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Ground state energy of spin polarized quark matter with correlation
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We calculate the ground-state energy of cold and dense spin-polarized quark matter with corrections due to
correlation energy (Ecorr). Expressions for Ecorr both in the nonrelativistic and ultrarelativistic regimes have been
derived and compared with the exchange and kinetic term present in the perturbation series. It is observed that
the inclusion of correlation energy does not rule out the possibility of the ferromagnetic phase transition at low
density within the model proposed by Tatsumi [Phys. Lett. B489, 280 (2000)]. We also derive the spin stiffness
constant in the high-density limit of such a spin-polarized matter.
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I. INTRODUCTION

The possibility of ferromagnetic phase transition in dense
quark matter was first discussed by Tatsumi [1] where it
was shown that quark liquid interacting through one gluon
exchange shows spontaneous magnetic instability at low den-
sities. Such an investigation was motivated by the observation
of a strong magnetic field in neutron star. Moreover, the
theoretical conjectures about the possible existence of quark
stars provide additional impetus to examine this issue further
[2–6].

The underlying mechanism of such a phase transition for
slow-moving massive quark is similar to what one observes
in case of interacting electron gas [7,8] in a neutralizing
positive charge background where the electrons interact only
by the exchange interaction and the contribution of the direct
term cancels with the background contribution. In case of
interacting electron gas, the kinetic energy is minimum in
unpolarized state; the exchange energy, however, favors spin
alignment. These are two competing phenomena that also
depend on density. It is seen that the kinetic energy dominates
at higher density and as the density is lowered the exchange
energy becomes larger, at some point turning the electron
gas suddenly into a completely polarized state. This is the
mechanism of ferromagnetism in electron gas interacting via
Coulomb potential [9].

The exchange energy for quark matter interacting via
one gluon exchange (OGE) is also attractive and becomes
dominant at some density giving rise to ferromagnetism
[1–4]. However, there are similarities and differences between
quark matter and electron gas as discussed in Ref. [1].
For slow-moving massive quarks the dynamics are very
similar to what happens in electron gas, while in the
relativistic case a completely different mechanism works
when the spin-dependent lower component of the Dirac
spinor becomes important. It should also be noted that the
exchange energy is negative for massive strange quark at
low densities while it is always positive for massless u

and d quarks, as observed in Ref. [10] and subsequently in
Refs. [1,11].
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The magnetic property of the quark matter was also studied
in Ref. [2] by evaluating the effective potential by employing
magnetic moment of a quark and treating this as an order
parameter. Unlike in Ref. [1], in this model u, d, and s quarks,
i.e., all of these flavors, show ferromagnetic phase transition
at various densities. In Ref. [4], we revisited this problem
and have evaluated Fermi liquid parameters for spin-polarized
quark matter that were subsequently used to derive single-
particle spectrum and total energy density as a function of
the ξ = (n+

q − n−
q )/(n+

q + n−
q ). There it was shown that such

a phase transition within the OGE model and parameter set of
Ref. [1] is possible at very low density.

In Refs. [1,3] and [4] calculations were restricted only
to the Hartree-Fock level and the higher-order terms were
ignored. The computation of the ground-state energy, however,
requires evaluation of the diagrams beyond the exchange
loop viz. the inclusion of correlation energy as emphasized
in Ref. [1]. This is rather tricky as the higher-order terms
are plagued by infrared divergences due to the exchange of
massless bosons like gluons (or photons), indicating the failure
of naive perturbation theory. The problem can be handled by
summing a class of diagrams that makes the perturbation series
convergent and receives logarithmic corrections. In the case of
degenerate electron matter this pioneering work was done by
Gell-Mann and Brueckner (GB), commonly known as GB
theory, where the correlation energy (Ecorr) of an electron gas
at high density was calculated [7]. The correlation energy is
actually the higher-order correction to the ground-state energy
beyond the exchange term in the perturbation series defined
by [7,8]

Ecorr = E − Eex − Ekin. (1)

Here, Ecorr, Eex, and Ekin correspond to correlation, ex-
change, and kinetic energy density, respectively. In general,
for electron gas interacting via Coulomb force it takes the
following form [7,8]

Ecorr = A ln rs + C + O(rs). (2)

At large Fermi momentum (pf ), i.e., in the limit rs = 0,
the result becomes exact [12,13]. For the case of electron gas,
the inverse density is set equal to 4

3πr3
0 and the dimensionless

parameter rs is defined as r0 divided by Bohr radius [7]. Here
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FIG. 1. Gluon self-energy.

we derive a similar expression for the dense quark matter with
arbitrary spin polarization with appropriate modifications.

The model adopted in the present work is same as that of
Ref. [1] except here we go beyond O(g2) and include ring
diagrams to evaluate the correlation energy of spin-polarized
quark matter. This, together with the contribution of Ekin and
Eex, as we shall see, has the small ξ expansion

E = E(ξ = 0) + 1
2βsξ

2 + · · · . (3)

Here, βs = ∂2E
∂ξ 2 |ξ=0 is defined to be the spin stiffness

constant in analogy with Refs. [14,15] with rs = g2( 3π
4 )1/3.

It is to be noted that in Eq. (3) the first term corresponds to
unpolarized matter with correlation energy having the form of
Eq. (2). Clearly, this is reminiscent of what one obtains for the
degenerate electron gas [14].

The derivation of Ecorr here requires the evaluation of the
gluon self-energy in spin asymmetric quark matter that can
be used to construct the in-medium one-loop-corrected gluon
propagator with explicit spin parameter dependence. Apart
from the calculation of correlation energy, this might have
applications in evaluation, for example, of the Fermi liquid
parameter (FLP) in spin-polarized matter or spin susceptibility
or quantities that can be expressed in terms of FLPs [4,11,16,
17]. In the present work, however, we restrict ourselves to the
evaluation of the ring diagrams only.

The article is presented as follows. In Sec. II, we derive the
expression for gluon self-energy in polarized quark matter—an
essential ingredient for the calculation of correlation energy.
In Sec. III, we calculate ground-state energy with correlation
correction for the polarized matter. Subsequently, we also
compare exchange and correlation energy density. In Sec. IV
we summarize and conclude. The detailed expression of
various matrix elements required to evaluate polarization
tensor have been relegated to the Appendix.

II. GLUON SELF-ENERGY IN POLARIZED MATTER

To calculate the correlation energy of spin-polarized quark
matter one needs to calculate the gluon self-energy in matter

with arbitrary spins. This spin-dependent gluon polarization
arises from the quark loop shown in Fig. 1 [18]. Mathemati-
cally [19,20],

�µν = Nf g2

2

∫
d3p

(2π )3

∑
s=±

θs
p

2εs
p

{
K2

K4 − 4(P ·K)2

×
∑
s ′=±

[
Mss ′

µν(P + K,P ) + Mss ′
µν(P,P − K)

]

− 2(P · K)

K4 − 4(P · K)2

∑
s ′=±

[
Mss ′

µν(P + K,P )

−Mss ′
µν(P,P − K)

]}
. (4)

Here, Mss ′
µν is related to the Compton-scattering amplitude

as shown in Fig. 2. To derive Eq. (4), following Refs. [1,4] we
use projection operator � (a) = 1

2 (1 + γ 5a/) at each vertex.
The momentum integration is performed at the Fermi surface
restricted by θ±

p = θ (p±
f − |p|).

Now we choose K ≡ (k0, 0, 0, |k|), P ≡ (εp, |p|sin θ

cos φ, |p|sin θsin φ, |p|cos θ ), s ≡ ± (sin θ cos φ,sin θ sin φ,

cos θ ), and gµν = (1,−1,−1,−1). Note that the upper- and
lowercase fonts are used to distinguish between four and three
vectors.

From Fig. 2(a) the scattering amplitude becomes

Mdir,ss ′
µν (P + K,P )

= −bµPν(a · K) − gµν(b ·P )(a · K) + bµKν(a · P )

+ aµPν(b ·K) − gµν(a ·P )(b ·K) + Pµ[−Kν(a · b − 1)

− 2Pν(a · b − 1) + bν(a ·K) + 2bν(a ·P ) + aν(b · K)]

+ aµKν(b ·P ) + 2aµPν(b ·P ) − 2gµν(a ·P )(b · P )

−Kµ[Pν(a · b − 1) − bν(a ·P ) + aν(b ·P )] + (K · P )

× [gµν(a · b − 1) − bµaν − aµbν]. (5)

The components of the four-pseudovector bµ(or aµ) in
a frame in which the particle is moving with momentum
p(or p + k) are found by the Lorentz transformation from the
rest frame as given by [1,4],

a0 = (p + k) · s

mq

; �a = s + (p + k)[(p + k) · s]

mq(εp+k + mq)
;

(6)

b0 = p · s ′

mq

; �b = s ′ + p(p · s ′)
mq(εp + mq)

.

(P + K, s′)

(P, s)(P, s)

K K

(P, s) (P, s)

K K

(P −K, s′)

(a) (b)

FIG. 2. Compton-scattering amplitude.
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Similarly, from Fig. 2(b) we have,

Mex,ss ′
µν (P,P − K)

= −b̃µPν(ã ·K) + gµν(b̃ ·P )(ã ·K) + b̃µKν(ã ·P )

− ãµPν(b̃ ·K) + gµν(ã · P )(b̃ ·K) − Pµ[−Kν(ã · b̃ − 1)

+ 2Pν(ã · b̃ − 1) + b̃ν(ã · K) − 2b̃ν(ã ·P ) − ãν(b̃ ·K)]

− ãµKν(b̃ ·P ) + 2ãµPν(b̃ · P ) − 2gµν(ã ·P )(b̃ ·P )

−Kµ[−Pν(ã · b̃ − 1) + b̃ν(ã ·P ) + ãν(b̃ · P )]

− (K ·P )[gµν(ã · b̃ − 1) − b̃µãν − ãµb̃ν], (7)

where

ã0 = p · s

mq

; �̃a = s + p(p · s)

mq(εp + mq)
;

(8)

b̃0 = (p − k) · s ′

mq

; �̃b = s ′ + (p − k)[(p − k) · s ′]
mq(εp−k + mq)

.

Now we define matrix elements Mss ′
µν in terms of flip (f)

and nonflip (nf) interactions whereMnf
µν = Ms=s ′

µν andMf
µν =

Ms=−s ′
µν [1,4]. Using Eq. (5) and Eq. (7) we have

Mf +nf
00 (P + K,P ) + Mf +nf

00 (P,P − K) = 8ε2
p

Mf +nf
00 (P + K,P ) − Mf +nf

00 (P,P − K) = −4(P ·K)

Mf +nf
33 (P + K,P ) + Mf +nf

33 (P,P − K) = 8p2cos2 θ

Mf +nf
33 (P + K,P ) − Mf +nf

33 (P,P − K) = 4[2pkcos θ

+ (P ·K)], (9)

and

Mf +nf
11 (P + K,P ) + Mf +nf

11 (P,P − K)

= Mf +nf
22 (P + K,P ) + Mf +nf

22 (P,P − K) = 4p2sin2 θ,

(10)

and

Mf +nf
11 (P + K,P ) − Mf +nf

11 (P,P − K)

= Mf +nf
22 (P + K,P ) − Mf +nf

22 (P,P − K) = 4(P ·K).

(11)

The detailed expressions of the matrix element Mss ′
µν are

given in the Appendix. In the present work we consider one
flavor quark matter. Generalization for the multiflavor system
is straightforward. Using Eq. (4) and Eqs. (9)–(11) we get

�11 = g2

8π3

∑
s=±

∫ ps
f

0

d3p

εp

[
K2p2 sin2 θ − 2(P · K)2

K4 − 4(P · K)2

]
, (12)

�00 = g2

4π3

∑
s=±

∫ ps
f

0

d3p

εp

[
K2εp

2 + (P · K)2

K4 − 4(P · K)2

]
, (13)

�33 = g2

4π3

∑
s=±

∫ ps
f

0

d3p

εp

×
[
K2p2 cos2 θ − 2pk cos θ (P · K) − (P · K)2

K4 − 4(P · K)2

]
.

(14)

We are interested in evaluating longitudinal (�L) and
transverse (�T ) components of the polarization tensor. We
define �L = −�00 + �33 and �T = �11 = �22. In the long-
wavelength limit (|p| ∼ pf and |k| � pf ), i.e., for low-lying
excitation near the Fermi surface, K4 can be neglected
compared to 4(P · K)2 in the denominators of Eqs. (12)–(14)
[21]. The longitudinal and transverse polarization in this limit
are determined to be

�L = g2

4π2

(
C2

0 − 1
)∑
s=±

ps
f εs

f

[
−1 + C0

2vs
f

ln

(
C0 + vs

f

C0 − vs
f

)]
,

(15)

�T = g2

16π2
C0

∑
s=±

ps
f

2

[
2C0

vs
f

+
(

1 − C2
0

vs
f

2

)
ln

(
C0 + vs

f

C0 − vs
f

)]
.

(16)

Here, we take C0 = k0/|k| and v±
f = pf (1 ± ξ )1/3/

(p2
f (1 ± ξ )2/3 + m2

q)1/2 to cast the results in a more familiar
form as presented in Ref. [21] for ξ = 0. It might be noted here
that, although the final expressions for the longitudinal and
transverse polarization look rather similar to what one obtains
in the case of unpolarized matter [21] with only a difference in
v±

f and summation over the spins, the calculation of the matrix
elements with explicit spin dependencies are rather involved
(see the Appendix).

�L and �T have two limiting values, corresponding to the
nonrelativistic (nr) and the ultrarelativistic (ur) regime. In the
nonrelativistic limit (ε±

f → mq)

�nr
L = − g2

4π2
mq

∑
s=±

ps
f

[
−1 + C0

2vs
f

ln

(
C0 + vs

f

C0 − vs
f

)]
, (17)

�nr
T = g2

16π2
C0

∑
s=±

ps
f

2

[
2C0

vs
f

+
(

1 − C2
0

vs
f

2

)
ln

(
C0 + vs

f

C0 − vs
f

)]
.

(18)

Here vs
f = ps

f /mq . These expressions were derived in
Refs. [12,22] for unpolarized electron gas. In this limit, the
current-current interaction is inherently small, for which this
term can be neglected compared to the Coulomb interaction
to calculate correlation energy. Here, Re�T ∼ (k0/|k|)2 and
Im�T ∼ (k0/|k|) when both k0 → 0 and |k| → 0. It is
apparent from this behavior of �T that the current-current
interaction remain unscreened at zero frequency [22].

In the ultrarelativistic limit (εs
f → ps

f ) the polarization
tensors take the following forms:

�ur
L = g2

4π2

∑
s=±

ps
f

2 sin−2 θE(1 − θE cot θE), (19)

�ur
T = g2

8π2

∑
s=±

ps
f

2[1 − sin−2 θE(1 − θE cot θE)], (20)

with θE = tan−1(|k|/k0). For ξ = 0, these results are same as
those of Ref. [21]. In the next section, Eqs. (15)–(20) are used
to evaluate the contribution of the ring diagrams.
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It might not be out of context here to mention that once
we have the expressions of �L(T ), a one-loop-corrected gluon
propagator in polarized quark matter can easily be constructed.
This forms the basis for calculation of various physical
quantities, including the FLPs, which, without such medium
corrections, suffer from infrared divergences [4,11,16].

III. GROUND-STATE ENERGY WITH CORRELATION

The leading contributions to the ground-state energy are
given by the three terms viz. kinetic, exchange, and correlation
energy densities, i.e.,

E = Ekin + Eex + Ecorr + O(rs). (21)

In the high-density limit O(rs) vanish, the result becomes
exact [13]. Ekin is given by [1,4]

Ekin = 3

16π2

{
pf (1 + ξ )1/3

√
p2

f (1 + ξ )2/3 + m2
q

× [
2p2

f (1 + ξ )2/3 + m2
q

]

−m4
q ln


pf (1 + ξ )1/3 +

√
p2

f (1 + ξ )2/3 + m2
q

mq




+ [ξ → −ξ ]

}
, (22)

where ξ is the polarization parameter with the condition
0 � ξ � 1. Here n+

q and n−
q represent densities of spin-up and

spin-down quarks respectively and nq = n+
q + n−

q denote total
quark density. Then the Fermi momenta in the spin-polarized
quark matter are defined as p+

f = pf (1 + ξ )1/3 and p−
f =

pf (1 − ξ )1/3, where pf = (π2nq)1/3, is the Fermi momentum
of the unpolarized matter (ξ = 0).

In the nonrelativistic (nr) and the ultrarelativistic (ur) limit
kinetic energy density becomes [1,4],

Enr
kin = 3p5

f

20π2mq

[(1 + ξ )5/3 + (1 − ξ )5/3], (23)

Eur
kin = 3p4

f

8π2
[(1 + ξ )4/3 + (1 − ξ )4/3]. (24)

The first correction due to interaction to the ground-state
energy is given by the exchange energy density. This arises
from two quarks interchanging positions in the Fermi sea by
exchanging a virtual gluon [23]. The exchange energy density
was calculated in Ref. [4] within Fermi liquid theory approach.
One can directly evaluate the loop diagram to calculate Eex as
shown in Fig. 3 [1].

For polarized quark matter, Eex, consists of two terms Eex =
Enf

ex + E
f
ex. Here [1],

Enf
ex = 9

2

∑
s=±

∫∫
d3p

(2π )3

d3p′

(2π )3
θ
(
ps

f − |p|)θ(
ps

f − |p′|)f nf
pp′ ,

(25)

(P, s)

(P ′, s′)

FIG. 3. Two-loop contribution to exchange energy density. Solid
line represents the quark propagator and the wavy line represents
gluon.

Ef
ex = 9

∫∫
d3p

(2π )3

d3p′

(2π )3
θ (p+

f − |p|)θ (p−
f − |p′|)f f

pp′ ,

(26)

where fpp′ is the two-particle forward-scattering amplitude
and is given by [1,4]

f ss ′
pp′ = 2g2

9εpε′
p

1

(P − P ′)2

{
2m2

q − P · P ′ − (p · s)(p′ · s ′)

+m2
q(s · s ′) + 1

(εp + mq)(εp′ + mq)

× [mq(εp + mq)(p′ · s)(p′ · s ′)
+mq(εp′ + mq)(p · s)(p · s ′)

+ (p · p′)(p · s)(p′ · s ′)]
}

. (27)

where, εp =
√
p2 + m2

q . In the nonrelativistic and the ultrarel-
ativistic limit Eex yields [1,4],

Enr
ex = − g2

8π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3], (28)

Eur
ex = g2

32π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3].

(29)

Now we come to the central aim of the present work, i.e., the
evaluation of the correlation energy of dense quark matter with
arbitrary spin polarization; the leading contribution to Ecorr can
be obtained by adding the contributions of ring diagrams as
shown in Fig. 4. It is to be noted that each of these diagrams
are infrared divergent while their sum is finite [7,8,21,23,24]
and are given by:

Ecorr = EL
corr + ET

corr = − i

2

∫
d4K

(2π )4
{[ln(1 − D0�L)

+D0�L] + 2[ln(1 − D0�T ) + D0�T ]}. (30)

+ + + · · ·

FIG. 4. The series of ring diagrams.
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Here D0 is the free gluon propagator. The spatial integral
of Eq. (30) can be reduced to one for the radial variable only,
because all the polarization propagators are independent of
the direction of three-momentum transfer k. A Wick rotation
is performed on the fourth component of the integration mo-
mentum (k0 → ik0) so that space metric becomes Euclidean
[21,25]. With K2

E = k2
0 + |k|2 = −K2 and tan θE = |k|/k0,

Eq. (30) becomes,

Ecorr = 1

(2π )3

∫ ∞

0
K2

EdK2
E

∫ π/2

0
sin2 θEdθE

×
{[

ln

(
1 + �L

(
K2

E, θE

)
K2

E

)
− �L

(
K2

E, θE

)
K2

E

]

+2

[
ln

(
1 + �T

(
K2

E, θE

)
K2

E

)
− �T

(
K2

E, θE

)
K2

E

]}
.

(31)

Infrared divergences would arise in Eq. (31), if we were to
expand the logarithms in powers of �i because of the nonzero
value of �i(K2

E, θE) at K2
E = 0. This can be isolated by

writing K2
E = 0 whenever possible in the integrand. Following

Refs. [23,26], we have

Ecorr � 1

(2π )3

∫ ∞

0
K2

EdK2
E

∫ π/2

0
sin2 θEdθE

×
{[

ln

(
1 + �L(0, θE)

K2
E

)
− �L(0, θE)

K2
E

]

+ 2

[
ln

(
1 + �T (0, θE)

K2
E

)
− �T (0, θE)

K2
E

]

+ 1

2K2
E

1

K2
E + ε2

f

[
�2

L(0, θE) + 2�2
T (0, θE)

]}
.

(32)

Performing K2
E integration the ring energy becomes [21,

23,26]

Ecorr � 1

(2π )3

1

2

∫ π/2

0
sin2 θEdθE

{
�2

L

[
ln

(
�L

ε2
f

)
− 1

2

]

+ 2�2
T

[
ln

(
�T

ε2
f

)
− 1

2

]}
. (33)

To proceed further, we first express �L and �T in terms of
polar variables. From Eq. (15) and Eq. (16) we obtain

�L = g2

4π2

∑
s=±

ps
f εs

f

sin2 θE

[
1 − cot θE

vs
f

tan−1
(
vs

f tan θE

)]
,

(34)

�T = g2

8π2

∑
s=±

ps
f

2 cot θE

[
−cot θE

vs
f

+
(

1 + cot2 θE

vs
f

2

)
tan−1

(
vs

f tan θE

)]
. (35)

These are then inserted in Eq. (33) and θE integration is
performed numerically to estimate Ecorr for various ξ as shown
in Fig. 5.

0 0.1 0.2 0.3 0.4

n
q
(fm

-3
)

-12

-10

-8

-6

-4

-2

E
co

rr
/n

q (
M

eV
)

ξ = 0.1
ξ = 0.5
ξ = 0.9

FIG. 5. Correlation energy (Ecorr) as a function of density for
different polarization parameters.

We can also derive the analytic expression for the correla-
tion energy in the nonrelativistic and ultrarelativistic case by
using relevant �L and �T as given in Eqs. (17) and (18) and
Eqs. (19) and (20) respectively.

In the nonrelativistic limit it is given by

Enr
corr = g4 ln g2

(2π )6
(1 − ln 2)

1

3
mqp

3
f . (36)

Note that the correlation energy here is independent of
spin-polarization parameter ξ . This is because it is proportional
to p3

f when ξ -dependent terms cancel. In deriving Eq. (36)
we consider exchange of longitudinal gluons only. It is to
be mentioned that similar expressions for degenerate electron
gas interacting via static Coulomb potential can be found in
Refs. [26,27].

In the ultrarelativistic limit, the leading g4 ln g2 order
contribution to EL

corr is derived to be

Eur,L
corr = g4 ln g2

(2π )6
(1 − ln 2)

1

12
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3

+ 2(1 − ξ 2)2/3]. (37)

The term (1 − ln 2) is the reminiscent of what one obtains
in the nonrelativistic electron plasma as was first obtained by
GB [7]. In the relativistic case, such a term does not appear
in the final expression of Ecorr, where a similar term with
opposite sign arise out of the magnetic interaction mediated
by the exchange of transverse gluons as

Eur,T
corr = g4 ln g2

(2π )6

(
ln 2 − 5

8

)
1

12
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3

+ 2(1 − ξ 2)2/3]. (38)

By adding Eq. (37) and Eq. (38) one obtains

Eur
corr = g4 ln g2

2048π6
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3].

(39)

For ξ = 0, the correlation energy for unpolarized matter
follows [21,23,27]. That the term ln 2 disappear from the
relativistic ring energy is known from the work [21] where
a detailed calculation of the correlation energy for the nuclear
matter ground state has been performed. Furthermore, one
may also note that in the nonrelativistic limit Eex and Ecorr
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FIG. 6. Comparison of exchange and correlation energy in polar-
ized quark matter as a function of density for different polarization
parameters.

contribute with opposite sign while in the ultrarelativistic limit,
both of them contribute with same sign.

Using Eq. (34) and Eq. (35) correlation energy is estimated
numerically that is valid for all the kinematic regimes. For
this, following Refs. [1,4], we take αc = g2/4π = 2.2 and
mq = 300 MeV. In Fig. 5 we plot density dependence of
correlation energy for various ξ . This shows that at a given
density, with higher value of ξ, Ecorr increases. In Fig. 6, we
compare exchange and correlation energy density. It shows
system becomes more bound when quark matter changes its
phase from unpolarized to polarized matter. With increasing
ξ, Ecorr remains attractive; however, its value decreases as
observed in both Figs. 5 and 6. In Fig. 7 we plot ground-state
energy as a function of polarization parameter ξ . Hence we
conclude that the quark matter interacting via OGE becomes
polarized at lower density, whereas at higher density it
becomes unpolarized. This clearly shows phase transition is
first order and critical density is still around normal nuclear
matter density nc

q ∼ 0.16 fm−3 [1,4]. In this regime, it is seen
that Ecorr makes the system more bound.

To derive the spin stiffness constant in the high-density limit
using Eqs. (24), (29), and (39) we have

βs = ∂2E

∂ξ 2

∣∣∣∣
ξ=0

= βkin
s + βex

s + βcorr
s

= p4
f

3π2

[
1 − g2

6π2
− g4

384π4
(ln rs − 0.286)

]
. (40)

Here, the logarithmic term arises from the correlation
correction.
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FIG. 7. Total energy of quark liquid as a function of polarization
parameter at nq = 0.1 fm−3 and nq = 0.25 fm−3. The critical density
is around nc

q = 0.16 fm−3 in this case.

IV. SUMMARY AND CONCLUSION

In this work we derive the expressions for the gluon
self-energy in spin-polarized quark matter and calculate the
ground-state energy of such a system up to term O(g4) that
includes corrections due to correlation effects. The analytical
expressions for the correlation energy in two limiting cases
(non-/ultrarelativistic) are presented and compared with Eex

and Ekin. It is shown that the correlation energy for polarized
quark matter is comparatively larger than the unpolarized
one, although it is always attractive. We find that numerically
the contribution of Ecorr to the total energy is not found to
be large and therefore, although qualitatively important, it
is not the main factor in determining whether quark matter
is ferromagnetic. With out this, however, the results remain
incomplete because of the associated divergences of the
terms beyond exchange diagrams [12,13]. Furthermore, this
is an important first step to include the corrections due to
correlations to the spin susceptibility [28–30]. In this work
we present spin stiffness constant βs of dense quark system
only in the high-density limit. A detailed study of this is now
underway and shall be reported elsewhere [31].

The inclusion of correlation energy, as shown here, does
not rule out the possibility of ferromagnetic phase transition in
quark matter at low density; rather, it makes it more probable
within the model and parameter set used by Tatsumi [1]
that was borrowed from the bag model and was also used
in Ref. [10]. Clearly the critical density at which the spin-
polarized ferromagnetic state might appear depends strongly
on the quark mass and the critical density increases with
increasing mass; this might change our numerical estimates.

Further uncertainty to the estimation of the critical density
from the present analysis comes from the fact that we here
restrict ourselves only to OGE diagrams and one flavor system.
In this regime, multigluon exchange processes [5] might play
an important role. More work in this direction is therefore
necessary to examine this issue, especially for multiflavor
systems that might appear in astrophysics. Leaving aside
these questions, the evaluation of the gluon self-energy and
the estimation of correlation energy in polarized matter, as
mentioned in the text, nevertheless constitutes an important
component for the study of the properties of dense quark
system.
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APPENDIX

In the text Compton-scattering amplitudes are given as a
sum of flip and nonflip terms. Here we give detail expres-
sion of Mss ′

11 (P + K,P ) + Mss ′
11 (P,P − K) with explicit spin

indices. With the help of Eq. (5) and Eq. (7) we have

Mss ′
11 (P + K,P ) + Mss ′

11 (P,P − K)

= T1 + T2 + T3 + T4 + T5 + T6, (A1)
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where

T1 = (b · P )(a · K) − (b̃ · P )(ã · K)

= εpk0

m2
q

[(p · s)(k · s ′) + (k · s)(p · s ′)]

− k0

mq

[(k · s)(p · s ′)] − k0p
2

m2
q(εp + mq)

[(p · s)(k · s ′)

+ (k · s)(p · s ′)] − εp

mq

[(k · s)(k · s ′)]

+ p2

mq(εp + mq)
[(k · s)(k · s ′)] − εp(p · k)

m2
q(εp + mq)

× [(p · s)(k · s ′) + (k · s)(p · s ′)]

+ (p · k)

mq(εp + mq)
[2(k · s)(p · s ′) − (k · s)(k · s ′)]

− k0(p · k)

m2
q(εp + mq)

[(p · s)(p · s ′) − (p · s)(k · s ′)]

+ p2(p · k)

m2
q(εp + mq)2

[(p · s)(k · s ′) + (k · s)(p · s ′)]

+ p2k2

m2
q(εp + mq)2

[(p · s)(p · s ′) + (k · s)(p · s ′)]

+ (p · k)2

m2
q(εp + mq)2

[(p · s)(p · s ′) − (p · s)(k · s ′)]

− εpk2

m2
q(εp + mq)

[(p · s)(p · s ′) + (k · s)(p · s ′)]

+ k2

mq(εp + mq)
[(p · s)(p · s ′) + (k · s)(p · s ′)], (A2)

T2 = (a · P )(b · K) − (ã · P )(b̃ · K)

= εpk0

m2
q

[(p · s ′)(k · s) + (p · s)(k · s ′)]

− εp

mq

[(k · s)(k · s ′)] − k0

mq

[(p · s)(k · s ′)]

+ εp(p · k)

m2
q(εp + mq)

[(p · s)(k · s ′) + (k · s)(p · s ′)]

+ p · k

mq(εp + mq)
[2(p · s)(k · s ′) + (k · s)(k · s ′)]

+ p2

mq(εp + mq)
[(k · s)(k · s ′)]

− p2k0

m2
q(εp + mq)

[(p · s)(k · s ′) + (k · s)(p · s ′)]

+ p2(p · k)

m2
q(εp + mq)2

[(p · s)(k · s ′) + (k · s)(p · s ′)]

− k0(p · k)

m2
q(εp + mq)

[(p · s)(p · s ′) + (k · s)(p · s ′)]

+ (p · k)2

m2
q(εp + mq)2

[(p · s)(p · s ′) + (k · s)(p · s ′)]

− k2εp

m2
q(εp + mq)

[(p · s)(p · s ′) − (p · s)(k · s ′)]

+ k2

mq(εp + mq)
[(p · s)(p · s ′) − (p · s)(k · s ′)]

+ p2k2

m2
q(εp + mq)2

[(p · s)(p · s ′) − (p · s)(k · s ′)],

(A3)

T3 = 2p1
2[(a · b) + (ã · b̃) − 2]

= p2sin2 θ

{
1

mq
2

[2(p · s)(p · s ′) + (p · s ′)(k · s)

− (p · s)(k · s ′)] − 2(s · s ′) − 1

mq(εp + mq)

× [4(p · s)(p · s ′) + 2(k · s)(k · s ′)]

− p2

m2
q(εp + mq)2

[2(p · s)(p · s ′) − (p · s)(k · s ′)

+ (p · s ′)(k · s)] − (p · k)

m2
q(εp + mq)2

× [(p · s)(k · s ′) + (p · s ′)(k · s)] − 2

}
, (A4)

T4 = 2[(a · P )(b · P ) + (ã · P )(b̃ · P )]

= 2

{
εp

2

m2
q

[2(p · s)(p · s ′) + (p · s ′)(k · s) − (p · s)(k · s ′)]

− εp

mq

[4(p · s)(p · s ′) + (p · s ′)(k · s) − (p · s)(k · s ′)]

+ p2

mq(εp + mq)
[4(p · s)(p · s ′) + (p · s ′)(k · s)

− (p · s)(k · s ′)] − εpp2

m2
q(εp + mq)

[4(p · s)(p · s ′)

+ 2(p · s ′)(k · s) − 2(p · s)(k · s ′)]

+ p2(p · k)

m2
q(εp + mq)2

[(p · s)(k · s ′) + (p · s ′)(k · s)]

+ 2(p · s)(p · s ′) − εp(p · k)

m2
q(εp + mq)

× [(p · s)(k · s ′) + (p · s ′)(k · s)]

+ (p · k)

mq(εp + mq)
[(p · s)(k · s ′) + (p · s ′)(k · s)]

+ p4

m2
q(εp + mq)2

[2(p · s)(p · s ′) − (p · s)(k · s ′)

+ (p · s ′)(k · s)]

}
, (A5)

T5 = 2(P · K)(a1b1 − ã1b̃1)

= p2sin2 θ(P · K)

m2
q(εp + mq)2

[(p · s)(k · s ′) + (p · s ′)(k · s)],

(A6)
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T6 = (P · K)(a · b − ã · b̃)

= (P · K)

m2
q

{
[(p · s)(k · s ′) + (p · s ′)(k · s)]

− 2mq

(εp + mq)
[(p · s)(k · s ′) + (p · s ′)(k · s)]

− p2

(εp + mq)2
[(p · s)(k · s ′)(p · s ′)(k · s)]

+ p · k

(εp + mq)2
[2(p · s)(p · s ′) − (p · s)(k · s ′)

+ (p · s ′)(k · s)]

}
. (A7)

Similarly, one can derive terms like [M11(P + K,P ) −
M11(P,P − K)], [M22(P + K,P ) ±M22(P,P−K)], etc.,
with the help of Eq. (6) and Eq. (8). After explicit calculation
of those terms, �L,T can be evaluated.
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