bound states. It becomes a temperature-dependent quantity
through the temperature dependence in the Debye mass and it
decreases with the increase in temperature.

There are other states in the charmonium and bottomonium
spectroscopy, viz. x.’s and x;’s for which the determination
of the medium-dependent binding energy is beyond the scope
of our present calculation. For x.’s and yx;’s, one should
take into account the spin dependence of the quark-antiquark
potential [38]. Figures 2 and 3 show the variation of the binding
energy (in GeV) with the temperature (in units of critical
temperatures) for J /¢ and Y, respectively. Similar variations
for other quarkonia (', Y”) can also be shown.

In the present analysis, we consider three possible forms of
the Debye masses, viz. the leading-order term in QCD coupling
(m'®), nonperturbative corrections to it (m}F), and the lattice
parametrized form (m%) to study the dissociation phenomena
of quarkonium in a hot QCD medium. The Debye mass at high
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FIG. 1. The behavior of V(r,T)/T as a function of T for a fixed T/ T, = 3.32 [34]. The different curves denote the choice of the Debye

masses.
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FIG. 2. The temperature dependence of the J /v binding energy (in GeV). The different curves denote the choice of the Debye masses.

temperature in the leading order is known from a long time
and is perturbative [35] in nature. Recently Kajantie ez al. [22]
computed the nonperturbative contributions of O(g*T) and
O(g3 T) from a three-dimensional effective field theory which
we consider in the present work. However we also consider the
Debye mass obtained by fitting the (color-singlet) free energy
in lattice QCD [23]. Their forms are given below:

N N

LO f

my = g(I)T, —+ —,
D g(T) 3 5

Ng>T
4

NP my’ 2 3
— lngz—T"'CNg T"_dN,Nfg‘T,

LO
mp =mp +

)]
m%, = 1.4mI[‘,O,

where the coefficient c, captures the nonperturbative effects
and dy v ’ is related to the choice of the scale in m%)o. We em-
ploy the two-loop expression for the QCD coupling constant
at finite temperature [36] and choose the renormalization scale
determined in [37].

Note that different curves in each figure denote the choice
of the Debye masses (10) used to calculate the binding energy
from Eq. (8). There is a common observation in Figs. 2
and 3 that there is a strong decrease in binding energy with
the increase in temperature. In particular, binding energies
obtained from m%° and mk give a realistic variation with
the temperature. The temperature dependence of the binding
energies shows a qualitative agreement with the similar
variations shown in [23].

However, when we employ the nonperturbative form of the
Debye mass my’ the binding energies become unrealistically
small compared to the binding energy at 7 =0 and also
compared to the binding energies employing mlbo and mk.
This can be understood by the fact that the value of mgp is
significantly larger than both m]bo and m%. This observation
hints that the present form of the nonperturbative corrections
to the Debye mass may not be the complete one, the situation
may change when nonperturbative corrections of higher order
O(g*T) are added to the Debye mass and then use it to
calculate the binding energy.

Thus a study of the temperature dependence of the binding
energy is poised to provide a wealth of information about
the dissociation pattern of quarkonium states in a thermal
medium which will now be used to determine the dissociation
temperatures of different states.

B. The dissociation temperatures for heavy quarkonia

Dissociation of a two-body bound state in a thermal
medium can be understood as when the binding energy of
a resonance state drops below the mean thermal energy
of a parton, the state becomes feebly bound. The thermal
fluctuations then can destroy it by transferring energy and
exciting the quark-antiquark pair into its continuum. The
spectral function technique in potential models defines the
dissociation temperature as the temperature above which
the quarkonium spectral function shows no resonance-like

Nf= Nf=2 Nf=3
2 T RY | o s e e ey 25T 1
— LO 2.5 — LO . ) — LO
15 - NP - B .-+ NP ] -++ NP
— - Lattice 2| — - Lattice| | B — - Lattice
> | | >=1.5F
S L
=) - - < L
= i ] =
=] [ ] g 1
:\ i 0.5~
\\ - \\
I T Rk T S 0: b T = o
1.5 2 2.5 3 1.5 2 2.5
T/Tc T/Tc

FIG. 3. Dependence of Y binding energy (in GeV) on temperature 7/ 7.
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TABLE I. Lower (upper) bound on the dissociation

temperature (Tp) for the quarkonia states (in units of 7,)

using the leading-order term in the Debye mass m.

State Pure QCD Ny=2 Ny=3
J/ 1.1(1.4) 1.3(1.7) 1.2 (1.6)
v’ 0.8 (1.0) 0.9 (1.2) 0.9 (1.1)
T 1.4 (1.8) 1.7 (2.1) 1.6 (2.0)
T’ 1.0 (1.3) 1.2 (1.6) 1.2(1.5)

structures but the widths shown in spectral functions from
current potential model calculations are not physical. The
broadening of states with the increase in temperature is not
included in any of these models. In Ref. [23], the authors
argued that one need not have the binding energy (Ey,) to be
zero for the dissociation. Rather a weaker condition Epy, < T
causes a state weakly bound and the thermal fluctuations can
then destroy it. Since the (relativistic) thermal energy of the
partons is 37, the lower bound on the dissociation temperature
(Tp) is obtained from the relation

——%— =3Tp, (10)

where the string tension (o) is taken as 0.184 GeV?, and
critical temperatures (7;) are taken as 270 MeV, 203 MeV, and
197 MeV for pure, two-flavor, and three-flavor QCD medium,
respectively [39]. The dissociation temperatures for the ground
states and the first excited states of ¢¢ and bb are listed in
Table T with the Debye mass in the leading-order mP. It is
seen from Table I that ¢/’ is dissociated in the vicinity of critical
temperature while J /v and Y’ are dissociated around 1.2 7.. Y
is dissociated at a relatively higher temperature 1.67,. These
values agree quantitatively with the recent values reported
by Mocsy and Petreczky [23]. On the other hand, when we
use the Debye mass from lattice parametrized free energy
(mg), the values become much lower than the leading-order
results (see Table IT). However, nonperturbative corrections to
the Debye mass (mlgp) make the values unrealistically small.
These observations can be understood from the hierarchy in
their numerical values: m5° < mk < m/F.

The fact that m}¥ leads to unrealistic smaller values of
dissociation temperatures does not imply that one should
ignore the nonperturbative terms in the Debye mass. In fact,
nonperturbative terms cannot be ignored in the regime where
coupling is strong which is indeed the case dealt with. It

TABLE II. Lower (upper) bound on the dissociation
temperatures using the lattice parametrized form of the
Debye mass m%,.

State Pure QCD Ny=2 N;=3
J/ 0.8 (1.0 0.9 (1.2) 0.9 (1.1)
v’ 0.5(0.7) 0.7 (0.8) 0.6 (0.8)
T 1.0 (1.3) 1.2 (1.6) 1.2 (1.5)
T’ 0.7 (0.9) 0.9 (1.1) 0.8 (1.0)

PHYSICAL REVIEW C 80, 025210 (2009)

TABLE III. Same as Table I but using the full potential (6).

State Pure QCD Ny=2 Ny=3
J/ 1.2 (1.5) 1.3 (1.72) 1.3(1.7)
v’ 0.8 (1.2) 1.0 (1.4) 1.1(1.2)
T 1.4 (1.8) 1.7 (2.3) 1.6 (2.1)
T’ 1.0 (1.4) 1.2 (1.7) 1.2 (1.5)

would rather be of interest to raise the question why this
nonperturbative result obtained with a dimensional reduction is
not in agreement with the Debye mass arising from Polyakov-
loop correlators. This could be partially due to the arbitrariness
in the definition of dissociation temperature, since strictly
speaking a Coulomb potential always admits bound states in
its spectrum. Indeed the choice of the average thermal energy
3T is not rigid because even at low temperatures 7' < T, (say)
the Bose/Fermi distributions of partons will have a high energy
tail with partons of mechanical energy greater than the binding
energy. So, we calculate the upper bound of the dissociation
temperatures by replacing the average thermal energy ~T
which is listed within the first bracket in the tables where
the values are increased by 30% approximately.

The results for the dissociation temperatures of various
quarkonia listed above in Table I and Table II are obtained by
dropping all the finite-range terms in the full effective potential
(6). As mentioned earlier, for the s-wave states this leads to
an analytically solvable Coulomb potential. To see the effects
of the finite-range terms in Eq. (6), we solve the Schrédinger
equation numerically with the full effective potential (6) and
determine the energy spectrum of the ground and the first
excited states of the charmonium and bottomonium spectrum
with the Debye mass in the leading order. We find that
the dissociation temperatures change by ~10-20% shown
in Table III. The dissociation temperature for J/W in the
pure gauge case becomes 1.27, which was earlier 1.17;
(Table I) and for v, it now becomes 1.07. for Ny =2
which was earlier 0.97,.. The same trend follows for other
charmonium and bottomonium states. This slight increase in
the dissociation temperatures is caused by the increase in
the binding energies due to the finite-range terms in the full
potential (6).

Finally, to compare our results with a recent calculation
[23] having the same input based on a potential study for
a three-flavor QCD with T, = 192 MeV, we calculated the
upper bound of dissociation temperatures in Tables IV and
V with the same form of Debye mass used in Ref. [23]. It
shows a good agreement with their results [23]. However, the
agreement holds well even with the full effective potential.

TABLE IV. Upper bound on the dissociation temperatures
(Tp) with T, = 192 MeV [23] using the lattice parametrized
form of the screening mass (m%).

State v’ J/v T’ T

Tp <0.97. 1.2, 11T, 1.6T.,
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TABLE V. Same as Table IV but using the full potential (6).

State v’ I/ T T

Tp <1.0T. 1.3T. 1.2T. 1.6T.

III. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the dissociation phenomena
of quarkonia in a hot QCD medium by investigating the
in-medium modifications to a heavy quark potential. We
have found that medium modification causes a dynamical
screening of color charge which, in turn, leads to a temperature
dependent binding energy. We have systematically studied the
temperature dependence of binding energy for the ground and
first excited states of charmonium and bottomonium spectra in
pure and realistic QCD medium. We have then determined the
dissociation temperatures employing the perturbative result
of the Debye mass (m5) and the lattice parametrized form
m’%. Our estimates are consistent with the finding of recent
theoretical works based on potential models [23]. However,
these values are significantly smaller than the predictions of
Refs. [4,6,14,40] based on the first principle lattice calculations
which are however plagued by its inherent uncertainties. In
contrast, the inclusion of nonperturbative contributions to the
Debye mass lowers the dissociation temperatures substantially
which looks unfeasible. Thus, this study provides us a handle to
decipher the extent up to which and how much nonperturbative
effects should be incorporated into the Debye mass.

Inbrief, J /1 is found to be dissociated at temperature above
the critical temperature (around 1.27,) when the leading-order
term in the Debye mass has been employed. However, it is
dissociated just below the 7, when the lattice parametrized
form of the Debye mass (nonperturbative) has been employed.
This finding ensues a basic question about the nature of the
dissociation of quarkonium in a hot QCD medium.

PHYSICAL REVIEW C 80, 025210 (2009)

Finally, our approach based on the in-medium modifications
provides charmonium and bottomonium dissociation temper-
atures which agree nicely with recent quarkonium spectral
function studies using a potential model [23]. This is true only
for the perturbative result for the Debye mass but nonper-
turbative corrections to it make the melting temperatures too
low to compare to the spectral analysis of the lattice temporal
correlator of the mesonic current. This leaves an open problem
of the agreement between these two kinds of approaches. This
could partially be due to the arbitrariness in the definition
of dissociation temperature. To examine this point we have
estimated the upper bound of the dissociation temperatures
from the condition: Ey, = 7. We found that these esti-
mates obtained by employing the lattice parametrized Debye
mass show good agreement with the predictions in [23]
which was not true for the earlier definition (10): Ey;, = 3T.
However, a numerical solution of the Schrodinger equation
with the full effective potential (6) gives in general a slightly
higher value of the dissociation temperatures. For x.(x»)
melting temperatures, one would start with the spin-dependent
heavy quark potential and follow the same procedure. We will
look into it in the future. It would be of interest to study
the corresponding quarkonium spectral function (and temporal
correlator) after giving these states a thermal width. Finally, it
would be of interest to extend the present study to the medium
modified potential obtained in the recent work of Brambilla
et al. [41] within the framework of quarkonia effective field
theory which also predicts the long range terms in the
potential.
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