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Exact hydrodynamic solution for the elliptic flow
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Looking for the underlying hydrodynamic mechanisms determining the elliptic flow we show that for an
expanding relativistic perfect fluid the transverse flow may derive from a solvable hydrodynamic potential, if
the entropy is transversally conserved and the corresponding expansion is “quasi-stationary,” that is, mainly
governed by the temperature cooling. Exact solutions for the velocity flow coefficients v2 and the temperature
dependence of the spatial and momentum anisotropy are obtained and shown to be in agreement with the elliptic
flow features of heavy-ion collisions.
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I. INTRODUCTION

The hydrodynamic description of the formation and de-
velopment of a quark-gluon plasma (QGP) in high-energy
heavy-ion collisions has met with considerable success [1].
In particular, the hydrodynamic features seem to be, at least
partly, required to take into account the second Fourier
coefficient v2 of the transverse flow of particles, the so-called
elliptic flow. One writes [2,3] for the azimuthal multiplicity
distribution

dN

dϕ
= N

2π
{1 + 2v2 cos(2ϕ) + · · ·}, (1)

discarding for simplicity other Fourier coefficients that are
nonrelevant here. The experimentally observed values of v2,
which are due to the anisotropy of the initial state collisions
at nonzero impact parameter, are sizable enough to require
important collective effects of particle production. These are
better reproduced by hydrodynamical properties of the flow in
some early stage of the quark-gluon plasma formation.

The theoretical estimates of the elliptic flow are obtained
from numerical studies based on various versions of the
hydrodynamic models. Indeed, a full study requires that one
not only deal with the solution of the relativistic hydrodynamic
equations but also with the definition of appropriate initial
conditions and a model for the mutation of the QGP pieces of
fluid into particles. The numerical studies (cf. Ref. [1]) reveal
that the QGP as a fluid is “almost perfect” because its viscosity
is remarkably weak, even if the model dependence may
account for some variation on the quantitative estimates. This
observation has a considerable theoretical impact, because
it points to a strongly coupled plasma, guiding a large part
of theoretical interest toward strongly coupled gauge field
theories.

Our goal in the present work is to try and identify by explicit
analytic solutions the basic hydrodynamic mechanisms at work
in the elliptic flow. For this, we must simplify (or even idealize)
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the description of the QGP formation in a heavy-ion collision
while keeping the main physical ingredients. Among other
simplifications that we discuss now, our study assumes the
QGP to be a perfect fluid without viscosity. We also restrict
our analysis to the transverse flow in the central rapidity region
where the hydrodynamic description is better suited.

The main characteristic feature of the hydrodynamic de-
scription of QGP formation in heavy-ion collisions appears
to be a nontrivial combination of: (a) the large longitudinal
momentum and energy boosts provided to the created medium
by the initial state, and (b) the (presumably fast) equilibration
of the energy density and all three pressure components due to
local thermalization required by hydrodynamics. As a matter
of fact, the first stage of the hydrodynamical description
of particle production in high energy collisions is mainly
governed by the longitudinal flow, that is, the expansion of
the relativistic fluid in (1 + 1) dimensions. The authors of the
pioneering articles of the hydrodynamic approach [4,5] based
their analysis on this property.

In the mean time, the four-dimensional hydrodynamical
feature of the system is kept with the thermodynamic relations
which, through the local temperature T and the equation of
state (EoS), lead to

T

T0
∼
(τ0

τ

)c2
s

; τ ≡
√

x2
0 + x2

3 ; c2
s = dp

de
= sdT

T ds
, (2)

where τ is the proper time; cs is the speed of sound, which
we assume to be constant in the following; and e and p are
the energy and (isotropic) pressure density, respectively. Our
remaining notations are s for the entropy density, xµ={0,···3}
for the space-time coordinates (x0 ≡ t), and uµ={0,···3} for the
fluid four-velocity (with lower indices) in the Minkowski
metric ηµν , with signature (1,−1,−1,−1) satisfying the
normalization condition

uµuµ ≡ u2
0 − u2

3 − u2
⊥ = 1; u2

⊥ ≡ u2
1 + u2

2. (3)

Our idea for studying the transverse motion of the fluid
is that it is also driven by the longitudinal evolution, but
slowly enough to be considered “quasi-stationary,” that is, in
such a way that its time evolution is essentially related to the
temperature cooling. Indeed, the seed of transverse momenta
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is indirect and there should be, at least during some first
stage of the hydrodynamic evolution, no strong back-reaction
on the longitudinal motion. The quasi-stationarity hypothesis
allows for an exact solution for the elliptic flow and in general
for the hydrodynamic regime in the transverse plane. To be
concrete we state the following conjectured properties of the
hydrodynamic flow:

(i) Tranversally isentropic. Because the overall entropy
should be conserved, we conjecture that the transverse
flow is itself (approximately) isentropic; i.e., we write
the following equation

[∂x1 (su1) + ∂x2 (su2)]transverse = 0. (4)

(ii) Quasi-stationary. Because the time dependence of the
transverse entropy distribution is absent from Eq. (4),
we close the equations for the transverse flow by
assuming that its hydrodynamic evolution is smooth
enough to be driven only by the temperature change.
We thus consider the equation and solutions of a
temperature-dependent stationary flow, with a source
emitting a fluid at a given temperature (and thus
transverse speed, see further).

Hence, in the regime when the longitudinal expansion is
dominant, the transverse motion is conjectured to be smoothly
driven by the overall local temperature of the fluid, which
provides the four-dimensional feature1 of the system through
the thermodynamic relations (2).

The plan of the article is the following: In Sec. II, using the
hydrodynamic potential for a stationary flow [7], we derive
the analytic equation obeyed by the azimuthal distribution of
entropy and thus the elliptic flow. Then, in Sec. III, we find the
exact solutions for the transverse flow. In Sec. IV we apply our
solution showing that the obtained elliptic flow retains good
qualitative features observed in reality or in realistic numerical
hydrodynamic model studies. A discussion of the hypotheses
and our conclusions and outlook form the final section,
Sec. V.

II. AZIMUTHAL ENTROPY DISTRIBUTION

As we see now, the conditions (a) and (b) lead to nontrivial
properties of the fluid and to analytic solutions for the elliptic
flow. Elliptic flow is obtained from a hydrodynamic (KK)
potential [7] derived by Khalatnikov and Kamenshchik for
a stationary transverse isentropic flow. The quasi-stationary
hypothesis allows us to extend its applicability to a slow
transverse motion of the fluid and to find the general exact
solution of the elliptic flow. In fact, the existence of a
hydrodynamical potential obeying a linear equation has long
been known [8,9] for the longitudinal evolution. Recently [10],
it was possible to express interesting analytic solutions for
the entropy distribution dS/dy, where the (hydrodynamic)
rapidity is defined by y = 1

2 log(u0+u3)/ log(u0−u3). We

1In that respect, our picture is different from a purely transverse
hydrodynamic flow [6].

follow the same method as in Ref. [10] for the transverse
flow case and find the general solution of the KK potential to
obtain the azimuthal distribution of the entropy dS/dϕ giving
access to the elliptic flow.

However, one crucial difference of the transverse with
respect to the longitudinal case is the velocity-temperature
relation between u0, the time component of the velocity (and
thus also u⊥ =√

u2
0−1, the modulus of the transverse one),

and the local temperature. This comes from the relativistic
Bernoulli relation, verified by a stationary fluid [11], namely

T u0 = T

√
1 + u2

⊥ = T0. (5)

Under the same conditions, the whole evolution from some
initial temperature to the final freeze-out, one is constrained
to be in the supersonic regime [11], as we verify later through
our equations. The condition is written as

v⊥ ≡ u⊥
u0

= u⊥√
1 + u2

⊥
=
{

1 −
(

T

T0

)2
}1/2

� cs. (6)

Hence, the isentropic transverse evolution starts at a given
temperature TI such that

TI � Ts ≡ T0

√
1 − c2

s , (7)

and the velocity increases when the temperature decreases
from TI , reaching eventually ultrarelativistic values before
hadronization. For convenience, we now introduce the variable

l = 1

2
log

[
1 −

(
T

T0

)2
]

= 1

2
log

[
u2

⊥
1 + u2

⊥

]
= log v⊥. (8)

The derivation of the KK potential is described briefly as
follows [7]: Together with the transverse entropy conservation
(4), the equations for the transverse flow close with the
projection to the transverse plane of the energy-momentum
conservation relation ∂µTnuµ = 0, again by neglecting the
time derivatives with respect to the transverse gradients. After
nontrivial transformations, presented in the Appendix, one
obtains the following system of equations:

∂x1 (su1) + ∂x2 (su2) = 0
(9)

∂x1 (T u2) − ∂x2 (T u1) = 0.

Then, using the “hodograph” [7–11] inversion of variables
(x1,x2) → (l,ϕ) and combining Eqs. (4) and (9), one arrives
at the formulas expressing the kinematic (now dynamical)
variables (x1,x2) in terms of the hydrodynamic variables
through a suitably defined KK potential function χ (ϕ, l),
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namely

x⊥(ϕ, l) = e−l

T0

√(
∂χ

∂l

)2

+
(

∂χ

∂ϕ

)2

(10)

α(ϕ, l) = ϕ + arctan

[
∂χ

∂ϕ

(
∂χ

∂l

)−1
]

,

where we have parametrized

u1 = u⊥ cos ϕ u2 = u⊥ sin ϕ
(11)

x1 = x⊥ cos α x2 = x⊥ sin α.

The KK potential function χ (ϕ,ul) is the solution of a linear
equation obtained by closing the hydrodynamic equations
system using the EoS(

1 − e2l

c2
s

)
∂2χ

∂ϕ2
+ (1 − e2l)

∂2χ

∂l2
+
(

1− 1

c2
s

)
e2l ∂χ

∂l
= 0.

(12)

Note the zero coefficient at el = cs , which signals the super-
sonic bound (6), (7) at T = Ts. In fact the system expands in
the vacuum for T � Ts, whereas it is compressed when T > Ts

(cf. Ref. [4]). Hence the physical solutions are restricted to the
supersonic range T � TI � Ts.

The KK potential and its equation have been reproduced
from Ref. [7]. The calculation of the entropy distribution is
now parallel to the one [10] (see Ref. [12] for an early version)
used in the (1 + 1) dimensional case. Considering an entropy
flux normal to the tangential line element (dx1, dx2), one must
compute

dS = su2dx1 − su1dx2. (13)

Using the formulas [Eq. (10)] for the expression of the line
element in terms of the potential, one has

− e−l

T0

∂χ

∂l
= x1 cos ϕ + x2 sin ϕ = x⊥ cos(α − ϕ)

(14)
−e−l

T0

∂χ

∂ϕ
= x2 cos ϕ − x1 sin ϕ = x⊥ sin(α − ϕ),

which, by differentiation with respect to l and φ, gives

dS = sT0

T

{[
∂2χ

∂l∂ϕ
− ∂χ

∂ϕ

]
dl +

[
∂2χ

∂ϕ2
+ ∂χ

∂l

]
dϕ

}
, (15)

where we used the relation u⊥e−l ≡ u0 = T0/T .

At fixed temperature (and thus fixed l), which is the
case considered further on, one gets the azimuthal entropy
distribution

dS

dϕ
= sT0

T

[
∂2χ (ϕ, l)

∂ϕ2
+ ∂χ (ϕ, l)

∂l

]

= sT

T0
(
1 − e2l/c2

s

) [∂χ (ϕ, l)

∂l
− ∂2χ (ϕ, l)

∂l2

]
, (16)

where the second expression comes from the KK potential
equation (12). Note again the singular coefficient at Ts,

corresponding to the lower bound of temperature.

III. EXACT SOLUTION OF THE TRANSVERSE FLOW

In our idealized hydrodynamic framework, without
hadronization, one relates the entropy distribution to multi-
plicity, dS/S ∼ dN/N. Hence, the elliptic flow is defined
by the azimuthal entropy distribution (16) through a Fourier
expansion similar to Eq. (1), namely

dS

dϕ
= S

2π
{1 + 2v2 cos(2ϕ) + · · ·}, (17)

and thus

v2 =
∫

dϕ cos(2ϕ) dS
dϕ

(ϕ)∫
dϕ dS

dϕ
(ϕ)

. (18)

The eccentricity can be obtained as a function of tempera-
ture (or l) through Eq. (14) in terms of the KK potential χ (ϕ, l)
as

ε ≡
〈
x2

2 − x2
1

〉
〈
x2

2 + x2
1

〉 ≡
∫

dϕ
(
x2

2 (ϕ, l)−x2
1 (ϕ, l)

)
∫

dϕ
(
x2

2 (ϕ, l)+x2
1 (ϕ, l)

)

=
∫

dϕ

{
cos 2ϕ

[(
∂χ

∂ϕ

)2
−
(

∂χ

∂l

)2
]

+ 2 sin 2ϕ
∂χ

∂ϕ

∂χ

∂l

}
∫

dϕ

[(
∂χ

∂ϕ

)2
+
(

∂χ

∂l

)2
] .

(19)

Note the characteristic feature of the hodograph method:
a geometrical parameter, here ε, is expressed in terms of
dynamical ones, here the temperature. Once the solution is
found, one must invert these relations to restore the hierarchy
between “cause” and “effect.”

We can now proceed by looking for the general solution
resulting from the KK potential solution of Eq. (12). For this,
it is convenient to expand the potential

χ (ϕ,l) = β0(l) +
∞∑

p=1

βp(l) cos(2p ϕ) (20)

in Fourier coefficients βp(l) that verify the equation

(e2l − 1)β ′′
p(l) + e2l

(
c−2
s − 1

)
β ′

p(l)

− 4p2
(
c−2
s e2l − 1

)
βp(l) = 0, (21)

where primes denote derivatives with respect to l.
As is well known, the solution is in general a suitable

combination, with constant coefficients, of two independent
solutions of the second-order equation (20). Using standard
textbooks, one finds for p �= 0

024907-3



ROBI PESCHANSKI AND EMMANUEL N. SARIDAKIS PHYSICAL REVIEW C 80, 024907 (2009)

βp(l) = c(1)
p β(1)

p + c(2)
p β(2)

p

≡ c(1)
p (−)p+1e2p l

2F1

(
p + 1

4

{
c−2
s − 1

}−
√{

c−2
s − 1

}2
/16 + c−2

s p2, p + 1

4

{
c−2
s − 1

}
+
√{

c−2
s − 1

}2
/16 + c−2

s p2, 1 + 2p; e2l

)

+ c(2)
p G

2, 0
2, 2

⎛
⎝e2l

∣∣∣ 5−c−2
s

4 −
√(

c−2
s −1

4

)2
+ c−2

s p2 5−c−2
s

4 +
√(

c−2
s −1

4

)2
+ c−2

s p2

−p p

⎞
⎠ , (22)

while we single out the first component c0 β0(l), whose
derivative is simply written as

β ′
0(l) = (1 − e2l)

1−1/c2
s

2 . (23)

In Eq. (22), 2F1(a, b; c, z) is the usual hypergeometric func-

tion, while G
2, 0
2, 2

(
e2l
∣∣ a b

c d

)
denotes a Meijer function [13].

The function β(1)
p (resp. β(2)

p ) is the regular (resp. irregular)
solution2 at el = 0 of Eq. (21). Hence, any arbitrary com-
bination of these two independent functions is a solution of
Eq. (21). The boundary conditions define the specific linear
combinations to be chosen for the general solution that may
be obtained from the Green function of the problem. For
illustration, in the special case p = 0, one writes

β ′
0(l) =

∫ +∞

−∞
�(−l)

(
1 − e2(l−l̂)

) 1−c
−2
s

2 F0(l̂)dl̂, (24)

where F0(l) describes a distribution of sources in temperature
convoluted with the Green function, which in this case is
just �(−l) β ′

0(l) from Eq. (23). A straightforward but more
tedious expression can be written for all values of p but is

skipped here for brevity. A specific realization for the sake of
our physical problem is discussed in the applications section
(Sec. IV).

Inserting the general solution [Eqs. (20) and (22)] for the
KK potential in Eq. (16) for the azimuthal entropy distribution,
one finds

dS

dϕ
(ϕ) = sT0

T

⎧⎨
⎩β ′

0(l)+
∞∑

p=1

cos(2pϕ)
[
(2p)2βp(l)−β ′

p(l)
]⎫⎬⎭

v2(T ) = 4β1(l) − β ′
1(l)

2β ′
0(l)

≡ ρ

[
4β

(1)
1 (l) − β

′(1)
1 (l)

2β ′
0(l)

+ λ
4β

(2)
1 (l) − β

′(2)
1 (l)

2β ′
0(l)

]
,

(25)

where we denote c
(1)
1
c0

≡ ρ,
c

(2)
1

c
(1)
1

≡ λ, and

ε(T ) = 2β ′
0(l)[2β1(l)+β ′

1(l)]+∑∞
p=1[4p(p + 1)βp(l)β(p+1)(l)+2pβp(l)β ′

p+1(l) − 2(p + 1)βp+1(l)β ′
p(l)−β ′

p(l)β ′
p+1(l)]

2β ′2
0 (l) +∑∞

p=1[(2pβp(l))2 + β ′2
p (l)]

(26)

for the eccentricity. It is useful for further use to note that, in
the “elliptic approximation,” i.e., when one stops the Fourier
expansion (20) at p = 1, the eccentricity can be expressed
using the same functions and parameters with v2 as in Eq. (25),

2For p = 0, Eq. (21) is only first-order for β ′
0(l) and thus introduces

only one arbitrary coefficient c0.

namely

ε(T ) = 2β ′
0(l)[2β1(l) + β ′

1(l)]

2β ′2
0 (l) + [4β2

1 (l) + β ′2
1 (l)

]
≡ ρ

{
2β ′

0

[
2
(
β

(1)
1 + λβ

(2)
1

)+ β
(1)′
1 + λβ

(2)′
1

]
2β

′2
0 + ρ2

[
4
(
β

(1)
1 + λβ

(2)
1

)2 + (β(1)′
1 +λβ

(2)′
1

)2]
}

.

(27)

Thanks to the analytic solutions we obtained, all the expres-
sions contain an explicit dependence on temperature. One
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should only specify which temperature is physically relevant,
e.g., TI for the initial spatial eccentricity and some freeze-out
temperature Tf for the observed v2. Using our formulas, one
may discuss the dynamical hydrodynamical process through
the temperature dependence of both the spatial and the
momentum average anisotropy of the lump of quark-gluon
plasma. For this, we note an interesting parameter-independent
relation between the spatial eccentricity at any temperature TI

and v2 at any temperature Tf , namely

v2(Tf )

ε(TI )
= β1(Tf )β ′(TI )

β1(TI )β ′(Tf )
×

1 − β ′
1(Tf )

2β1(Tf )

1 + β ′
1(TI )

2β1(TI )

×

⎛
⎜⎜⎝1

2
+ 1

2

√√√√√√1 − 2ε2(TI )
1 + β ′2

1 (TI )
4β2

1 (TI )(
1 + β ′

1(TI )
2β1(TI )

)2

⎞
⎟⎟⎠

−1

. (28)

A general physical comment is in order about the param-
eters λ and ρ defining the relevant solutions in the “elliptic
approximation.” Using a source of given temperature, the
parameter λ, which corresponds to the relative strength of
the two independent solutions of the second-order differential
equation (21), will specify the initial condition of the elliptic
flow. The parameter ρ, which is geometrical in nature because
it gives the relative strength of the elliptic harmonic in Eq. (20),
will be related to the initial centrality of the reaction. For
general initial conditions, the more general Green function
formalism, cf. Eq. (24), must be used.

IV. EXACT ELLIPTIC FLOW: APPLICATIONS

Taking into account the linear equations for the potential
and entropy distributions, cf. Eqs. (12) and (15), the determi-
nation of the elliptic flow boils down to defining properly the
boundary conditions, i.e., the sources of the hydrodynamic
expansion, which are given functions of temperature and
azimuth. In the following we assume that the source is simply
given by a δ function at the initial temperature TI of the
process and a given initial eccentricity profile. We fix it by
the condition that v2(TI ) = 0 while ε(TI ) is maximal. Note
that the solution satisfies the constraint TI <∼ Ts, i.e., the fluid
is always supersonic.

In the “elliptic approximation” for which the Fourier
expansion of the potential (20) is limited to the two first orders,
the observables v2 (25) and ε (27) depend only on two relevant
parameters, namely ρ = c

(1)
1 /c0, obtained from the Fourier

expansion (20) and λ = c
(2)
1 /c

(1)
1 , that is, the coefficient ratio

between the regular and irregular solutions (22) of the potential
equations (12),(21).

Determination of λ. From the previous discussion, λ

is chosen in such a way that v2(TI ) = 0, where ε(TI ) is
maximal. As an illustration of the discussion, the temperature
dependence of both v2 and ε that we obtain with our definition
of the initial condition is displayed in Fig. 1 for a given value of
the geometrical anisotropy parameter ρ = 0.8. The value of TI

is lower but near the speed-of-sound lower limit of temperature
Ts.

FIG. 1. (Color online) Compared temperature dependence for
the momentum v2(T ) and the spatial ε(T ) anisotropies. The curves
correspond to the initial temperature source at T = TI (see text). The
dashed line is for the supersonic lower bound Ts. The geometrical
anisotropy parameter (see text) is ρ = 0.8 and the speed of sound is
the reference one cs = 1/

√
3.

Determination of ρ. The determination of the geometrical
parameter ρ, the first anisotropy coefficient of the potential χ,

see Eq. (20), is governed by the centrality. In Fig. 2 we display
ε(ρ), which shows a quasi-linear behavior. This is in good
agreement with the observed feature of the experimentally
reconstructed eccentricity with an observed proportionality
relation with the centrality c ∼ Npart/Nmax, where Npart is
the number of participant nucleons. Indeed, one expects a
simple relation between ρ and c, up to a rescaling ρ/ρmax ∼
1−Npart/Nmax. With such a choice and using Eq. (25), one
finds a simple proportionality rule of v2 with centrality, namely

v2 = ρmax(1 − c)

×
[

4β
(1)
1 (l) − β

′(1)
1 (l)

2β ′
0(l)

+ λ
4β

(2)
1 (l) − β

′(2)
1 (l)

2β ′
0(l)

]
,

(29)

which is also expected from hydrodynamical simulations [14].
Note that, in this framework, ρmax is indeed independent of the
evolving temperature ratio T/T0, but it may depend on the
initial conditions such as the type of heavy-ion reaction and
the initial center of mass energy (or T0). The T/T0 dependence,

FIG. 2. ε as a function of the geometrical anisotropy parameter
ρ. The observed dependence qualitatively reproduces simulations of
ε as a function of centrality c ∼ Npart/Nmax (see text). In this figure
we use c2

s = 1/3 and ρmax ∼ 0.8.
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given in Eq. (29) by the function within brackets, is uniquely
defined from (25). In our calculations, the linearity of Eq. (25)
for v2 in terms of the normalized second Fourier coefficient ρ

is a direct consequence of the Eq. (12) for the KK potential,
which, together with the azimuthal entropy distribution, is
diagonalized by the Fourier expansion (20). It is clear that
the formulation of the initial eccentricity profile depends on
the initial conditions, and we take the curve in Fig. 2 as an
example.

Figure 1 is interesting also from the point of view of
the dynamics of elliptic flow. Indeed, it is known from
hydrodynamic models [14] that the momentum anisotropy,
represented in our quasi-stationary approximation by the
temperature-dependent v2(T ), rapidly increases as a function
of proper time, and thus with decreasing temperature, to reach
its observed value. It is therefore confirmed to be a good
indicator of the early stage of the hydrodynamic expansion.
On the same footing, the spatial anisotropy, represented by
ε(T ), decreases as the system expands, even reaching negative
values, i.e., changing the sign of the spatial anisotropy. We
observe, in Fig. 1, that the transversally isentropic flow follows
the same qualitative path as a function of temperature cooling.
It is also interesting to note that the final value of v2 (and thus
the value of v2/ε, where ε ≡ ε(TI ) is the initial eccentricity)
is reached rather early and rather independently of the choice
of the initial temperature for the transverse flow.

To restore the time variable through its dependence on the
temperature, we shall make use of a convenient rescaling of
the temperature equivalent to the expansion time, similar to
the one proposed in Ref. [15], where the ratio v2(τ −τ0)/ε(τ0)
with initial time τ0 is displayed for different values of impact
parameter and various values of the speed of sound cs. One
makes the rescaling substitution

τ → cs

R̄
(τ − τ0);

1

R̄
=
√

1〈
x2

1

〉 + 1〈
x2

2

〉 . (30)

where R̄ gives an appropriate average estimate of the expand-
ing size of the plasma. In our temperature-dependent scheme,
we define an analogous rescaling using the thermodynamical
relation (2) by choosing a “rescaled time” variable defined in
terms of the temperature as

θ ≡ cs

R̄

{(
T0

T

)c−2
s

−
(

T0

TI

)c−2
s

}
. (31)

In Fig. 3 we show the theoretical results for v2/ε as a function
of the rescaled variable θ for the solution we considered. Let
us comment on both parts of the figure. On the top, the figure
displays the dependence on centrality via ρ = ρmax(1−c).
The value of ρmax has been chosen fixing v2(τ − τ0)/ε(τ0) to
match with some realistic value (see, e.g., Refs. [1,14]). One
observes the general trend of the θ evolution as a function of
increasing centrality (or decreasing ρ). This trend, which has
been empirically observed in hydrodynamic simulations [15]
is here explained by the nonlinear ε-dependent correction to
v2/ε [see Eq. (28)]. It is easy to realize that the remnant ε

dependence in Eq. (28) is such that it increases for increasing
ε (the denominator is smaller) and thus it decreases with

FIG. 3. (Color online) v2/ε as a function of the “rescaled
time” θ. (Top) Dependence on the centrality via the ρ parameter
at fixed cs = 1/

√
3. (Bottom) Dependence on the EoS via c2

s =
(1/3, 1/5, 1/7, 1/10) at fixed eccentricity ε = 0.8. For this, one is
led to choose, respectively, ρ = (0.8, 1, 2, 4), by tuning the values of
ρmax. The “reduced time” is defined by Eq. (31).

centrality. Hence our scheme reproduces, at least qualitatively,
a trend as a function of an impact parameter observed in
hydrodynamical simulations.

Also, in the bottom graph of Fig. 3 we display the speed-of-
sound dependence of v2(θ )/ε. Thanks to the “time” rescaling
(30), it is possible to superimpose the different curves,
provided an adequate choice of ρ ensures the constant initial
ε(TI ). As also seen numerically, the analytical dependence
over cs of our resulting formula (28) gives a decreasing value of
the ratio v2(θ )/ε(TI ) with decreasing speed of sound. Here also
one finds the observed behavior [15]. However, this hierarchy
is obtained at rather larger θ than observed in Ref. [15]. We
comment on that feature in the next section.

V. CONCLUSION, DISCUSSION, AND OUTLOOK

Let us briefly summarize our results: using the conjecture of
a quasi-stationary and transversally isentropic hydrodynamic
regime governing the transverse flow, and for a given EoS, we
arrive at a closed system of hydrodynamic equations that can
be solved by the hodograph transform x1,2 → T , ϕ. Thanks to
the potential method [7] we can formulate the general solution
and give explicit analytic expressions for the hydrodynamic
features of the transverse flow. In an application to a source
with given temperature and constant effective speed of sound
cs , we are able to give a complete analytic solution. The
applications to the determination of the features of the elliptic
flow are in good qualitative agreement with the observed
(or numerical) characteristics: the temperature dependence
of the spatial and velocity anisotropy (see Fig. 1), the linear
behavior of v2 with centrality [cf. Eq. (29)] for a realistic initial
eccentricity (see Fig. 2), and the centrality and speed of sound
dependence of the ratio v2/ε (see Fig. 3).

Now, possessing an analytic solution, it is possible to
go back to the initial assumptions and discuss their range
of validity. In other terms we may address the question of
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which approximation can we consider our closed system of
transverse equations to be a good approximation of the full
hydrodynamic equations. To quantify this approximation a
meaningful comparison is to give estimates of two quantities
that are relevant for the discussion of the two hypotheses:
(a) a transversally isentropic flow and (b) a quasi-stationary
transverse flow.

To test our conjecture (a) and looking to Eq. (4), we are led
to consider the following ratio of entropy flow gradients:

∂x⊥ (su⊥)

∂τ (su0)
∼ ∂T (su⊥)

∂T (su0)

/
∂T x⊥(T )

∂T τ (T )
≡ 1

V
∂T (su⊥)

∂T (su0),
(32)

where V ≡ ∂T x⊥(T )
∂T τ (T ) is the average, temperature-dependent,

expansion rate. Indeed, this ratio governs the effect of the
time-gradient compared with a typical transverse one. Note,
however that the overall transverse entropy gradient is zero,
by virtue of Eq. (4).

In Eq. (32), we have replaced the kinematical variables by
their temperature-dependent averages defined by our solution.
The approximation range of a transversally isentropic flow is
thus related to the value of the (analytically known) expression
(32) to be larger than 1 in a significant range of reduced time.
In the top graph of Fig. 4 one sees that the transverse over
longitudinal entropy gradient becomes indeed significantly
larger than 1 for a sufficiently high speed of sound. For a
low speed of sound this requires a longer reduced time. This
could explain the features of Fig. 3, bottom, with a “retarded”
ordering with regard to Ref. [15].

To test the consistency of the quasi-stationary approach
(b), in the bottom graph of Fig. 4 we present the expansion
rate itself V ≡ ∂T x⊥(T )

∂T τ (T ) , where the functions τ (T ) and x⊥(T )
are analytically obtained from their definition within our
temperature-dependent scheme, namely from Eqs. (2) and
(10), respectively. Note that this rate is also appearing in
the denominator of Eq. (32), which shows that the two
hypotheses of a transversally isentropic flow and a quasi-
stationary transverse flow are indeed connected, because a
slow motion gives rise to a high transverse over time typical

FIG. 4. (Color online) Comparison of entropy and kinematic
gradients. The analytically known quantities ∂x⊥ (su⊥)/∂τ (su0) and
V ≡ ∂T (x⊥)/∂T (τ ) (see text) are plotted as a function of the reduced
time θ.

entropy gradient. From Fig. 4 we see that both the transversally
isentropic and quasi-stationary hypotheses are consistent at not
too short reduced times and not too small speed of sound. Thus,
these hypotheses give a qualitative analytic understanding of
the transverse flow. Our qualitative picture seems consistent.
However, the time gradient is not negligible with regard to
the transverse derivative, indicating, at least within the initial
conditions we chose, that a quantitative agreement could be
more difficult to be obtained.

Another topic is the range of validity of our approximation
in transverse space. Indeed, because of Eq. (6), the quasi-
stationary approach is only valid in the supersonic dilatation
regime, which requires a large enough transverse velocity,
v⊥ � cs. This could limit the range of validity of the hydrody-
namical flow that has been observed only at small transverse
momentum. It could also compromise the dominance of the
longitudinal Bjorken flow determining the thermodynamical
relations (2). We think that this limitation, which should be
taken into account for a quantitative study difficult to perform
analytically, will not endanger the qualitative but explicit
solution we found. The study of the implications for the
transverse momentum dependence of the elliptic flow deserves
per se a study that goes beyond the scope of the present work,
where no mass relation between fluid velocity and transverse
momentum has been introduced.

As an outlook, it will be interesting to develop the study of
hydrodynamical mechanisms generating the elliptic flow by
the investigation of other phenomenological aspects, such as
the above-mentioned p⊥ dependence and the effect of a weak
viscosity. To reach more quantitative features, it will be useful
to refine the definition of the initial conditions. In fact, it could
be worthwhile to typically define a priori the dependence of
ε as a function of ρ or centrality and find the corresponding
initial conditions3 by inverting, e.g., Eq. (24), in particular,
to examine whether they could identify more definitely the
hydrodynamical mechanisms. On a more theoretical ground,
the existence of rather simple mechanisms may facilitate the
search for a relation to the fundamental gauge field theory and
in particular the gauge/gravity dual approach of the elliptic
flow.

All in all, our results suggest an analytic approach to
the transverse motion of the fluid, which can clarify the
behavior of the elliptic flow obtained from the data or
numerical simulations. This is related to an approximate quasi-
stationary property and a transversally isentropic property of
the transverse flow for which the time dependence of the
system comes mainly through the temperature.
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APPENDIX: QUASI-STATIONARY TRANSVERSE FLOW
OF A PERFECT FLUID

In this section we derive the basic equations determining
the quasi-stationary transverse flow of a perfect fluid. The
energy-momentum tensor of a perfect fluid is

T µν = (e + p)uµuν − pηµν, (A1)

where e is the energy density, p is the pressure, and uµ (µ =
{0, 1, 2, 3}) is the four-velocity in the Minkowski metric ηµν ,
with signature (1,−1,−1,−1). It obeys the equations

∂µT µ
ν = 0 ⇒ uν∂µ[(e + p)uµ]+(e + p)uµ∂µuν −∂νp = 0,

(A2)

with uνu
ν = 1, and thus

uν∂µuν = 0. (A3)

From now on and for simplicity, ∂µ denotes ∂xµ
. Multiplying

the equations of motion (A2) by uν , i.e., projecting them on the
direction of the four-velocity, and using Eq. (A3) we acquire

∂µ[(e + p)uµ] − uµ∂µp = 0. (A4)

Finally, reinserting Eq. (A4) into Eq. (A2) we obtain

(e + p)uµ∂µuν = −uνu
µ∂µp + ∂νp. (A5)

Relation (A5) holds for a general perfect fluid. For a stationary
flow it gives rise to the Bernoulli equation [11], namely

T u0 = T0. (A6)

Let us now focus on the stationary transverse flow [7],
namely setting u3 = 0, which is the regime of interest of the
present work. In this case the equation of motion (A5) for u3

gives ∂3p = 0 and thus the various quantities do not depend
on the longitudinal coordinate x3. Therefore, e, p, and the
velocities are functions of x1, x2 only. The equations of motion
(A5) boil down to

∂1
[
(e + p)u2

1 + p
]+ ∂2[(e + p)u1u2] = 0

∂1[(e + p)u1u2] + ∂2
[
(e + p)u2

2 + p
] = 0 (A7)

∂1[(e + p)u1u0] + ∂2[(e + p)u2u0] = 0,

with u2
0 = 1 + u2

1 + u2
2. Equations (A7) can be expressed in

terms of the temperature and the entropy density. Considering
vanishing chemical potential we have

p + e = T s; de = T ds; dp = sdT . (A8)

Using relations (A8), Eqs. (A7) become

∂1
[
(T s)u2

1

]+ s∂1T + ∂2[(T s)u1u2] = 0 (A9)

∂1[(T s)u1u2] + ∂2
[
(T s)u2

2

]+ s∂2T = 0 (A10)

∂1[(T s)u1u0] + ∂2[(T s)u2u0] = 0. (A11)

Now, the Bernoulli equation (A6) allows one to transform
Eq. (A11) to the entropy conservation in the transverse plane:

∂1(su1) + ∂2(su2) = 0. (A12)

Finally, Eqs. (A9) and (A10), with the use of Eqs. (A3), (A6),
and (A11), give rise to the same equation:

∂1(T u2) = ∂2(T u1). (A13)
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