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We study photoproduction off nuclei based on a self-consistent and covariant many-body approach for the
pion and isobar propagation in infinite nuclear matter. For the first time the t-channel exchange of an in-medium
pion is evaluated in the presence of vertex correction effects consistently. In particular the interference pattern
with the s-channel in-medium nucleon and isobar exchange contribution is considered. Electromagnetic gauge
invariance is kept as a consequence of various Ward identities obeyed by the computation. Adjusting the set of
Migdal parameters to the data set we predict an attractive mass shift for the isobar of about 50 MeV at nuclear
saturation density.

DOI: 10.1103/PhysRevC.80.024902 PACS number(s): 25.20.Dc, 24.10.Jv, 21.65.−f, 13.75.Gx

I. INTRODUCTION

There is empirical evidence from photon nucleus absorption
cross sections that the delta resonance changes its properties
in nuclear matter substantially already at nuclear saturation
density [1–3]. The microscopic description of the isobar
self-energy is a challenge taken up by various groups [4–16].
Naturally, the study of the latter requires a solid understanding
of the pion spectral function in nuclear matter (see, e.g.,
Refs. [16–19] and references cited in Ref. [16]).

The phenomenological spreading potential [1] suggests a
small repulsive mass shift of the isobar together with an
increase of its width. Also recent data on electroproduction
of isobars off helium-3 appear consistent with the latter
interpretation [3]. With the exceptions of Refs. [5,11,14]
model computations of the isobar self-energy claim results
compatible with a small repulsive mass shift. On naive grounds
one may reject the works [5,11,14] that predict a sizable
attractive mass shift for the isobar as being unrealistic and
incompatible with nuclear photoabsorption data. However,
the situation is not clear-cut. First, one may observe that
various detailed works [9,12] adjust their model parameters
to reproduce the spreading potential [1] and therefore cannot
be taken as a microscopic confirmation of a repulsive isobar
mass shift. Second, one should recall the argument put
forward in Refs. [5,6,11] that the apparent mass shift seen in
photoabsorption data is affected significantly by short-range
correlation effects. Thus an attractive isobar mass shift cannot
be ruled out, since the phenomenological spreading potential
[1] is effective in the sense that the latter effects were not
explicitly accounted for.

The purpose of this work is a study of the photoabsorption
cross section off nuclei based on a self-consistent and covariant
many-body approach for the pion and isobar propagation in
infinite nuclear matter that takes into account short-range cor-
relation effects consistently. We will apply the pion and isobar
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propagator as determined in Ref. [16] within a novel covariant
approach where vertex effects parametrized by Migdal’s pa-
rameters are considered self-consistently. Phenomenological
soft form factors that would suppress vertex correction effects
artificially are avoided in Ref. [16]. Scalar and vector mean
fields for the nucleon and isobar are incorporated consistently.

In the isobar region the t-channel pion-exchange process is
known to define a sizable background term for the γ p → π+ n

reaction [4,17]. Thus it is crucial to consider the t-channel
exchange of an in-medium pion on equal footing as the in-
medium exchange of the isobar when computing the photoab-
sorption cross section of nuclei. In this work, for the first time,
photoabsorption is considered in the presence of short-range
correlation effects in the γ π π, γ N �, γ π N �,π N �, and
π N N vertices. Electromagnetic gauge invariance is kept as
a consequence of a series of Ward identities obeyed in the
computation. In particular, the interference of the in-medium
s-channel isobar exchange and the t-channel in-medium pion
exchange is considered.

The set of Migdal parameters is adjusted to obtain
agreement with nuclear photoabsorption data [2]. As a firm
prediction we obtain an attractive mass shift for the isobar of
about 50 MeV at nuclear saturation densities. A comprehensive
discussion of the relevance of various many-body effects is
given.

II. PHOTOABSORPTION CROSS SECTION

We specify the isobar-hole model in its covariant form
[16,20,21]. The interaction of pions with nucleons and isobars
is modeled by the leading order vertices

Lint = fN

mπ

ψ̄ γ5 γ µ (∂µ �π ) �τ ψ + f�

mπ

(ψ̄µ(∂µ �π ) �T ψ + h.c.)

+ g′
11

f 2
N

m2
π

(ψ̄ γ5 γµ �τ ψ) (ψ̄ γ5 γ µ �τ ψ)

+ g′
22

f 2
�

m2
π

((ψ̄µ
�T ψ) (ψ̄ �T †ψµ)
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FIG. 1. Feynman diagrams for photon-induced pion production.

+ ((ψ̄µ
�T ψ) (ψ̄µ �T ψ) + h.c.))

+ g′
12

fN f�

m2
π

(ψ̄ γ5 γµ �τ ψ)((ψ̄µ �T ψ) + h.c.), (1)

where we use T
†
i Tj = δij − τi τj /3 together with the free-

space values fN = 0.988 and f� = 1.85 in this work. We con-
sider Migdal’s short-range correlation vertices as introduced
in Refs. [20,21], where it is understood that the local vertices
are to be applied at the Hartree level. The Fock contribution
can be cast into the form of a Hartree contribution by a
simple Fierz transformation. Therefore it only normalizes the
coupling strength in Eq. (1) and can be omitted here.

We supplement Eq. (1) by leading order and relevant
electromagnetic vertices

Le.m. = −e Aµψ̄
1 + τ3

2
γµ ψ − e Aµ (�π × (∂µ �π ))3

− e Aµ

fN

mπ

ψ̄ γ5 γ µ (�τ × �π )3 ψ

+ i fγ

2 m2
π

(εµναβF αβ (∂µ�̄ν) T3 ψ + h.c.)

+ f ′
γ

m2
π

(Fµν (∂µ�̄ν) γ5 T3ψ + h.c.), (2)

with the electromagnetic field strength tensor Fµν = ∂µAν −
∂µAν . The magnetic and electric coupling constants fγ and
f ′

γ are determined from the photon-induced pion production
cross section off the proton. We compute the cross sections
as defined by the diagrams of Fig. 1. The contribution of the
u-channel isobar exchange is much suppressed and therefore
neglected. The isobar propagator is specified in Ref. [16]. It
is modeled by a one-loop self-energy describing the leading
decay process of the isobar into a pion and a nucleon. As
illustrated in Fig. 2 in the isobar region the photon-proton

cross sections are reasonably well described by the electric
and magnetic coupling constants fγ = 0.012 and f ′

γ = 0.024.
Our values are close to the ones of Pascalutsa and Phillips,
fγ � 0.009 and f ′

γ � 0.021 [25]. Whereas the neutral pion
production is dominated by the s-channel isobar exchange
contribution, the production of the charged pion shows a
sizable background contribution. Following the arguments put
forward in Ref. [16], we consider the Lagrangian densities
((1), (2)) to be effective and allow their parameters to have a
residual but smooth density dependence. The latter reflects the
dynamics of modes that are integrated out and therefore not
treated explicitly here.

We compute the photoabsorption cross section for an
“ideal” infinite nucleus. Our studies will be based on the
in-medium nucleon propagator parametrized in terms of scalar
and vector means fields:

S(p) = 1

p/ − N
V u/ − mN + i ε

+ �S(p),

mN = mvac
N − S

N,
(3)

�S(p) = 2 π i �
[
p · u − N

V

]
δ
[(

p − N
V u

)2 − m2
N

]
× (p/ − V u/ + mN ) �

[
k2
F + p2 − (u · p)2 ]

,

where the Fermi momentum kF specifies the nucleon density
ρ with

ρ = −2 tr γ0

∫
d4p

(2π )4
i �S(p) = 2 k3

F

3 π2
√

1 − �u 2/c2
. (4)

In the rest frame of the bulk with uµ = (1, �0 ) one recovers
with Eq. (4) the standard result ρ = 2 k3

F /(3 π2). We assume
isospin-symmetric nuclear matter. The isobar propagator
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FIG. 2. (Color online) The photoabsorption cross section on the free proton evaluated in terms of the isobar propagator of Ref. [16]. The
data points are taken from Refs. [22–24].
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Sµν(w) is the solution of Dyson’s equation

S
µν

0 (w) = −1

w/ − m� + i ε

×
(

gµν−γ µ γ ν

3
−2 wµ wν

3 m2
�

−γ µ wν − wµ γ ν

3 m�

)
,

(5)
Sµν(w) = S(0)

µν

(
w − �

V u
)

+ S(0)
µα

(
w − �

V u
)
αβ(w)Sβν(w),

where we allow for scalar and vector mean fields of the isobar
with m� = mvac

� − �
S as developed in Refs. [16,26,27]. In

Ref. [16] the pion and isobar self-energy αβ(w, u) were
determined in a self-consistent and covariant many-body
approach based on the Lagrangian density [Eq. (1)]. In this
work we take the results of Ref. [16] and consider the pion
and isobar propagators as a function of fN, f�, and g′

ij and the
mean-field parameters for the nucleon and isobar. For details
on the pion and isobar self-energies we refer to Ref. [16]. It
is the aim of the present work to find sets of parameters that
lead to a faithful representation of the nuclear photoabsorption
data.

The computation of the total absorption cross section is
performed in the nuclear matter rest frame. Fermi motion
effects are considered. We express the cross section

σγA(q0) = 4

ρ

∫ kF

0

d3p

(2π )3

�AγN→γN (q, p)

2 (p − uV ) · q
,

p0 =
√

m2
N + �p 2 + V , (6)

q0 = |�q |, uµ = (1, �0),

in terms of the imaginary part of the forward Compton
amplitude AγN→γN (p, q). We explore the role of intermediate
πN,NhN , and �hN states with

�Aγ N→γN (q, p) = �A
(π)
γ N→γN (q, p) + �A

(ph)
γ N→γN (q, p)

+�A
(interference)
γ N→γN (q, p),

�A
(π)
γ N→γN (q, p) =

∑
λ,i

Tr
∫

d3l

(2π )3

�[|�l | − kF ]

16 El

ε†µ(q, λ)

× T
†,i,µ
γ N→πN (q, l; w)

× (l/ + M) T
i,ν
γ N→π N (l, q; w) εν(q, λ)

(7)
× (p/+M) ρ(π)(|w0−l0|, �w−�l )|l0=El+V

,

�A
(ph)
γ N→γN (q, p) =

∑
λ,i

Tr
∫

d3l

(2π )3

�[|�l | − kF ]

16 El

ε†µ(q, λ)

× T
†,i,αµ

γ N→phN (q, l; w) (l/ + M)

× T
i,βν

γ N→ph N (l, q; w) εν(q, λ)

× (p/+M) ρ
(ph)
αβ (|w0−l0|, �w−�l )|l0=El+V

,

where “Tr” denotes the trace in Dirac and flavor space. In
this work we will neglect the interference term of the pion and
particle-hole contributions. The latter probes the product of the
pion and particle-hole production amplitudes. Furthermore,

M = mN − u/V and w = p + q and E2
l = m2

N + �l 2 with
El > 0. We expect the most important contribution in Eqs. (8)
to result from the intermediate πN states, where we consider
an effective in-medium pion state characterized by its spec-
tral distribution. The effects from the nucleon-hole-nucleon
(NhN ) and isobar-hole-nucleon (�hN ) states are described
by a tensor spectral distribution. This is possible since
we consider only resonant contributions through the isobar
s-channel process, for which the production amplitudes as
implied by Eq. (1) are degenerate. Because of phase-space
considerations the contribution from the NhN states is much
larger as compared to the one of the �hN states, at least
in the isobar region. This implies that this contribution will
be roughly proportional to (g′

12)2 and will become the more
important the larger this value becomes.

We begin with a detailed exposition of the pion and particle-
hole spectral distributions ρπ (q) and ρ

αβ

ph (q) required in
Eqs. (8). The central building blocks, in terms of which they
are expressed, are the short-range correlation bubbles

�(Nh)
µν (q) = 2

f 2
N

m2
π

∫
d4l

(2π )4
i tr

(
�S(l) γ5 γµ

1

l/ + q/ − M + i ε

× γ5 γν + 1

2
�S(l) γ5 γµ �S(l + q) γ5 γν

)

+ (qµ → −qµ),
(8)

�(�h)
µν (q) = 4

3

f 2
�

m2
π

∫
d4l

(2π )4
i tr �S(l)Sµν(l + q)

+ (qµ → −qµ),

�µν(q̄) =
(

�(Nh)
µν (q̄) 0

0 �(�h)
µν (q̄)

)
,

where “tr” denotes the trace in Dirac space. Note that the
isobar-hole loop function in Eqs. (9) is given in terms of the in-
medium isobar propagator as specified in Eq. (6) by the isobar
self-energy. Details on the evaluation of the loop tensors
[Eqs. (9)] can be found in Ref. [16]. For the spectral
distributions ρπ (q) and ρ

αβ

ph (q) of Eqs. (8) we find

�π (q) = −4 π

(
1 + mπ

mN

)
beff ρ −

2∑
i,j=1

qµ

(
�

µν

ij (q)

+ [�(q) · χ (q) · �(q)]µν

ij

)
qν,

g′
µν =

(
g′

11 g′
12

g′
21 g′

22

)
gµν,

(9)
χ

µν

ij (q) = [(1 − g′ · �(q))−1· g′]µν

ij ,

ρπ (q) = −� 1

q2 − m2
π − �π (q)

,

ρ
αβ

ph (q) = �χ
αβ

22 (q),

where we recall the value beff � −0.01 fm from Ref. [16].
The latter value is needed to achieve consistency with the
low-density limit, where the pion self-energy is determined by
the s-wave pion-nucleon scattering length at qµ = (mπ, 0).
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FIG. 3. Feynman diagrams considered for the in-medium γ N → π N process.

We continue with the specification of the pion and
particle-hole production amplitudes T

i,µ

γ N→π N and T
i,αµ

γ N→ph N

in Eqs. (8). The in-medium generalization of the diagrams
of Fig. 1 are shown Fig. 3, where short-range correlation
effects are considered in terms of various vertex functions.
A similar graphical representation holds for the particle-
hole production amplitude, for which, however, we consider
resonant contributions only. More explicitly, the in-medium
γ N → π N and γ N → ph N amplitudes to be used in
Eqs. (8) take the form

T
γ N→πN

i,µ (q̄, q; w) = �
(πN�)
i, α (q̄) Sαβ (p + q) �

(γN�)
µβ (p, q)

+�
(πNN)
i (q̄) S(p + q) �(γ NN)

µ (q)

+�(γ NN)
µ (q) S(p̄ − q) �

(π NN)
i (q̄)

+�
(γ π NN)
i,µ (q̄, q) (10)

+ [
�

(πNN)
i (q̄ − q), 1

2τ3
]
−Sπ (q̄ − q)

×�(γ π π)
µ (q̄, q̄ − q),

T
γ N→phN

i,αµ (q̄, q; w) = f�

mπ

T
†
i gνα Sνβ(p + q)�(γN�)

µβ (p, q),

where the various vertex functions are subject to the Ward
identities

qµ �(γ N N)
µ (q) = e

1 + τ3

2
q/, qµ �(γ N �)

µν (p, q) = 0,

(q̄−q)µ �(γ π π)
µ (q̄, q) = e (q̄2 − q2 − �π (q̄) + �π (q)),

(11)
qµ �

(γ π NN)
i,µ (q̄, q) = e

[
1
2 τ3, �πNN

i (q̄)
]
−

− e
[

1
2 τ3, �πNN

i (q̄ − q)
]
−,

with the pion self-energy �π (q) of Eqs. (9). Electromagnetic
gauge invariance of the in-medium γ N → π N amplitude
[Eqs. (11)] is a consequence of the identities listed in Eqs. (12).
The vertex functions of Eqs. (11) take the form

�
(πNN)
i (q̄) = fN

mπ

τi q̄µ

(
gµν + [�(q̄) · χ (q̄)]µν

11

+ [�(q̄) · χ (q̄)]µν

12

)
γ5γν,

�
(πN�)
i,α (q̄) = f�

mπ

T
†
i q̄µ

(
gµν + [�(q̄) · χ (q̄)]µν

22

+ [�(q̄) · χ (q̄)]µν

21

)
gαν,

�(γ N N)
µ (q) = e

1 + τ3

2
γµ,

�(γ N �)
µα (p, q) = i fγ

m2
π

T3 qτ ε β
µστ

× (
gσ

α pβ + gαρ χ
ρκ

22 (q) �
(�h)
κσ,β (q)

)
− f ′

γ

m2
π

T3 γ5(gµα (p · q) − pµ qα),

�(γ π π)
µ (q̄, q) = e

(
qµ + q̄µ +

2∑
ij=1

(
[�(q)

+�(q) · χ (q) · �(q)]νβij qβ + q̄α[�(q̄)

+�(q̄) · χ (q̄) · �(q̄)]αν
ij

)
gµν

−
2∑

ijkl=1

q̄α [1 + �(q̄) · χ (q̄)]ασ
ik

×�(kl)
µ,στ (q̄, q)[1 + χ (q) · �(q)]τβlj qβ

)
,

�
(γ π NN)
i,µ (q̄, q) = e fN

2 mπ

[τ3, τi]− γ5 γν

(
2∑

n=1

[1 + �(q̄ − q) ·

×χ (q̄ − q)]βν

1n gµβ

−
2∑

jkl=1

q̄α [1 + �(q̄) · χ (q̄)]ασ
1k

×�(kl)
µ,στ (q̄, q̄ − q)χτν

lj (q̄ − q)

)
, (12)

with the loop tensors

�(�h)
µν,α(q) = 4

3

f 2
�

m2
π

∫
d4l

(2π )4
i tr �S(l)Sµν(l + q) (l + q)α

+ (qµ → −qµ),

�
(11)
µ,αβ(q̄, q) = 2

f 2
N

m2
π

∫
d4l

(2π )4
i tr

{
γ5 γβ �S(l) γ5 γα

×
[(

1

l/ + q̄/ − M + i ε
+ 1

2
�S(l + q̄)

)
×�(γ N N)

µ (l + q̄, l + q)

×
(

1

l/ + q/ − M + i ε
+ 1

2
�S(l + q)

)
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+ 3

4
�S(l + q̄) �(γ N N)

µ (l + q̄, l + q)

×�S(l + q)

]}
− (q̄µ, qµ) → −(q̄µ, qµ),

�
(22)
µ,αβ(q̄, q) = 4

3

f 2
�

m2
π

∫
d4l

(2π )4
i tr

{
�S(l) Sκσ (l + q̄) gακ

×�(γ ��)
µ,στ (l + q̄, l + q) Sτρ(l + q) gβρ

}
− (q̄µ, qµ) → −(q̄µ, qµ),

�
(12)
µ,αβ(q̄, q) = 4

3

fγ

e m2
π

fN f�

m2
π

∫
d4l

(2π )4
i

× tr

{
γ5 γβ �S(l) Sκτ (l + q̄) gακ

×�(γ N�)
µ,τ (l + q̄, l + q)

×
(

1

l/ + q/ − M + i ε
+ �S(l + q)

)}
− (q̄µ, qµ) → −(q̄µ, qµ). (13)

Given the vertices [Eqs. (12)] the Ward identities [Eqs. (12)]
follow if the loop tensors �

µ,αβ

ij (q̄, q) obey the reduced Ward
identities

(q̄ − q)µ �
µ,αβ

ij (q̄, q) = δij�
αβ

ii (q) − δij �
αβ

ii (q̄). (14)

The identities [Eq. (14)] hold provided that the γ N N, γ N �,
and γ �� vertices in Eqs. (13) satisfy the constraint equations

(p̄ − p)µ �(γ N N)
µ (p̄, p) = p̄/ − p/,

(p̄ − p)µ �(γ N �)
µ (p̄, p) = 0, (15)

(p̄ − p)µ �
(γ ��)
µ,αβ (p̄, p) = [S−1]αβ(p̄) − [S−1]αβ(p).

We point out that the evaluation of �22(q̄, q) required the
evaluation of the diagrams of Fig. 3, where the photon couples
to the intermediate pion-nucleon state building up the isobar
self-energy. This leads to a self-consistency issue, since the
latter requires knowledge of the γ π π vertex, which in turn
depends on �22(q̄, q).

To make progress we consider the following decomposi-
tion:

�
µ,αβ

ij (q̄, q) = uµ

u · (q̄ − q)
δij

(
�

αβ

ii (q) − �
αβ

ii (q̄)
)

+��
µ,αβ

ij (q̄, q), (16)

(q̄ − q)µ ��
µ,αβ

ij (q̄, q) = 0,

where we argue that the terms ��
µ,αβ

ij (q̄, q) are suppressed
by 1/mN or 1/m� as compared to the first term in the first of
Eqs. (17). This is easily seen for the “11” term. The γ N N

vertex takes the form

�(γ N N)
µ (p̄, p) = γµ + 2 i fγ

e m2
π

γ5 γν εµταβ χνκ
12 (p̄ − p)

×�
(�h)
κτ,β(p̄ − p) (p̄ − p)α = γµ, (17)

where the vertex corrections vanish owing to the antisymmetry
of the ε tensor. A further possible contribution proportional to
f ′

γ is obsolete also. As a consequence ��
µ,αβ

11 (q̄, q) has a

representation, which follows from the one of �
µ,αβ

11 (q̄, q) in

Eqs. (13), upon the replacement

�(γ N N)
µ = γµ → γµ − uµ

q̄/ − q/

u · (q̄ − q)
. (18)

The γ N N vertex in Eqs. (13) is sandwiched between two
nucleon propagators that are on-shell in the limit of a large
nucleon mass. Since vector currents of massive particles are
dominated by their zero component, our claim follows. By
analogy to the nucleon case, we expect the term ��22(q̄, q)
to be suppressed by 1/m� as compared to the first term in
the first of Eqs. (17). Finally, an explicit analysis of the term
��12(q̄, q) reveals also its suppression by 1/mN . The γ N �

vertex in Eqs. (13) reads

�(γ N �)
µα (p̄, p) = i (p̄ − p)τ ε β

µστ

× (
gσ

α pβ + gαρ χ
ρκ

22 (p̄ − p) �
(�h)
κσ,β (p̄ − p)

)
− f ′

γ

fγ

γ5(gµα (p · (p̄ − p)) − pµ (p̄ − p)α),

(19)

where vertex corrections proportional to f ′
γ vanish identically.

The suppression of ��12(q̄, q) follows upon an evaluation
of the appropriate trace in Eqs. (13). Thus, in the following
we neglect the terms ��

µ,αβ

ij (q̄, q) for i, j = 1, 2. It is
stressed that the term u · (q̄ − q) in Eqs. (17) does not
cause any kinematical singularity for on-shell photons with
(q̄ − q)2 = 0.

III. NUMERICAL RESULTS AND DISCUSSION

We adjust the set of parameters to the photoabsorption
data [2]. For the scalar and vector nucleon mean field we use
the values N

S = 0.35 GeV and N
V = 0.29 GeV at nuclear

saturation density with kF = 0.27 GeV as assumed also in
Ref. [27]. Following previous works [5,10] an averaged density
of 0.8 times saturation density is taken to compute the absorp-
tion cross section. We acknowledge an uncertainty implied by
the use of an average density instead of folding over a realistic
density distribution. However, this approximation is justified
for a first determination of the relevant parameter region. The
mean-field parameters for the nucleon are extrapolated down
to that effective density by a linear ansatz. We obtain a good
description of the data [2] when using the following parameter
set:

�
S = −0.25 GeV, �

V = −0.11 GeV,
(20)

g′
11 = 1.0, g′

12 = 0.4, g′
22 = 0.4.

An extensive scan in the parameter space was performed. We
ensure that given our values for the nucleon mean fields there
is a well-defined and localized region in parameter space that
leads to an accurate reproduction of the photoabsorption data.
A compilation of the results can be found in Figs. 4 and 5. As
can be seen from the figures we are only able to determine a
certain parameter region. A more precise determination of
the parameter set would need a study of more observable
processes.
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FIG. 4. (Color online) Photoabsorption cross section for variations of g′
12 and g′

22. We always keep �
S = −0.2 GeV and g′

11 = 1.0. The
following values for �

V are used (corresponding to the legend from top to bottom): −0.09, −0.10, and −0.07 GeV (left panel); −0.09, −0.10,
and −0.08 GeV (right panel). All parameters are for 0.8 times saturation density. The data are taken from Ref. [2].

We obtain best agreement with the considered data when
using the bare isobar mean fields of Eqs. (20) with opposite
sign as compared with the nucleon mean fields. This reflects
the distinct treatment of the nucleon and isobar self-energies.
Whereas for the nucleon mean-field effects are considered
only, the isobar is dressed in addition by complicated loop ef-
fects. Thus the bare parameters [Eqs. (20)] do not characterize
the physical mass shift of the isobar.

As it turns out we need a reduction of f� and an increase
of fγ as compared to their free-space values. Extrapolating
linearly up to nuclear saturation density we derive a 15%
reduction of f� and a 15% increase for fγ . Attempts to
describe the data with no in-medium modifications of those
parameters fail as the isobar turns too broad and consequently
the cross section too small. A reproduction of the data
set is possible also by assuming a moderate reduction of
fN . However, this would require an even stronger medium
modification of the parameters f� and fγ . Changes in f ′

γ have
only a tiny influence on the results so we keep this parameter
at its free-space value.

In Fig. 4 we study possible variations of the Migdal
parameters g′

12 and g′
22 around the central values 0.4 of

Eqs. (20). The magnitudes of the Migdal parameters are
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FIG. 5. (Color online) Photoabsorption cross section for g′
11 =

1.0 (solid line) and g′
11 = 0.6 (dashed line). We use �

S =
−0.2 GeV and �

V = −0.09 GeV. In addition we show the back-
ground contribution for the run with g′

11 = 0.6 (dash dotted line).
The data are taken from Ref. [2].

dependent to some extent on the subtleties of the chosen
approach. Thus we refrain from a detailed comparison with
values obtained in different schemes. Keeping g′

11 = 1.0 and
a scalar mean field for the isobar at �

S = −0.2 GeV, we
readjust the magnitude for the vector isobar mean field. If we
allow for variations larger than 0.1 in the Migdal parameters
the cross section can no longer be reproduced accurately. From
Fig. 4 we see that with increasing values of g′

12 and g′
22 the

shape of the cross section gets narrower. The best description
is obtained with a parameter set that delivers also the largest
overall magnitude for the cross section. Altogether we arrive
at values of g′

12 and g′
22 of about 0.4. In Fig. 5 we illustrate

the effect of lowering Migdal’s parameter g′
11 to 0.6. As seen

in the figure such a low value of g′
11 leads to a significant

overshoot of the cross section at small photon energies. Though
the resonance contribution itself is not affected much, the
background contribution is strongly enhanced. This is shown
by the dashed-dotted line, which gives the result implied by
all but the first diagram of Fig. 3. We checked that variations
of g′

12, g
′
22, or the isobar mean-field parameters do not lead

to a significant suppression of this contribution. The only
mechanism to arrive at a smaller g′

11 would be a significant
reduction of fN , however at the price of an even larger
reduction of f�. Thus we arrive at a rather large value for
g′

11 � 1.0. However, we have to state an uncertainty implied
by the neglect of some additional crossed diagrams considered
for instance in Ref. [6]. To consolidate the large value for g′

11
of our study it remains to demonstrate that the inclusion of
crossed diagrams does not lower the cross section via subtle
interference effects.

In Fig. 6 we study the importance of various contributions
and approximations. In the left upper panel the contributions
of the resonance, background, and two-particle-one-hole
states are compared with the full result. The background
contribution, defined by all but the first diagram of Fig. 3,
is essentially flat and delivers about 100 µb to the cross
section. The resonance itself contributes about 200 µb in
the peak whereas the two-particle-one-hole final states deliver
an additional 50 µb. As can be seen, when adding up all
contributions incoherently interference effects play a minor
role only. We turn to the upper right panel of Figure 6,
which illustrates the importance of vertex corrections. The
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FIG. 6. (Color online) Photoabsorption cross section using the parameter set (20). The upper left panel shows the relevance of various
contributions; the upper right panel shows the effect of short-range correlations in the γN� vertex. The lower left panel follows if bare γN�

and πN� vertices are assumed. The solid lines give the complete calculations, the dashed lines the resonance contributions, the dashed-dotted
lines the background contributions, and the dotted lines the two-particle-one-hole contributions. The lower right panel illustrates the importance
of in-medium effects on the background processes. The short-dashed dotted line provides the background contribution evaluated with bare
vertices and a free-space pion. The data are taken from Ref. [2]. See the text for more details.

solid line of that panel gives our result implied by the
parameter set (20) but a bare γN� vertex in the production
amplitudes TγN→πN and TγN→phN of Eqs. (8). The neglect
of short-range correlation effects in the γN� vertex implies
a significant shift of the isobar strength about 50 MeV
toward lower energies. Thus the apparent peak position seen
in the absorption cross section does not directly reflect the
isobar contribution. A realistic prediction of the in-medium
isobar mass requires the proper consideration of such effects.
An even more dramatic influence of short-range correlation
effects is documented by the lower left panel of Fig. 6.
Here we assume again the parameter set (20) but also bare
γN� and πN� vertices. The pion and isobar propagators
used are obtained within the self-consistent and covariant
approach [16], where correspondingly a bare πN� vertex
was taken. This calculation corresponds to the dashed lines in
Fig. 4 of Ref. [16]. As anticipated by our previous study [16]
a neglect of short-range correlation effects in the πN� vertex
leads to a much broader isobar, which then translates into
an almost flat photoabsorption cross section. We finally turn
to the lower right panel of Fig. 6. Here we focus on the
background contributions. The dashed-dotted line shows the
full background contribution, and the short dashed-dotted line
gives the result for the background processes implied when
using a bare pion propagator and bare vertices in Fig. 3. The

vertex corrections in the background terms are essential to keep
our approach consistent. An approximative treatment in which
the in-medium spectral distribution of the pion is neglected
would lead to a strong underestimation of the background
processes. In this case the Pauli-blocking effect would cut
away the low-energy cross section, as can be seen from Fig. 6.
We emphasize that the consideration of such effects is crucial
to arrive at a realistic estimate for Migdal’s parameter g′

11.
It is interesting to compare our results with previous

studies. We find a qualitative agreement with the results of
Ref. [5], in which an attractive mass shift for the isobar in
nuclear matter based on a perturbative and nonrelativistic
many-body approach was claimed. This is in stark contrast to
the more recent works using nonrelativistic vertices [10,15],
in which small and repulsive mass shifts of the isobar in
cold nuclear matter are claimed. As emphasized in Ref. [21]
the nonrelativistic limit of Migdal’s short-range correlations
depends crucially on the energy of the particle-hole state.
Only at zero energy do the relativistic vertices of Eq. (1)
recover a conventional nonrelativistic approach. Moreover,
in Refs. [10,15] important short-range correlation effects are
not considered and a soft and phenomenological form factor
in the πN� vertex is used. The latter reduces the effect of
vertex corrections significantly. Consequently, our results will
deviate from Refs. [10,15] also in the nonrelativistic limit.
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Finally, the use of scalar and vector mean fields for the nucleon
in our work constitutes a significant improvement over the
nonrelativistic treatment thereof in Refs. [10,15]. In our case
the subtle interplay of scalar and vector mean fields leads to an
repulsive net energy shift as required for instance by empirical
nucleon optical potentials.

IV. SUMMARY

We presented a first computation of the nuclear photoab-
sorption cross section that considered the effect of short-range-
correlation effects in the γ π π, γ N �, γ π N �,π N �, and
π N N vertices. We applied the self-consistent and covariant
many-body approach developed by the authors for the πN�

systems in the presence of short-range correlation effects. In
particular the in-medium interference of the s-channel isobar
exchange and the t-channel pion exchange was evaluated
consistently with an in-medium pion propagator. It was shown
that the latter plays an important role in the determination of
Migdal’s parameter g′

11 � 1.0, for which we obtained a rather
large value. An accurate reproduction of the photoabsorption

data was achieved. Based on our analysis we predict an
attractive mass shift of about 50 MeV for the isobar in cold
and saturated nuclear matter.

Our results ask for further detailed studies to further scruti-
nize the possibility of an unconventionally large g′

11 parameter.
The evaluation of crossed diagrams in the photoabsorption
cross section and their possible destructive interference effects
with the diagrams considered in our work should be pursued.
Also the influence of the ρ meson on Migdal’s short-range
correlation effects as it emerges in our self-consistent and
covariant many-body approach is an important topic of future
work.
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