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The corrections of two-photon exchange on deuteron electromagnetic form factors are estimated based on an
effective Lagrangian approach. Numerical results for the form factors GC,M,Q of the deuteron with the corrections
are compared to its empirical ones. Moreover, the two new form factors, due to the two-photon exchange, are
analyzed. A possible way to test the two-photon exchange corrections to the deuteron form factors is discussed.
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I. INTRODUCTION

We know that the electromagnetic (EM) form factors
of the proton and deuteron are usually extracted from the
measurements of the differential cross sections of ep and
eD elastic scatterings and from the Rosenbluth separation
method [1], which is based on the one-photon-exchange (OPE)
approximation. For a long time, the extracted Q2 dependencies
of the nucleon EM form factors are believed to behave like a
simple dipole form. For the proton electric and magnetic form
factors, G

p

E,M , one conventionally assumes

G
p

E(Q2) = G
p

M (Q2)/µp � 1/[1 + Q2(GeV2)/0.71]2, (1)

where µp = 2.79 is the proton magneton. Recently, the new
experiments of the polarized ep elastic scattering were pre-
cisely carried out at Jefferson Laboratory [2]. The polarization
transfer scattering experiments of �e + p → e + �p show that
the ratio Rp = µpG

p

E(Q2)/G
p

M (Q2) behaves like Rp(Q2) ∼
1 − 0.158Q2. It means that Rp is no longer a simple constant
as implied in Eq. (1). It monotonously decreases with the
increasing of Q2.

One way to resolve this discrepancy, at least partially, is to
take the effect of the two-photon exchange (TPE) into account
[3–8]. Usually, it is believed that TPE is strongly suppressed by
EM coupling constant αEM (∼1/137). However, it was argued
[8] that due to a very steep decreasing of the nucleon EM
form factors, the TPE process, where the Q2 is equally shared
by the two exchanging photons, may be compatible to the
OPE one. Some calculations of the TPE corrections to the
ep elastic scattering have been done recently [3–7,9], where
only the nucleon state is considered as an intermediate state.
The calculations were extended further with other nucleon
resonances, like �,P11, and D13 states, being considered as
the intermediate states [10]. There were also several other
works about the TPE effect on the proton charge radius and
on the parity violating [11,12] in the ep scattering. The effect
on the EM form factors of the nucleon in the timelike region
was estimated in Refs. [13,14]. According to the analyses
for the TPE effect on the nucleon EM form factors in the
literature, it is known that the TPE corrections not only modify
the conventional nucleon electric and magnetic form factors
but also provide a new form factor, Y2γ , to the nucleon.

The TPE corrections to the deuteron (spin 1 particle) EM
form factors and to the e+ + e− → D + D̄ process have been

also discussed in Refs. [15–17] qualitatively. In analogy to
the TPE effect on the proton EM form factors, TPE not
only modifies the conventional three EM form factors of
the deuteron but also provides new form factors with new
structures. The general discussion of the structures of the
three new form factors can be seen [15,16]. We know that
the deuteron is usually regarded as a weekly bound system of
a proton and a neutron (see Fig. 1). Many calculations for the
EM form factors of the deuteron, with the OPE approximation,
have been performed in different approaches in the literature
(see, for example, Refs. [18–21]). Recent calculations based
on an effective Lagrangian approach [22,23] have shown
that this approach can reasonably explain the deuteron EM
form factors with phenomenological, including two-body,
operators.

To study the TPE effect on the deuteron system in our
effective Lagrangian approach, we note that the deuteron EM
form factors receive the TPE corrections from three different
sources. The first one (see Fig. 2) is that the two photons
directly couple to the contact points [the contact point A (or
B) of Fig. 1 is the one connects the deuteron to its composites].
The second is that one of the two photons directly couples to
one of the nucleons and another to one of the contact points (see
Fig. 3). The last one is that the two photons respectively couple
to the two nucleons (see Fig. 4). It has been proved that gauge
invariance preserves in our effective Lagrangian approach only
when the three kinds of the two-photon exchange diagrams are
considered simultaneously [24].

In our previous work [25], only a part of the third type
of the TPE corrections to the EM form factors of deuteron
is considered, where the TPE corrections to the EM form
factors GE,M and to Y2γ of the proton and neutron are
directly employed to study the deuteron properties following
the formalism of Ref. [9]. In the approach, only one new
form factor appears. The TPE effect considered in Ref. [25]
is represented by Figs. 4(a) and 4(b) and their cross-box
diagrams. In this article, to extend the work of Ref. [25] further,
we’ll simultaneously study the three sources of the TPE effect
in Figs. 2–4. It should be stressed that although the contribution
of the coupling of a photon to the contact point is expected
to be smaller than the one of direct couplings of the photon
to the nucleons, this type of couplings is needed to guarantee
gauge invariance. This article is organized as follows. In Sec. II
the above-mentioned two-photon-exchange effect in the eD

0556-2813/2009/80(2)/025208(8) 025208-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.025208


YU BING DONG PHYSICAL REVIEW C 80, 025208 (2009)

FIG. 1. Deuteron mass operator.

elastic scattering is briefly discussed. Numerical results and
conclusions are given in Sec. III.

II. TWO-PHOTON-EXCHANGE IN THE eD ELASTIC
SCATTERING

According to the OPE approximation, the electromagnetic
form factors of the deuteron are defined by the matrix element
of the electromagnetic current Jµ(x)

〈p′
D, λ′|Jµ(0)|pD, λ〉
= −eD

{[
G1(Q2)ξ ′∗(λ′) · ξ (λ)

− G3(Q2)
(ξ ′∗(λ′) · q)(ξ (λ) · q)

2M2
D

]
· Pµ

+ G2(Q2)[ξµ(λ)(ξ ′∗(λ′) · q) − ξ ′∗
µ (λ′)(ξ (λ) · q)]

}
, (2)

where p′
D, ξ ′, λ′ (or pD, ξ, λ) denote the momentum, helicity,

and polarization vector of the final (or initial) deuteron,
respectively. In Eq. (2) q = p′

D − pD is the photon mo-
mentum, P = pD + p′

D,Q2 = −q2 is the four-momentum
transfer squared, MD is the deuteron mass, and eD is the charge
of the deuteron. In the one-photon exchange approximation
or Born approximation, the unpolarized differential cross
section of the eD elastic scattering, e(k1, s1) + D(pD, ξ ) →
e(k′

1, s3) + D(p′
D, ξ ′), in the laboratory frame is [26]

dσ

d�
= dσ

d�

∣∣∣∣
Mott

I0(OPE),

(3)
I0(OPE) = A(Q2) + B(Q2)tan2 θ

2
,

where θ is the scattering angle of the electron, (dσ/d�)Mott is
the Mott cross section for a structureless particle with recoil

(a) (b) (c)

FIG. 2. Diagrams for the first type of the two-photon exchange
effect. The cross-box diagrams are implied.

FIG. 3. Diagrams for the second type of the two-photon exchange
effect. The cross-box diagrams are implied.

effect, and the two structure functions are

A(Q2) = G2
C(Q2) + 2

3τDG2
M (Q2) + 8

9τ 2
DG2

Q(Q2),
(4)

B(Q2) = 4
3τD(1 + τD)G2

M (Q2).

In Eq. (4), τD = Q2/4M2
D and GM,GC , and GQ are the

deuteron magnetic, charge, and quadrupole form factors,
respectively. They can be expressed, in terms of G1,G2, and
G3, as

GM = G2, GQ = G1 − G2 + (1 + τD)G3,
(5)

GC = G1 + 2
3τDGQ.

The normalizations of the three form factors are GC(0) =
1,GM (0) = 1.714, and GQ(0) = M2

DQD = 25.83. Note that
in Eqs. (3) and (4), there are two unpolarized structure
functions A and B, and three independent form factors
GC,GQ, and GM for the deuteron. To determine the three
form factors completely, one needs, at least, one polarization

FIG. 4. Diagrams for the third type of the two-photon exchange
effect. The cross-box diagrams are implied.
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observable. The optimal choice is the polarization T20 (or
Pzz) [27].

Considering both OPE (C = −1) and TPE (C = +1), and
taking Lorentz, party, and charge-conjugation invariance into
account, one obtains the most general form of the eD elastic
scattering [15,28],

MeD = e2

Q2
ū(k′

1, s3)γµu(k1, s1)
6∑

i=1

G′
iM

µ

i , (6)

where

M
µ

1 = (ξ ′∗ · ξ )P µ,

M
µ

2 = [ξµ(ξ ′∗ · q) − (ξ · q)ξ ′∗µ], (7)

M
µ

3 = − 1

2M2
D

(ξ · q)(ξ ′∗ · q)P µ,

and

M
µ

4 = 1

2M2
D

(ξ · K)(ξ ′∗ · K)P µ,

M
µ

5 = [ξµ(ξ ′∗ · K) + (ξ · K)ξ ′∗µ], (8)

M
µ

6 = 1

2M2
D

[(ξ · q)(ξ ′∗ · K) − (ξ · K)(ξ ′∗ · q)]P µ,

where K = k1 + k′
1. General speaking, the form factors G′

i ,
with i = 1, 6, are complex functions of s = (pD + k1)2 and
Q2 = −(k1 − k′

1)2. They can be expressed as

G′
i(s,Q

2) = Gi(Q
2) + G

(2)
i (s,Q2), (9)

where Gi corresponds to the contributions arising from the
one-photon exchange and G

(2)
i stands for the rest that would

come mostly from TPE. In the OPE approximation, G′
4 =

G′
5 = G′

6 = 0. It is easy to see that Gi (i = 1, 2, 3) are of
order of (αEM)0 and G

(2)
i (i = 1, . . .6) are of order αEM.

To consider that a deuteron is a weakly bound state of
a proton and a neutron, we take the following effective
interaction between the deuteron and its composites (pn) [23]

LD = gDDµ+(x)
∫

dy
D(y2)p̄

(
x + 1

2
y

)

×Cγµn

(
x − 1

2
y

)
+ H.c., (10)

where C is the charge conjugate matrix, Dµ, p, and n are the
fields of the deuteron, proton, and neutron. The correlation
function 
D in Eq. (10) characterizes the finite size of the
deuteron as a pn bound state and depends on the relative Jacobi
coordinate y, in addition, x being the center-of-mass (c.m.)
coordinate. The Fourier transformation of the correlation
function reads


D(y2) =
∫

d4p

(2π )4
e−ipy
̃X(−p2) . (11)

A basic requirement for the choice of an explicit form of the
correlation function is that it vanishes sufficiently fast in the
ultraviolet region of Euclidean space to render the Feynman
diagrams ultraviolet finite. Here, we adopt a Gaussian form

̃D(p2

E)
.= exp(−p2

E/�2
D) for the vertex function, where pE

is the Euclidean Jacobi momentum of the deuteron and �D

is a size parameter. It characterizes the distribution of the
constituents inside the deuteron.

We know that the low-energy theorem [29] provides a
model-independent test for the reliability of different ap-
proaches [30]. For the photon deuteron (spin-1) Compton scat-
tering, the low-energy theorem has been discussed extensively
in the past [31]. A complete treatment on this issue is referred
to in Ref. [32]. To the first order of the photon energy ω, the
low-energy theorem tells that the forward Compton-scattering
amplitude off the deuteron target is [30]

4πT = − e2

MD

�ε′ · �ε

− i
e2

4M2
D

ω(µD − 2)2 �S · (�ε′ × �ε) + O(ω2), (12)

with �ε (or �ε′), �S, and µD being the initial (or final) photon
polarization, the deuteron spin, and its magnetic moment
in unit of e/2MD , respectively. In Eq. (12) the first and
second terms are the Thomson and the spin-flip ones. The
latter is proportional to the deuteron anomalous magnetic
moment squared κ2

D = (µD − 2)2 and associates to the well-
known Drell-Hearn-Gerasimov sum rule of the deuteron (see
Refs. [30,33], for example). In our effective Lagrangian
approach [23], the effective current of photon-deuteron has
the correct structures like Eq. (2) and the numerical calculation
shows that the obtained magnetic moment of the deuteron µD

is around 1.7 (in unit of e/2MD), which reasonably agrees with
the experiment data. Consequentially, it is expected that the
forward Compton-scattering amplitude based on our effective
approach is consistent with the low-energy theorem. It should
be mentioned that the above correlation function of Eq. (11), in
the nonrelativistic approximation, stands for the wave function
with only the S-wave of the deuteron, which contains no
D-wave component. To reasonably explain the data for the
deuteron quadrupole moment, we have to phenomenological
include two-body operators [23]. A detailed comparison of the
photon-deuteron Compton scattering amplitudes in the low-
photon-energy region of our approach and of the low-energy
theorem will be explicitly given in a separate article.

In our approach, the coupling gD of 〈pD, λ|pn〉 =
gDξ

′∗(λ) is determined by the compositeness condition
[24,34–37]. It implies that the renormalization constant of the
deuteron wave function is set equal to zero:

ZD = 1 − �′
D

(
M2

D

) = 0. (13)

Here,

�′
D

(
M2

D

) = g2
D

d�D

dp2
D

∣∣∣∣
p2
D

=M2
D

(14)

is the derivative of the transverse part of the mass operator
�

αβ

D , which conventionally splits into the transverse �D and
longitudinal �L

D parts as:

�
αβ

D = g
αβ

⊥ �D

(
p2

D

) + pα
Dp

β

D

p2
D

�L
D

(
p2

D

)
, (15)

where g
αβ

⊥ = gαβ − pαpβ/p2 and g
αβ

⊥ pα = 0. The mass op-
erator of the deuteron in our approach is described by Fig. 1.
If the size parameter �D is fixed, the coupling gD is fixed too
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FIG. 5. Feynman diagrams for two-photon exchange: box dia-
gram (a) and crossed box diagram (b).

according to the compositeness condition (13) (see details in
Ref. [23]). Here, we reiterate that because Figs. 2, 3, and 4 are
taken into account simultaneously, gauge invariance preserves
in our effective Lagrangian approach.

III. NUMERICAL RESULTS AND CONCLUSIONS

To proceed a numerical calculation, we adopt the
parametrization forms of the nucleon EM form factors given
by Mergell, Meissner, and Drechsel [38]. Here we follow
the numerical technique of Ref. [39] to simplify one of
our loop integrations. The loop momentum of the box-type
Feynman amplitude is parametrized in a such way that the
denominators of Green function are (∓κ + q/2)2 for the two
photons (see Fig. 5 where the cross-box diagram is explicitly
shown), whereas for the electron (e) and the constituent
nucleon (N ), they have the forms of (e) = (−κ + K)2 − m2

e

and (p) = (±K + P)2 − M2
N with

K = 1
2 (k1 + k′

1) = 1
2K, P = 1

2 (p + p′). (16)

The sign −(+) is for the direct (cross-box) diagram in Fig. 5.
Here, it should be mentioned that the assumption of Ref. [39]
means that each of the photons carries approximately half of
the transferred momentum q. It is justified on the bases of

Ref. [8]. Moreover, the assumption also means that a rapid
decreasing of the form factors is employed such that one
can neglect the dependence on the loop momentum κ in
the denominators of the photon Green function as well as
in the arguments of the form factors. This results in ultraviolet
divergences of the loop momentum integrals with respect to
the momentum κ . Thus, a step function θ (M2

NτN − |κ2|) is
introduced in the loop integration. It is equivalent to apply a
cut-off restriction |κ2| < M2

Nτ . For the photon Green function,
we have

1∣∣ q

2 ± κ
∣∣2 <

1

P2
= 1

M2
N (1 + τN )

(17)

with τN = Q2

4M2
N

. In our calculation for the effect of TPE based

on the effective Lagrangian of Eq. (10), we face two loop
integrations. One is the loop integration with respect to the
intermediate momentum of κ , and another is the one with
respect to the intermediate momentum k of the composites of
the deuteron (see Fig. 5). To simplify the numerical calculation
further, we also use the soft approximation for the integral
variable κ in the first loop integration.

Based on the above assumption and considering the TPE
effect shown in Figs. 2–4, we may estimate the TPE corrections
to the deuteron EM form factors in the present effective
Lagrangian approach. The effective EM interaction
Lagrangians have already been given explicitly in
Refs. [23,24]. With those Lagrangians, we can correctly
get the normalization conditions for GC(0) and GM (0). In
Figs. 6–10, we plot our numerical results for the contributions
of the TPE effect to the deuteron electromagnetic form factors
of GC,GM,GQ and to the two additional form factors G5 and
G6. Two different scattering angles, θ being π/2 and π/10,
are selected to check the θ dependencies of the observables.
In Figs. 6–8, the ratios stand for

RC,M,Q = G
(2)
C,M,Q(s,Q2)

G
exp.

C,M,Q(s,Q2)
, (18)

where G
(2)
C,M,Q(s,Q2) represent for the TPE contributions.

The individual contributions of Figs. 2, 3, and 4 and their
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FIG. 6. |RC |(%) for θ = π/10 (a) and for θ = π/2 (b). The dotted, dashed, dotted-dashed, and solid curves represent the contributions
from Figs. 2, 3, and 4 and their sum.
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FIG. 7. |RM |(%) for θ = π/10 (a) and for θ = π/2 (b). Notations as in Fig. 6.

sum to the deuteron form factors are shown explicitly.
G

exp.

C,M,Q in Eq. (18) are estimated by the parametrizations of
Ref. [40] (θ -independent form) as the empirical data. The two
maximum points in Figs. 6 and 7 are due to the two crossing
points of the charge GC and magnetic GM form factors at
about Q2

crossing ∼ 0.5 GeV2 and Q2
crossing ∼ 2.0 GeV2. Here,

differing from the form factors of the nucleon, the form
factors of the deuteron have the crossing points. From
Figs. 6–8, one cannot explicitly see the θ dependence of the
three ratios, because the dependencies are strongly suppressed
due to the fact that the denominators of the ratios in Eq. (18)
are θ independent. However, the θ dependencies can be seen
explicitly in Figs. 9 and 10 for the two new form factors
G′

5 = G
(2)
5 and G′

6 = G
(2)
6 . It should be mentioned that we

do not have the extra form factors G′
4 contributed by the TPE

effect as shown in Eqs. (6) and (9) because we adopt the
assumption of Ref. [39], where the κ-dependence terms in the
numerator are ignored.

In our calculation, we have one parameter �D in the
correlation function. According to the condition that the
deuteron is bound as 〈|r−2|〉 � 0.02 GeV2 [18], we select
a typical value for the parameter: �D = 0.30 GeV that is
consistent with the one used in Refs. [23,25]. Our estimates
for the ratios of the deuteron electromagnetic form factors

of G′
C,M,Q tell that the TPE effect is small. To analyze the

contributions of Figs. 2, 3, and 4, one sees that in the low-Q2

region, the contributions of Figs. 2 and 3 are smaller than the
one of Fig. 4. When Q2 increases, the contributions of Figs. 2,
3, and 4 increase too. Moreover, the contributions of Figs. 2
and 3 to the form factors of GC,Q are always smaller than that
of Fig. 4, whereas the one of Fig. 2 to GM becomes compatible
to the contribution of Fig. 4. Because the total contributions
of Figs. 2 and 3 to the three conventional EM form factors of
GC,M,Q are very small, and the θ dependencies of the ratios
from the TPE corrections are suppressed, it is not easy to
directly test the TPE effect from the three form factors.

However, it is expected that one may test the TPE effect
from the polarizations of deuteron, because the TPE effect is
θ dependent and the obtained new form factors G5,6 are θ

dependent, too. Consequently, it is reasonable to find the TPE
effect in some polarizations and particularly in some angle
limit. We know that if only one-photon exchange is considered,
the double and single polarization observables are

Pxz = −τD

K0

MD

tan
θ

2
GMGQ,

(19)

Pz = 1

3

K0

MD

√
τD(τD + 1)tan2 θ

2
G2

M.
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FIG. 8. |RQ|(%) for θ = π/10 (a) and for θ = π/2 (b). Notations as in Fig. 6.
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FIG. 9. 108|G′
5| for θ = π/10 (a) and for θ = π/2 (b). Notations as in Fig. 6.

Clearly, these two polarizations become vanishing when θ

is very small because they are tan θ
2 and tan2 θ

2 dependent,
respectively. However, when the TPE effect is considered in
the small angle limit, its contribution is

δPxz ∼ 2τ 2
Dcot

θ

2

[
2

(
G1

τD + 1
+ G3

)
Re(G′

5)

+ (G1 − 4G2 + 2(τD + 1)G3)Re(G′
6)

]
(20)

and

δPz ∼ −2τD

3

√
τD

τD + 1

[(
3 + 2(τD + 1)tan2 θ

2

)
G2Re(G′

5)

+ 2(τD + 1)G2Re(G′
6)

]
. (21)

One sees that the TPE corrections to the polarizations do
not vanish in the limit of θ → 0. In Fig. 11, we display the
ratios R(Pxz) = δPxz/Pxz for Pxz and R(Pz) = δPz/Pz for Pz

calculated from Eqs. (19)–(21). The ratios should behave as
1/tan2( θ

2 ). One sees that the contributions from Figs. 2 and
3 are found to be smaller than that of Fig. 4. Moreover, one
finds the sizable effect of the two new extra form factors,
due to TPE, on the polarization observables Pxz and Pz. The

remarkable θ dependencies of the ratios are also displayed
in Fig. 11. Therefore, a precise measurement of the deuteron
polarizations in the small angle limit is expected to test the
TPE effect. Because the deuteron form factors have crossing
point Q2

crossing, it is also expected to easily find the TPE effect

at about Q2 ∼ Q2
crossing.

Reference [25] is the first one to numerically estimate part
of the TPE corrections to the deuteron form factors based
on our effective Lagrangian approach. In that work, the TPE
corrections, to the EM form factors of the proton and neutron
following the formalism of Ref. [9], are simply employed
to study the deuteron case. The corresponding TPE effect
on the deuteron is shown by Figs. 4(a) and 4(b) and their
cross-box diagrams. Comparing the present results to those of
Ref. [25], one concludes that all the possible TPE corrections
are considered in this article. Therefore, the present work gives
a more systemically and sophisticated study of the TPE effect
on the deuteron. Moreover, we, in this article, directly calculate
the TPE exchange effect with the assumption of Ref. [39].
Clearly, the present calculation gives more information about
the new deuteron form factors because we predict form factors
of G′

5,6 simultaneously. The obtained results for the TPE effect
are consistent with the ones of Ref. [25] qualitatively. Finally,
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FIG. 10. 108|G′
6| for θ = π/10 (a) and for θ = π/2 (b). Notations as in Fig. 6.
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FIG. 11. Ratios for Pxz (a) and Pz (b).

one still cannot get any information about G′
4; this is due to

the approximate methods we employed here to simplify our
numerical loop integration.

To summarize, we are the first to estimate all the TPE
corrections, as shown in Figs. 2–4, to the conventional form
factors of the deuteron, GC,M,Q and of G′

5,6. Our numerical

results of the TPE contributions tell that G
(2)
C,M,Q are small

(less than 1%). However, G′
5,6 are clearly θ dependent. The

two additional form factors are expected to be tested in the
future measurements of the double and single polarization
observables of Pxz(T21) and Pz (T10) in the small angle limit
and at about Q2 ∼ Q2

crossing. Further work for an exactly full
calculation of the two-photon exchange effect on the deuteron
system, without using assumption of Ref. [39], is in progress.

Finally, this work is also designed to effectively treat direct
electromagnetic interactions to quarks. It should be addressed

that the present investigation of the two photon exchange
mechanism recalls a new study of Compton scattering and
it is shown that the local two-photon coupling to the same
quark provides a fixed Regge singularity at J = 0 [41]. This
subject is beyond the scope of the present work. However, it
is of a great interest to see the issue for the deuteron target in
our future work.
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