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Covariant and self-consistent vertex corrections for pions and isobars in nuclear matter
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We evaluate the pion and isobar propagators in cold nuclear matter self-consistently applying a covariant
form of the isobar-hole model. Migdal’s vertex correction effects are considered systematically in the absence
of phenomenological soft form factors. Saturated nuclear matter is modeled by scalar and vector mean fields
for the nucleon. It is shown that the short-range dressing of the πN� vertex has a significant effect on the pion
and isobar properties. Using realistic parameters sets we predict a downward shift of about 50 MeV for the �

resonance at nuclear saturation density. The pionic soft modes are much less pronounced than in previous studies.
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I. INTRODUCTION

The theoretical approaches for the nuclear pion dynamics
[1–25] followed so far can be put into different categories.
All works acknowledge and consider the important role of
short-range correlation effects. However, there is no common
consensus about their absolute strength. The latter depends
decisively on the subtle details of the considered approach.
For instance the nonrelativistic computations [13,15,18] obtain
contrasted results for the pion properties in cold nuclear matter.
With few exceptions [6,11,17,20,21] nonrelativistic many-
body techniques are applied. Also works that incorporate the
feedback effect of a dressed pion propagator, that depends
sensitively on the isobar propagator itself, on the isobar
self-energy are in the minority [5,14,16,21–23,25]. It has
been found that self-consistency is a crucial effect for the
nuclear πN� dynamics. Moreover, the in-medium isobar
propagator should be used in the computation of the isobar-
hole contribution building up the short-ange correlation effects
[15,21,22]. In the early works that addressed self-consistency
issues [14,16] a quite soft phenomenological form factor
was used. This implies a strong and artificial suppression
of pionic soft modes with large momentum that dominate
the isobar width [21]. The use of such soft form factors
explains why in [14,16] quite conventional isobar properties
[30] were obtained without the inclusion of vertex correction
effects in the isobar self-energy. The use of soft form factors
suppresses the in-medium mass and width shifts of the isobar
significantly. Noteworthy is the work of Ref. [15], in which
isobar properties were computed without relying on soft form
factors. The important role of a hard factors in the nuclear
πN� dynamics was pointed out in [5]. One may conclude that
a description of isobar properties [14,16,21–23,25] that relies
on soft form factors should not be considered microscopic
unless one includes a strong density, energy, and momentum
dependence in the form factor.
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A further possibly important aspect is the splitting of the
isobar modes in nuclear matter [7,15,21]. An isobar moving
through nuclear matter manifests itself in terms of longitudinal
and transverse modes described by distinct spectral functions.
The splitting of the two modes was found to be small in
[7,21]. In contrast, in [15] sizable effects were found de-
pending, however, on the precise structure of the form factors
used. Notwithstanding, further clarification on the form of
the isobar self-energy in nuclear matter is needed. This is of
particular relevance for instance in applications to heavy-ion
reactions [25].

Recently it was demonstrated [20] that a covariant form of
the isobar-hole model differs significantly from nonrelativis-
tic versions thereof [4,6,8]. Relativistic corrections are not
important everywhere in phase space. As a striking example
recall the behavior of the nucleon-hole contribution to the pion
self-energy. A proper relativistic treatment leads to a result
proportional to ω2 − �q 2, with the pion energy and momentum
ω and �q, respectively [6,8,20]. In contrast, a nonrelativistic
evaluation provides a factor �q 2 only [4]. Obviously, the
nonrelativistic expression is justified only in a small subspace
of phase space. Paying contribute to this observation various
prescriptions (see, e.g., [15]) were suggested in the literature.
One may speculate that the incompatible treatment of such
effects is an important source for conflicting sets of Migdal
parameters used in the literature [6,15,19,22].

Though it should be possible to incorporate relativistic
effects in a perturbative manner with possible partial summa-
tions required, we argue that it is more economical to perform
computations that are strictly covariant. Applying the projector
techniques developed recently [20,26–28] it is straightforward
to perform such calculations. In [21] a first manifest covariant
and self-consistent computation of the pion self-energy was
presented. The incorporation of scalar and vector mean fields
for the nucleon was worked out recently in [28] at hand of the
nuclear antikaon dynamics.

The purpose of this work is to extend the previous studies
of two of us [20,21]. We compute the isobar self-energy
in a covariant and self consistent manner generalizing the
covariant isobar-hole model of [20]. Vertex correction effects
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as well as the longitudinal and transverse isobar modes are
treated consistently. Results will be presented for a range of
parameters centered around a parameter set that was found
to be compatible in [29] with the nuclear photo-absorption
data [31]. The effect of various approximations is discussed
and illustrated comprehensively.

II. COVARIANT ISOBAR-HOLE MODEL

We specify the isobar-hole model in its covariant form
[19,20]. The interaction of pions with nucleons and isobars
is modelled by the leading order vertices

L = fN

mπ

ψ̄ γ5 γ µ (∂µ �π ) �τ ψ + f�

mπ

(ψ̄µ(∂µ �π ) �T ψ + h.c.),

(1)

where we use T
†
i Tj = δij − τi τj /3 and fN = 0.988 and f� =

1.85 in this work. Short-range correlation effects are modelled
using the covariant form of the Migdal interaction vertices as
introduced in [19,20]:

LMigdal = g′
11

f 2
N

m2
π

(ψ̄ γ5 γµ �τ ψ) (ψ̄ γ5 γ µ �τ ψ)

+ g′
22

f 2
�

m2
π

((ψ̄µ
�T ψ) (ψ̄ �T †ψµ)

+ ((ψ̄µ
�T ψ) (ψ̄µ �T ψ) + h.c.))

+ g′
12

fN f�

m2
π

(ψ̄ γ5 γµ �τ ψ)((ψ̄µ �T ψ) + h.c.), (2)

where it is understood that the local vertices are to be used
at the Hartree level. The Fock contribution can be cast
into the form of a Hartree contribution by a simple Fierz
transformation. Therefore it only renormalizes the coupling
strength in Eq. (2) and can be omitted here. The Lagrangian
densities (1), (2) are effective in the sense that we consider their
coupling constants as functions of the nuclear density. This is
justified since we do not incorporate the physics of higher lying
baryon resonances nor further mesonic degrees of freedom
such as the vector mesons explicitly. Integrating out more
massive degrees freedom leads to a density dependence of the
coupling constants necessarily, which however, is expected to
be quite smooth due to high-mass nature of the modes treated
implicitly.

Unfortunately, there is yet no set of Migdal parameters
universally accepted. For instance, the computation [15] used
the universal values g′

11 = g′
12 = g′

22 = 0.60, based on a study
of isobar properties. Universal values for the Migdal parame-
ters were suggested first in [1]. Nakano et al. [19] deduce the
constraint g′

11 = 0.585 together with g′
12 = 0.191 + 0.051 g′

22
insisting on the empirical quenching factor Q = 0.9 of the
Gamow-Teller resonance [32]. Their consideration assumes
that the quenching results exclusively from a mixing of
the nucleon-hole and the isobar-hole state. In our work the
parameters g′

ij are varied around the values g′
11 � 1.0, g′

22 =
g′

12 � 0.4 obtained from a detailed analysis of the nuclear
photo-absorption data [29].

Our studies will be based on the in-medium nucleon
propagator parameterized in terms of scalar and vector mean
fields:

S(p, u) = 1

p/ − 	N
V u/ − mN + i ε

+ �S(p, u),

mN = mvac
N − 	S

N,
(3)

�S(p, u) = 2 π i �
[
p · u − 	N

V

]
δ
[(

p − 	N
V u

)2 − m2
N

]
× (p/ − 	V u/ + mN ) �

[
k2
F + p2 − (u · p)2

]
,

where the Fermi momentum kF specifies the nucleon density
ρ with

ρ = −2 tr γ0

∫
d4p

(2π )4
i �S(p, u) = 2 k3

F

3 π2
√

1 − �u 2/c2
. (4)

In the rest frame of the bulk with uµ = (1, �0 ) one recovers
with Eq. (4) the standard result ρ = 2 k3

F /(3 π2). We assume
isospin symmetric nuclear matter.

The focus of our work is the study of the in-medium isobar
propagator Sµν(w, u), the solution of Dyson’s equation

S
µν

0 (w) = −1

w/ − m� + i ε

×
(
gµν − γ µ γ ν

3
− 2 wµ wν

3 m2
�

− γ µ wν −wµ γ ν

3 m�

)
,

(5)
Sµν(w, u) = S(0)

µν

(
w − 	�

V u
)

+ S(0)
µα

(
w − 	�

V u
)
	αβ(w, u)Sβν(w, u),

where we allow for a vector mean field of the isobar.
In nuclear matter the isobar self-energy tensor, 	µν(w, u),

is a quite complicated object which involves the time-like
four-vector uµ characterizing the nuclear matter frame. In
order to arrive at a reproduction of the P33 pion-nucleon
partial-wave amplitude we allow for a phenomenologi-
cal energy dependence in the free-space isobar mass. We
write

m� = mvac
� (

√
w2 ) − 	�

S , (6)

where we introduce also a scalar mean field 	�
S for the

isobar. At nuclear saturation density we found the values
	�

V � −0.25 GeV and 	�
S � −0.11 GeV to be consistent

with the nuclear photo-absorption data in an application of
the present covariant and self-consistent many-body approach
[29]. Note that latter values are scheme dependent reflect-
ing the particular in-medium processes taken into account
explicitly.

Making the assumption that the P33 amplitude is deter-
mined completely by the s-channel exchange of the dressed
isobar, for a given isobar self-energy the mass function mvac

�

can be expressed directly in terms of the empirical P33
phase shift. Based on the self-energy to be specified in
Sec. V we arrive at the mass function shown in Fig. 1 with
a dashed line. The sizable variation of mvac

� on
√

w2 reflects
contributions to the P33 amplitude that are characterized by
left-hand branch points. The amplitude receives, besides the
s-channel isobar exchange, additional contributions as from
the nucleon u-channel process. Since the latter contribution
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FIG. 1. (Color online) Phenomenological isobar mass functions
mvac

� (
√

w2 ) that lead to the reproduction of the P33 pion-nucleon
scattering amplitude. The dashed (solid) line leads to an exact
(approximate) reproduction of the amplitude.

will be considered being implied by Eq. (1), it is not consistent
to proceed with the dashed mass function of Fig. 1. A fully
consistent approach would require at least the unitarization of
the sum of s-channel isobar and u-channel nucleon exchange
processes. This is, however, beyond the scope of the present
work. In order to correct for the presence of the u-channel
nucleon exchange we determine the phenomenological mass
function mvac

� (
√

w2) in the following way: the s-channel isobar
contribution is adjusted to reproduce the imaginary part of the
P33 partial wave amplitude in the vicinity of the isobar peak.
Away from the resonance the mass function is kept constant.
The result is shown in Fig. 1 with a solid line. As compared
to the dashed line, which reproduces the P33 amplitude
exactly, the solid line shows a much reduced variation. This
is welcome since the smoother the phenomenological mass
function the smaller are the uncertainties implied by the
ansatz (6).

The quality of our prescription is illustrated in Fig. 2, where
the empirical P33 partial wave amplitude in the convention
of [21] is confronted with the phenomenological amplitude.
Real and imaginary parts agree well in the resonance region.
Significant deviations are noted close to threshold only, where
we expect a strong energy dependence from the u-channel
contributions. This is confirmed by the additional solid line of
Fig. 2 which shows the contribution of the u-channel nucleon
exchange process. Close to threshold it is largest almost mak-
ing up the difference of the empirical and phenomenological
amplitude.

III. PION SELF-ENERGY

In this section we evaluate the pion self energy as implied
by the interaction (1) for a given isobar propagator Sµν(w, u).
The latter will be specified in subsequent sections. The
central objects to compute are the nucleon- and isobar-hole
loop tensors, �(Nh)

µν (q, u) and �(�h)
µν (q, u), which we define
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FIG. 2. (Color online) Comparison of the empirical P33 ampli-
tude from [33] with the phenomenological one as implied by Eq. (6)
with the solid mass function of Fig. 2. The additional solid line is the
contribution of the u-channel nucleon exchange process.

by

�(�h)
µν (q, u) = 4

3

f 2
�

m2
π

∫
d4p

(2π )4
i tr �S(p, u)Sµν(p + q, u)

+ (qµ → −qµ),

�(Nh)
µν (q, u) = 2

f 2
N

m2
π

∫
d4p

(2π )4
i

(7)

× tr

(
�S(p, u) γ5 γµ

1

p/−	N
V u/ + q/−mN

γ5 γν

+ 1

2
�S(p, u) γ5 γµ �S(p + q, u) γ5 γν

)
+ (qµ → −qµ),

with the isobar propagator, Sµν(w, u) of Eq. (6), and the in-
medium part of the nucleon propagator, �S(p, u) as specified
in Eq. (3).

The computation of short-range correlation effects is
considerably streamlined upon decomposing the nucleon- and
isobar-hole tensors,

�(Nh)
µν (q, u) =

2∑
i,j=1

�
(Nh)
ij (q, u) L(ij )

µν (q, u)

+�
(Nh)
T (q, u) Tµν(q, u),

(8)

�(�h)
µν (q, u) =

2∑
i,j=1

�
(�h)
ij (q, u) L(ij )

µν (q, u)

+�
(�h)
T (q, u) Tµν(q, u),

in terms of a complete set of Lorentz structures L
(ij )
µν (q, u) and

Tµν(q, u). A convenient basis that enjoys projector properties
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was suggested in [20]. We recall the definitions

L(22)
µν (q, u) =

[
(q · u)

q2
qµ − uµ

]
q2

q2 − (q · u)2

×
[

(q · u)

q2
qν − uν

]
,

L(12)
µν (q, u) = L(21)

νµ (q, u) = qµ

√
1

q2 − (q · u)2

(9)

×
[

(q · u)

q2
qν − uν

]
,

L(11)
µν (q, u) = qµ qν

q2
,

Tµν(q, u) = gµν − qµ qν

q2
− L(22)

µν (q, u).

The presentation of explicit expressions for the longitudinal
and transverse nucleon- and isobar-hole loop functions is
relegated to Appendix A. The latter follow by a simple
contraction of the tensors �µν(q, u) with the projectors
in Eq. (9). The results depend on the details of the
in-medium isobar propagator which will be specified in
Secs. V and VI.

Following [20] we construct the pion self-energy in
terms of the longitudinal nucleon- and isobar-hole loop
functions. The self-energy can be cast into the form of a
sum of 11, 33 and 13, 31 components of an appropriate 4 × 4
matrix,

�(q, u) = −4 π

(
1 + mπ

mN

)
beff ρ

− q2 [(1 − �(L) g(L))−1 �(L)]11

− q2 [(1 − �(L) g(L))−1 �(L)]33

− q2 [(1 − �(L) g(L))−1 �(L)]13

− q2 [(1 − �(L) g(L))−1 �(L)]31, (10)

where

g(L) =




g′
11 0 g′

12 0

0 g′
11 0 g′

12

g′
12 0 g′

22 0

0 g′
12 0 g′

22


 ,

(11)

�(L) =




�
(Nh)
11 �

(Nh)
12 0 0

�
(Nh)
21 �

(Nh)
22 0 0

0 0 �
(�h)
11 �

(�h)
12

0 0 �
(�h)
21 �

(�h)
22


 .

In Eq. (10) we allow for a background term linear
in the nuclear density reflecting a s-wave pion-nucleon
interaction. Such a term is motivated by the fact that the
vertices of Eq. (1) do not reproduce the empirical s-wave
scattering pion-nucleon length. At tree-level the vertices (1)
lead to a pion-nucleon isospin averaged scattering length of the

form [26]

4 π

(
1 + mπ

mN

)
aπN = − f 2

N

mN

− 8

9

f 2
�

m�

(
1 + 2

mN

2 m�

)
.

(12)

This leads to aπN � −0.09 fm, a significant overestimation
of the empirical scattering length of about −0.01 fm [26].
Using the unitarized isobar propagator as implied by the
one-loop isobar self-energy of Sec. V we obtain aπN �
+0.00 fm instead, a value significantly reduced and closer to
the empirical constraint. In order to correct for the remaining
slight mismatch we use beff � −0.01 fm in Eq. (10). We note
that the model (8) neglects two-particle two-hole contributions
that can not be associated with the in-medium width of the
isobar. Given an empirical total absorption strength the size of
the latter will depend crucially on the detailed results claimed
for the in-medium properties of the isobar.

There are two important technical issues we need to
emphasize here. First the application of the longitudinal and
transverse projectors in Eq. (8) implies that the loop functions
have to satisfy specific constraint conditions. They follow
from the observation that the polarization tensor �µν(q, u)
is regular, in particular at q2 = 0 and at q2 = (q · u)2. Con-
fronting the decomposition (8) with the limiting expressions
of (9) for q2 → 0 and q2 − (q · u)2 → 0 establishes the
relations

�22(q, u) = �11(q, u) − i �12(q, u) − i �21(q, u) + O(q2),

(13)
�22(q, u) = �T (q, u) + O((q · u)2 − q2).

The reader may wonder why we discuss this point. After all
the integrals (7) are finite and the conditions (13) should
be satisfied automatically. However, we argue in favor of a
finite renormalization which is not necessarily compatible with
Eq. (13). A finite renormalization of the isobar-hole loop
functions is useful as to suppress the formation of ghosts in the
pion self-energy. The latter may be absorbed into a redefinition
of the Migdal’s short-range interaction (2). The occurrence of
ghost causes a severe problem, in particular in a self-consistent
approach. It implied that the pion self-energy does not satisfy
a Lehman representation anymore. A ghost state is present if
the pion self-energy has a pole for complex energies, i.e.,

D(ω) = det[1 − �(L)(ω, �q ) gL] = 0 with �ω �= 0. (14)

Note that a function that satisfies a Lehman representation can
have poles only on the second or higher Riemann sheets. In
fact, we observe that such artifacts are avoided typically once
a finite renormalization is implemented such that all elements
�ij (ω, �q ) are bounded for large energies, i.e.,

lim
ω→±∞ |�ij (ω, �q )| < ∞. (15)

As detailed in Appendix A we introduce a finite renor-
malization for the isobar-hole loop functions by insisting
on subtracted dispersion-integral representations thereof. The
construction of the latter was determined by the constraints
(13). We checked that our numerical pion self-energies
satisfy a once-subtracted dispersion-integral representation to
reasonable accuracy. In our self-consistent simulations we
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impose such a dispersion-integral representation, where the
subtraction constant is determined as to find agreement with
the direct computation at ω2 − �q 2 = m2

π .
It is evident that there is a self-consistency issue here. The

isobar propagator defining the isobar-hole loop functions in
Eq. (7) is a crucial ingredient to evaluate the pion self-energy.
Since, the isobar self-energy depends sensitively on the pion
propagator itself a self-consistent computation is required.
The importance of self-consistency, as discussed above, will
be addressed in the second to last section when presenting
numerical results.

IV. ISOBAR PROPAGATOR

The solution of the Dyson equation (6) requires a detailed
study of the Lorentz-Dirac structure of the isobar propagator.
Consider the propagator, Sµν(w, u), in the nuclear medium.
From covariance we expect a general decomposition of the
form

Sµν(w, u) =
∑
i,j

S
(p)
[ij ](v, u) P

µν

[ij ](v, u)

+
∑
i,j

S
(q)
[ij ](v, u) Q

µν

[ij ](v, u), (16)

in terms of invariant functions, S(p,q)
[ij ] (v, u), and a complete set

of Dirac-Lorentz tensors P
µν

[ij ](v, u) and Q
µν

[ij ](v, u). For latter
convenience we introduce

vµ = wµ − 	N
V uµ. (17)

A suitable basis was constructed in [26,27], enjoying the
projector properties

Q
µα

[ik] gαβ P
βν

[lj ] = 0 = P
µα

[ik] gαβ Q
βν

[lj ],

Q
µα

[ik] gαβ Q
βν

[lj ] = δkl Q
µν

[ij ], (18)

P
µα

[ik] gαβ P
βν

[lj ] = δkl P
µν

[ij ].

This particular basis streamlines the computation of the
in-medium part of the isobar self-energy significantly. It
was applied also in [24]. In particular the algebra (18)
illustrates the decoupling of helicity one-half (p-space)
and three-half modes (q-space). Decomposing the isobar
self-energy

	µν(w, u) =
∑
i,j

	
(p)
[ij ](v, u) P

µν

[ij ](v, u)

+
∑
i,j

	
(q)
[ij ](v, u) Q

µν

[ij ](v, u), (19)

into the set of projectors it is straightforward to evaluate the
isobar propagator. The Dyson equation (6) maps onto two
simple matrix equations. First, the bare propagator

S
µν

0 (w) =
∑
i,j

S
(p)
0,[ij ](v, u) P

µν

[ij ](v, u)

+
∑
i,j

S
(q)
0,[ij ](v, u) Q

µν

[ij ](v, u), (20)

needs to be decomposed in terms of the projectors. Second,
the six-dimensional matrix 	(p)(v, u) and two-dimensional
matrix 	(q)(v, u) have to be evaluated. The final form of
the isobar propagator, specified in terms of the invariant
matrices S(p)(v, u) and S(q)(v, u), follows by simple matrix
manipulations:

S(p)(v, u) = S
(p)
0 (v, u)

[
1 − 	(p)(v, u) S

(p)
0 (v, u)

]−1
,

(21)
S(q)(v, u) = S

(q)
0 (v, u)

[
1 − 	(q)(v, u) S

(q)
0 (v, u)

]−1
.

The transparent expressions (21) rely on the explicit avail-
ability of the projector algebra. In order to keep this work
self-contained we review briefly the set of projectors P

µν

[ij ](v, u)
and Q

µν

[ij ](v, u) introduced in [27]. It is convenient to express
the latter in terms of appropriate building blocks P±, U±, Vµ

and Lµ,Rµ of the form

P±(v) = 1

2

(
1 ± v/√

v2

)
,

U±(v, u) = P±(v)
−i γ · u√

(v · u)2/v2 − 1
P∓(v),

Vµ(v) = 1√
3

(
γµ − v/

v2
vµ

)
,

Xµ(v, u) = (v · u) vµ − v2 uµ

v2
√

(v · u)2/v2 − 1
,

(22)
Rµ(v, u) = + 1√

2
(U+(v, u) + U−(v, u)) Vµ(v)

− i

√
3

2
Xµ(v, u),

Lµ(v, u) = + 1√
2

Vµ(v)(U+(v, u) + U−(v, u))

− i

√
3

2
Xµ(v, u).

For a compilation of useful properties of the building blocks
P±, U±, Vµ and Rµ,Lµ we refer to the original work [27]. The
q-space projectors are

Q
µν

[11] = (gµν − v̂µ v̂ν) P+ − V µ P− V ν − Lµ P+ Rν,

Q
µν

[22] = (gµν − v̂µ v̂ν) P− − V µ P+ V ν − Lµ P− Rν,

Q
µν

[12] = (gµν − v̂µ v̂ν) U+ + 1
3 V µ U− V ν

(23)
+

√
8

3 (Lµ P+ V ν + V µ P− Rν) − 1
3 Lµ U+ Rν,

Q
µν

[21] = (gµν − v̂µ v̂ν) U− + 1
3 V µ U+ V ν

+
√

8
3 (Lµ P− V ν + V µ P+ Rν) − 1

3 Lµ U− Rν,

where v̂µ = vµ/
√

v2 . It is straightforward to verify Eq. (18).
Using the properties of the building blocks P±, U±, Vµ and
Lµ,Rµ [27] reveals that the objects Q

µν

[ij ] indeed form a
projector algebra.
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The p-space projectors have similar transparent repre-
sentations. Following [27] it is convenient to extend the

p-space algebra including objects with one or no Lorentz
index,

P[11] = P+, P[12] = U+ , P[21] = U− , P[22] = P− ,

P
µ

[31] = V µ P+ , P
µ

[32] = V µ U+, P̄
µ

[13] = P+ V µ, P̄
µ

[23] = U− V µ,

P
µ

[41] = V µ U−, P
µ

[42] = V µ P−, P̄
µ

[14] = U+ V µ, P̄
µ

[24] = P− V µ,

P
µ

[51] = v̂µ P+, P
µ

[52] = v̂µ U+, P̄
µ

[15] = P+ v̂µ, P̄
µ

[25] = U− v̂µ,

P
µ

[61] = v̂µ U−, P
µ

[62] = v̂µ P−, P̄
µ

[16] = U+ v̂µ, P̄
µ

[26] = P− v̂µ,

P
µ

[71] = Lµ P+, P
µ

[72] = Lµ U+, P̄
µ

[17] = P+Rµ, P̄
µ

[27] = U−Rµ,

P
µ

[81] = Lµ U−, P
µ

[82] = Lµ P−, P̄
µ

[18] = U+Rµ, P̄
µ

[28] = P−Rµ,

(24)
P

µν

[i j ] = P
µ

[i1] P̄ ν
[1j ] = P

µ

[i2] P̄ ν
[2j ].

In the notation of Eq. (25) the indices i, j in Eqs. (16), (19),
(20) run from 3 to 8 in the p-space. The set of identities (18)
extends naturally

P[ik] · P[lj ] = δkl P[ij ], P
µ

[ik] P̄ ν
[lj ] = δkl P

µν

[ij ],

P̄
µ

[ik] gµν P ν
[lj ] = δkl P[ij ], (25)

Q
µα

[ik] gαβ P
β

[lj ] = 0 = P̄ α
[ik] gαβ Q

βν

[lj ].

The algebra (25) proves convenient in solving various
problems. Using the projector formalism we compute the
in-medium isobar self-energy as implied by the interaction
vertex (1) at the one-loop level in a manifest covariant fashion.

V. ISOBAR SELF-ENERGY AND PION-NUCLEON
SCATTERING

It proves convenient to extract the isobar propagator from an
appropriately constructed model of the pion-nucleon scattering
amplitude. Set up in this way all results are induced by
expressions already presented in [27] upon the application of
simple substitution rules. Recall the in-medium Bethe-Salpeter
equation,

T (k̄, k; w, u) = V(k̄, k; w, u) +
∫

d4l

(2π )4
V(k̄, l; w, u)

×G(l; w, u) T (l, k; w, u), (26)

G
(

1

2
w − l; w, u

)
= −i S(w − l, u)

[
l2 − m2

π − �(l, u)
]−1

,

where q, p, q̄, p̄ are the initial and final pion and nucleon
four-momenta and

w = p + q = p̄ + q̄, k = 1
2 (p − q), k̄ = 1

2 (p̄ − q̄).

(27)

The two-particle propagator, G(l; w, u), is specified in terms
of the nucleon propagator S(p, u) of Eq. (3) and the pion
propagator written in terms of the in-medium self energy
�(l, u) of Eq. (10).

In order to generate the isobar self-energy 	µν(w, u), we
introduce the interaction kernel

V(k̄, k; w, u) = − f 2
�

m2
π

q̄µ S
µν

0

(
w − 	�

V u
)
qν, (28)

where we allow for the presence of a vector mean field.
The isospin projector is suppressed in Eq. (28) (see, e.g.,
[21]). The particular choice (28) implies a scattering am-
plitude, which determines the isobar propagator, Sµν(w, u),
by

T (k̄, k; w, u) = − f 2
�

m2
π

q̄µ Sµν(w, u) qν. (29)

The system is solved conveniently by decomposing the
interaction kernel into a set of projectors, where we apply
the projectors constructed in terms of the four-momentum
vµ = wµ − 	V uµ and uµ rather than wµ and uµ:

V =
∑
i,j

V
(p)

[ij ] (v, u) q̄µ P
µν

[ij ](v, u) qν

+
∑
i,j

V
(q)

[ij ](v, u) q̄µ Q
µν

[ij ](v, u) qν. (30)

For the general case with 	�
V �= 	N

V the derivation of
V

(p,q)
[ij ] (v, u) as implied by Eq. (28) is somewhat tedious though

straight forward. The expressions are listed in Appendix B. In
the limit 	�

V → 	N
V the expressions simplify with

V
(q)

[11] = V
(p)

[77] = + f 2
�

m2
π

1√
v2 − m�

,

V
(q)

[22] = V
(p)

[88] = − f 2
�

m2
π

1√
v2 + m�

,

V
(p)

[55] = −2

3

f 2
�

m2
π

√
v2 + m�

m2
�

,

V
(p)

[66] = +2

3

f 2
�

m2
π

√
v2 − m�

m2
�

,
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V
(p)

[53] = V
(p)

[35] = + 1√
3

f 2
�

m2
π

1

m�

,

V
(p)

[64] = V
(p)

[46] = − 1√
3

f 2
�

m2
π

1

m�

, (31)

where only components that are nonzero are specified in
Eq. (31). A corresponding decomposition is implied for the
in-medium scattering amplitude

T =
∑
i,j

T
(p)

[ij ] (v, u) q̄µ P
µν

[ij ](v, u) qν

+
∑
i,j

T
(q)

[ij ](v, u) q̄µ Q
µν

[ij ](v, u) qν,

(32)
T (p)(v, u) = V (p)(v, u) [1 − J (p)(v, u) V (p)(v, u)]−1,

T (q)(v, u) = V (q)(v, u) [1 − J (q)(v, u) V (q)(v, u)]−1.

The scattering amplitude T is determined by the interaction
kernel (31) and two matrices of loop functions J

(p)
[ij ](v, u) and

J
(q)
[ij ](v, u). Comparing Eq. (32) with Eqs. (28) and (21) we

identify

S
(p)
0,[ij ](v, u) = −m2

π

f 2
�

V
(p)

[ij ] (v, u),

S
(q)
0,[ij ](v, u) = −m2

π

f 2
�

V
(q)

[ij ](v, u),

(33)

	
(p)
[ij ](v, u) = − f 2

�

m2
π

J
(p)
[ij ](v, u),

	
(q)
[ij ](v, u) = − f 2

�

m2
π

J
(q)
[ij ](v, u).

The form of the loop functions can be taken over from
[27,28]. The evaluation of the real parts of the loop functions
requires great care. The imaginary parts of the loop functions
are unbounded at large energies. Thus power divergencies
arise if the real parts are evaluated by means of an unsub-
tracted dispersion-integral ansatz. The task is to device a
subtraction scheme that avoids kinematical singularities and
that eliminates all power divergent terms systematically. The
latter are unphysical and in a consistent effective field theory
approach must be absorbed into counter terms. Only the
residual strength of the counter terms may be estimated by
a naturalness assumption reliably. Since we want to neglect
such counter terms it is crucial to set up the renormalization
in a proper manner. The scheme developed in [28] avoids
the occurrence of power-divergent structures and is free of
kinematical singularities.

The loop functions J
(p,q)
[ij ] (v0 , �w ) are expressed in terms

of a basis spanned by 13 master loop functions, Jn(v0 , �w )
as detailed in [28]. We assume nuclear matter at rest for
simplicity. The master loop functions are evaluated by a
dispersion integral of the form

Jn(v0, �w ) =
∫ +∞

−∞

dv̄0

π

�Jn(v̄0; v0, �w )

v̄0 − v0 − i ε (v̄0 − µ)

× sign (v̄0 − µ) + JC
n (v0, �w ) , (34)

where µ2 = m2
N + k2

F . We introduce spectral weight func-
tions, �Jn(v̄0; v0, �w ), that depend on ‘external’ and ‘internal’
energies v0 = w0 − 	V and v̄0. We identify

�Jn(v̄0; v0, �w)

=
∫

d 3l

2 (2π )3

(
m2

N + �l 2
)− 1

2

× {
KR

n (l+, v̄0; v0, �w ) ρπ (|v̄+|, �w − �l)
× [�(+v̄+)−�(kF −|�l |)] + KR

n (l−, v̄0; v0, �w )

× ρπ (|v̄−|, �w − �l ) �(−v̄−)
}
,

l
µ
± = ( ±

√
m2

N + �l 2, �l), v̄± = v̄0 ∓
√

m2
N + �l 2, (35)

where the explicit form of the kernels KR
n as well as of the

counter loops JC
n (v0, �w) are recalled in [28]. The kernels are

invariant functions of the four-vectors lµ, vµ, v̄µ and uµ. The
spectral density of the pion, ρπ (ω, �q ), is

ρπ (ω, �q ) = −� 1

ω2 − �q 2 − m2
π − �(ω, �q )

. (36)

VI. ISOBAR SELF-ENERGY IN THE PRESENCE OF
VERTEX CORRECTIONS

The evaluation of the loop functions in the presence of
vertex corrections is particularly challenging due to their
complicated ultraviolet behavior. In Fig. 3 the two types
of contributions are depicted graphically in terms of vertex
functions to be specified below. It is useful to identify a set of
master loop functions, in terms of which the full loop matrix
can be constructed. The latter are renormalized applying
the scheme introduced in the previous section. The proper
generalization of Eq. (35) is readily worked out. The pion
spectral function is distorted by vertex correction functions

Σµν
∆ = +

Γµ Γν
+ Γµν

FIG. 3. Isobar self-energy in the presence of short-range correlations. The solid line shows a nucleon propagator in the presence of mean
fields. The dashed line represents a dressed pion propagator.
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leading to effective spectral densities, which we denote with
ρab(ω, �q ). For a given spectral distribution we introduce

�Jab,n(v̄0; v0, �w) =
∫

d 3l

2 (2π )3

(
m2

N + �l 2
)− 1

2

×
{

Kn(l+, v̄0; v0, �w) ρab(|v̄+|, �w − �l)

×
[
�(+v̄+) −

(
v̄+
|v̄+|

)a+b

�(kF −|�l |)
]

+
(

v̄−
|v̄−|

)a+b

Kn(l−, v̄0; v0, �w) (37)

× ρab(|v̄−|, �w − �l ) �(−v̄−)

}
,

l
µ
± = ( ±

√
m2

N + �l 2, �l ),
v̄± = v̄0 ∓

√
m2

N + �l 2,

where n = 0, . . . , 12. The kernels Kn(l, v̄0; v0, �w) are identical
to those encountered in Eq. (35). They are listed in [28].
The real part of the loop functions is computed applying
the dispersion-integral representation (34). A corresponding
generalization holds for the second term in Eq. (34).

We identify the effective spectral distributions, ρab(ω, �q )
as implied by the diagrams of Fig. 3. The vertex vector and
tensor may be decomposed into invariants

�µ(q, u) = qµ �1(q, u) + uµ �2(q, u),

�µν(q, u) = qµ qν�11(q, u) + qµ uν �12(q, u)
(38)+uµ qν �12(q, u) + uµ uν �22(q, u)

+ gµν �00(q, u),

in terms of which we introduce the spectral distributions

ρ00(ω, �q) = −� (�00(ω, �q )),
(39)

ρab(ω, �q ) = −�
(

�a(ω, �q ) �b(ω, �q )

ω2−�q 2−m2
π −�π (ω, �q )

+ �ab(ω, �q )

)
.

Applying the techniques introduced in [20] it is straight-
forward to express �1(q, u) and �2(q, u) in terms of the
longitudinal coupling matrix, g(L), and the loop functions,
�(L)(q, u) of Eqs. (8), (11). We obtain

�1(q, u) = [1 − g(L) �(L)(q, u)]−1
31 + [1 − g(L) �(L)(q, u)]−1

33

+ q · u√
q2 − (q · u)2

(
[1 − g(L) �(L)(q, u)]−1

41

+ [1 − g(L) �(L)(q, u)]−1
43

)
, (40)

�2(q, u) = − q2√
q2 − (q · u)2

(
[1 − g(L) �(L)(q, u)]−1

41

+[1 − g(L) �(L)(q, u)]−1
43

)
.

The matrix �ab(q, u) probes longitudinal and transverse
correlations. As an extension of Eq. (11) we introduce a
transverse coupling and loop matrix g(T ) and �(T )(q, u). We

write

g(T ) =
(

g′
11 g′

12

g′
21 g′

22

)
,

(41)

�(T )(q, u) =
(

�
(Nh)
T (q, u) 0

0 �
(�h)
T (q, u)

)
.

We derive explicit forms of the tensor vertex

�11(q, u) = 1

q2

(
χ

(L)
33 + q · u√

q2 − (q · u)2

(
χ

(L)
34 + χ

(L)
43

)

+ (q · u)2

q2 − (q · u)2
χ

(L)
44 − q2

q2 − (q · u)2
χ

(T )
22

)
,

�12(q, u) = �21(q, u) = − 1√
q2 − (q · u)2

χ
(L)
34

− q · u

q2 − (q · u)2

(
χ

(L)
44 − χ

(T )
22

)
, (42)

�22(q, u) = q2

q2 − (q · u)2

(
χ

(L)
44 − χ

(T )
22

)
,

�00(q, u) = χ
(T )
22 ,

in terms of the longitudinal and transverse correlation
functions

χ (L,T )(q, u) = [1 − g(L,T ) �(L,T )(q, u)]−1 g(L,T ). (43)

In the course of deriving the representation (37) we made
use of the following properties of the correlation functions:

�
(L)
ij (−ω, �q) = (−1)i+j �

(L)
ij (+ω, �q),

�
(T )
ij (−ω, �q) = (−1)i+j �

(T )
ij (+ω, �q),

(44)
�a(−ω, �q) = (−1)a+1 �a(+ω, �q),

�ab(−ω, �q) = (−1)a+b �ab(+ω, �q).

It is left to specify the isobar self-energy in terms of the
generic loop functions defined by Eq. (37). In a first step
a matrix of loop functions, J

(p,q)
ab,[ij ](v, u), is constructed in

terms of Jab,n(v, u) as detailed in [28]. The latter correspond
to the projector algebra of Sec. IV. The evaluation of the
self-energy is analogous to the computation of Sec. IV
with the slight complication that the effective vertex de-
velops additional structures qµ uµ + uµ qν, uµuν , and gµν .
The loops J

(p,q)
11,[ij ](v, u), which are implied by the structure

qµ qν , contribute like the previous loops J
(p,q)
[ij ] (v, u) in

Eq. (33). The implication of the remaining loop functions
is readily worked out upon the application of the useful
identities

uµ = −i

√
2

3

√
(v · u)2

v2
− 1

{
P̄

µ

[17] + P̄
µ

[28]

− 1√
2

(
P̄

µ

[14] + P̄
µ

[23]

)} + v · u√
v2

(
P̄

µ

[15] + P̄
µ

[26]

)

= −i

√
2

3

√
(v · u)2

v2
− 1
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×
{
P

µ

[71] + P
µ

[82] − 1√
2

(
P

µ

[41] + P
µ

[32]

)}

+ v · u√
v2

(
P

µ

[51] + P
µ

[62]

)
,

gµν P[11] = Q
µν

[11] + P
µν

[44] + P
µν

[55] + P
µν

[77],

gµν P[22] = Q
µν

[22] + P
µν

[33] + P
µν

[66] + P
µν

[88],

gµν P[12] = Q
µν

[12] − 1

3
P

µν

[43] + P
µν

[56] + 1

3
P

µν

[78]

−
√

8

3

(
P

µν

[73] + P
µν

[48]

)
,

gµν P[21] = Q
µν

[21] − 1

3
P

µν

[34] + P
µν

[65] + 1

3
P

µν

[87]

−
√

8

3

(
P

µν

[84] + P
µν

[37]

)
. (45)

It is now straightforward to write down the self-energies,
	

(p,q)
[ij ] (v, u). It holds

	
(q)
[ij ](v, u) = − f 2

�

m2
π

{
J

(q)
11,[ij ](v, u) + J

(p)
00,[ij ](v, u)

}
,

	
(p)
[ij ](v, u) = − f 2

�

m2
π

{
J

(p)
11,[ij ](v, u)

+
2∑

a,b =1

J
(p)
22,[ab](v, u) cai(v, u) cbj (v, u)

+
2∑

a=1

(
J

(p)
12,[ia](v, u) caj (v, u)

+ J
(p)
21,[aj ](v, u) cai(v, u)

+
2∑

a,b=1

J
(p)
00,[ab](v, u) c

(ab)
[ij ] (v, u)

}
,

caj (v, u) = v · u√
v2

δ4+a,j − i

√
2

3

√
(v · u)2

v2
− 1 (46)

×
(

δ6+a,j − 1√
2

δ5−a,j

)
,

c
(ab)
[ij ] (v, u) = δa1 δb2

(
1

3
(δi7 δj8 − δi4 δj3) + δi5 δj6

−
√

8

3
(δi7 δj3 + δi4 δj8)

)

+ δab δij (δi,5−a + δi,4+a + δi,6+a)

+ δa2 δb1

(
1

3
(δi8 δj7 − δi3 δj4) + δi6 δj5

−
√

8

3
(δi3 δj7 + δi8 δj4)

)
.

VII. NUMERICAL RESULTS AND DISCUSSIONS

We present and discuss numerical simulations of the
pion and isobar spectral distributions at nuclear saturation
density with the Fermi momentum kF = 270 MeV. The results

depend on a number of parameters appearing in the developed
covariant and self-consistent approach. These are first of all
the scalar and vector mean-field shifts of the delta, 	�

S and
	�

V , as well as the Migdal parameters g′
11, g

′
12, and g′

22. One
should also consider medium induced changes in the coupling
constants f� and fN , although it is usually assumed that for
nuclear densities they do not depart significantly from their
vacuum values. The nucleon mean-field parameters 	S

N and
	S

V , which model nuclear saturation and binding effects, are
also prone to variations in different models. We use the values
	N

S = 350 MeV and 	N
V = 290 MeV also assumed in [28,29].

As a guide we consider the values of the above parameters
used in earlier computations, but having in mind their scheme
dependence. We focus on variations around a parameter set
which has been shown to lead to a reproduction of the
nuclear photo-absorption cross section in the delta excitation
region [29]. The latter study builds on the self-consistent
approach developed in this work. It is the first work that
considers photo-absorption in the presence of short-range
correlation effects in the γ π π, γ N �, γ π N �,π N �, and
π N N vertices. Electromagnetic gauge invariance is kept as
a consequence of a series of Ward identities obeyed in the
computation. In particular the interference of the in-medium
s-channel isobar exchange and the t-channel in-medium pion
exchange is considered. We refer to the details of that work
which provides the following parameter set:

	�
S = −0.25 GeV, 	�

V = −0.11 GeV,
(47)

g′
11 = 1.0, g′

12 = 0.4, g′
22 = 0.4,

together with an in-medium reduction of the f� coupling by
15% but an unchanged value for fN . According to [2] the
in-medium reduction of the fN coupling is quite small (less
than 6% at saturation density). This is in line with our finding
that the photo-absorption data does not require any in-medium
change of fN . The values of the Migdal parameters in Eq. (47)
are within range of the various sets used in the literature.
Though in the recent work by Hees and Rapp [25] large values
of g′

12 and g′
22 are excluded in their nonrelativistic scheme,

this is not the case in our more microscopic and relativistic
approach. Values for g′

12 and g′
22 as large as in Eq. (47) generate

a width for the isobar in [25] that would be incompatible with
the photo-absorption data as computed in [25]. However, it
is reasonable to expect that such a condition is altered by
a possible in-medium reduction of f�. We remark that the
significantly different values of nucleon and isobar mean-field
self-energies may seem surprising at first, but one should not
forget the marked asymmetry in our treatment of the nucleon
and the isobar. For the latter we include its self-energy based on
the pion-nucleon loop and Migdal’s short-range interactions,
while for the nucleon the only dressing is through scalar and
vector mean fields. An attempt to fit the photo-absorption data
assuming similar nucleon and delta mean fields did not yield
any useful results.

We recall from [7,29] that the actual position of the photo-
absorption peak is a subtle effect of short-range correlation
effects and the in-medium isobar properties. The peak of the
isobar spectral distribution does not translate directly into the
maximum of the photo-absorption cross section. The pion
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FIG. 4. (Color online) Results for
the delta spectral function with (solid
lines) and without (dashed lines) the
πN� vertex correction (upper figures).
We show the S

(p)
[77] component (left

figure) and the S
(q)
[11] component (right

figure) for different momenta. The pion
spectral function (left figure) and self-
energy (right figure) are shown on the
lower figures (q is the pion momen-
tum). The parameters of Eq. (47) are
used together with our reduced value
for f�.

and isobar properties as implied by Eq. (47) are shown in
Fig. 4 for nuclear saturation density by solid lines: at zero
momentum the isobar receives an attractive mass shift of about
50 MeV. Due to our self-consistent approach this implies
that the isobar–nucleon-hole bubble characterizing Migdal’s
short-range correlations shows structure in an energy region
not too dissimilar from the one expected from vacuum masses.

Our predicted mass shift for the isobar is amazingly close to
the range obtained in [7] but in stark contrast to the small and
repulsive mass shift obtained recently in [25]. For the isobar
we restrict the discussion to the two main components because
they dominate the resonance region. Please note however, that
the proper inclusion of all other components is essential to
ensure the cancellation of kinematical singularities on the
light-cone.

We observe a significant splitting of the p- and q-space
modes at nonzero momentum. The medium effects are stronger
for the q-space (helicity 3/2) than they are for the p-space
(helicity 1/2), where we obtain a less pronounced broadening
and smaller shift in the position of the peak at larger
momentum. Note that the nuclear photo-absorption data probe
dominantly the helicity 3/2 mode. These findings are in
qualitative agreement with the results of [7] that were based
on a perturbative and nonrelativistic many-body approach.
It should be pointed out, however, that the pion spectral
function corresponding to the approach of [7] differs decisively
from the one predicted by our approach. Though a direct
comparison is difficult, since Oset et al. did not provide figures
for the pion spectral function, an indirect comparison may
be possible. We take the more recent work of Ramos and

Oset [34], which provides explicit results for the pion spectral
distribution. The strength in the soft pion modes as shown
in Fig. 4 is much suppressed as compared to an in-medium
pion considered realistic in [34]. Also a comparison of our
pion spectral function in Fig. 4 with other recent results
[21,22,25] show significant and systematic differences at small
and intermediate momenta.

Before we discuss a variation of parameters around the
central values (47) we examine the effect of various ap-
proximations all based on the parameter set (47). First we
consider the effect of neglecting short-range correlation effects
in the isobar self-energy as done in [14,21,22]. In Figs. 4
and 5 the quality of such an approximation is scrutinized.
Though the Migdal parameters enter in a decisive manner
in the computation of the pion self-energy via Eq. (10), the
isobar properties are a functional of the pion self-energy and
the vertex functions only. As studied in great detail in the
previous works [14,21,22], the self-consistent treatment of
the pion and isobar properties is an important and significant
effect even in the absence of vertex corrections for the isobar.
The upper left panel of Fig. 5 shows the contour lines of the
pion spectral function as obtained in the fully self-consistent
computation. If one neglects the πN� vertex correction in the
isobar self-energy as discussed above, the contour lines in the
upper right-hand panel arise. A more quantitative illustration
is offered by a comparison of the solid and dashed lines in
Fig. 4. Figures 4 and 5 document the importance of the vertex
corrections in the isobar self-energy. Most significant are the
effects on the isobar spectral distribution as shown by the solid
and dashed lines of Fig. 4. The consistent consideration of
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FIG. 5. (Color online) Contour plots of the
pion spectral function using the parameters (47).
The upper left figure gives our full result, the
upper right figure follows if the vertex correction
in the delta self-energy are neglected. The
lower left figure follows if the free-space isobar
propagator is used in Eq. (10). The lower right
figure shows the impact of reducing the nucleon
mean fields.

short-range correlation effects leads to a significant attractive
mass shift and a reduction of the width for the isobar. It is
interesting to observe that it appears well justified to treat the
vertex contributions in the isobar self-energy in perturbation
theory. We find that the evaluation of the vertex bubbles
of Fig. 3 with a free-space isobar propagator leads to an
isobar propagator that can barely be discriminated from our
full results. Recall, however, that a corresponding attempt
for the short-range bubbles in the pion self-energy would
fail miserably, giving a dramatically different pion spectral
function. This is illustrated by the lower left-hand panel of
Fig. 5, where the pion spectral function is shown as it is implied
by the free-space isobar together with the Migdal parameters
of Eq. (47) and our in-medium value for f�. In particular
the width of the low-momentum main pion mode would be
underestimated.

We now turn to a variation of the parameter set. In the
lower right-hand panel Fig. 5 the effect of using smaller scalar
and vector mean fields for the nucleons is illustrated. The
contour lines were obtained with 	N

S = 175 MeV and 	V =
115 MeV. In Fig. 6 the variation of the value chosen for the
πN� coupling constant f� is investigated. The reason for
considering the departure from the vacuum value is that a
detailed study [29] of nuclear photo-absorption strongly favors
such a change, more precisely a reduction of the f� coupling
by about (10–15)% at nucleon densities close to saturation. As
expected a reduction of the coupling leads to a reduction of
the isobar width. In the pion spectral function we can, at least
for intermediate momenta, distinguish three branches. These
are the main pion mode as well as the particle-hole and �-hole
excitation. At about 0.3 GeV momentum we observe the level
crossing between the main pion mode and the isobar-hole
excitation. Decreasing f� reduces the strength of the isobar-

hole branch and in addition due to the narrower isobar that
mode becomes better visible.

Next we study the influence of Migdal’s g′
22 parameter.

Varying its value from 0.2 to 0.5 we arrive at the results shown
in Fig. 7. The effect of changing g′

22 is subtle since it influences
the dressing of the isobar through the πN� vertex correction
and also the pion self-energy by affecting the isobar-hole loop
contribution. Increasing the value of g′

22 softens the isobar and
decreases its width, which compensates in part the reduction
of the isobar-hole-loop contribution to the pion self-energy.
All together the resulting change in the pion spectral function
is modest. We note that a variation of g′

12 is quite similar to
that of g′

22. A variation of g′
11 just affects the nucleon-hole

contribution. Lowering g′
11 makes the nucleon-hole branch of

the pion larger, which in turn somewhat increases the isobar
broadening.

We conclude with a discussion of the influence of the isobar
mean field parameters. Results are shown for two parameter
sets, which induce the same energy shift at zero momentum.
Next to our standard set we use a set whose scalar mean field
is put to zero and the vector part provides the net repulsion of
0.14 GeV at zero momentum as is implied also by Eq. (47).
The effects can be found in Fig. 8. Without the scalar mean
field we obtain less attraction at nonzero momentum and in
addition the width of the isobar is significantly increased at
larger momenta. This implies a smaller contribution of the
isobar-hole state to the self-energy of the pion as shown in the
lower right-hand panel of Fig. 8.

VIII. SUMMARY

A detailed study of pion and isobar properties in cold
nuclear was presented. A fully relativistic and self-consistent
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FIG. 6. (Color online) Same as Fig. 4,
but varying the πN� coupling constant
f�. The solid lines correspond to the 15%
reduction of f�, the dashed ones to its free-
space value.

many-body approach was developed that is applicable in the
presence of Migdal’s short-range correlations effects. Nuclear
saturation and binding effects were modeled by scalar and
vector mean fields for the nucleon. The novel subtraction
scheme, that was constructed recently by two of the authors
and that avoids the occurrence of kinematical singularities, was

used. Unlike in previous studies no soft form factors for the
πN� vertex were needed. For the first time the πN� vertex
corrections as dictated by Migdal’s short-range interactions
were considered in a relativistic and self-consistent many-body
approach. The latter were found to affect the isobar and
pion properties dramatically. Using realistic parameter sets we
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FIG. 7. (Color online) Same as Fig. 4 but

for different values of the g′
22 parameter. The

solid lines correspond to the g′
22 = 0.5, the

dashed ones to g′
22 = 0.2.
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FIG. 8. (Color online) Same as Fig. 4 but
for a variation of the delta mean-fields 	�

S and
	�

V . The solid lines correspond to the standard
choice of Eq. (47), the dashed lines to the
choice 	�

S = 0.00 GeV and 	�
V = 0.14 GeV.

predict a downward shift of about 50 MeV for the � resonance
at nuclear saturation density. The pionic soft modes are much
less pronounced than in previous studies.

Further studies are needed to consolidate our results. In
particular an application to the pion-nucleus problem and the
pionic atom data set would be useful to further constrain the
parameter set. Our computation may be generalized to study
effects of finite temperature.
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APPENDIX A

We present explicit representations for the nucleon- and
isobar-hole loops introduced in Eq. (7) for the case of nuclear
matter at rest with uµ = (1, �0 ). The longitudinal [20] and
transverse nucleon-hole loop functions are

�
(Nh)
ij (ω, �q) = f 2

N

m2
π

P
∫ kF

0

d3p

2 p0 (2π )3

8 K
(Nh)
ij

2 p · q + q2 + i ε

+ i f 2
N

m2
π

�
∫ kF

0

d3p

2 p0 (2π )3

× 8 K
(Nh)
ij �(kF − | �p + �q |)
2 p · q + q2 + i ε

�(p0 + ω)

+ (−1)i+j (qµ → −qµ), (A1)

where qµ = (ω, �q ), p0 =
√

m2
N + �p 2, and

K
(Nh)
11 = 2 m2

N, K
(Nh)
12 = K

(Nh)
21 = 0,

K
(Nh)
22 = ω2 − �q 2

�q 2
(2 �p 2 + ωp0 + �p · �q) + 2 m2

N

ω2

�q2
, (A2)

K
(Nh)
T = 3 m2

N + ωp0 − �p · �q − 1

2

(
K

(Nh)
11 + K

(Nh)
22

)
.

Note that there is no appearance of the vector mean field
parameter 	V .

For a bare isobar propagator, Sµν

0 (w) as given in Eq. (6), the
longitudinal isobar-hole loop functions were computed already
in [20]. We present here longitudinal as well as the transverse
loop functions:

�
(�h)
ij (ω, �q) = 4

9

f 2
�

m2
π

∫ kF

0

d3p

2 (p0 − 	V ) (2π )3

× 8 K
(�h)
ij

(
mN m� + m2

N + (p · q)
)

2 p · q + q2 − m2
� + m2

N + i ε

+ (−1)i+j (qµ → −qµ),

K
(�h)
11 = 1 − (q2 + p · q)2

q2 m2
�

,

K
(�h)
22 = 1 + (ω | �p | cos(�q , �p ) − |�q | p0)2

m2
� q2

,

K
(�h)
12 = K

(�h)
21
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= i
q2 + p · q

q2 m2
�

(|�q | p0 − ω | �p | cos(�q , �p )),

K
(�h)
T = 2 − (p + q)2

2 m2
�

− 1

2

(
K

(�h)
11 + K

(�h)
22

)
, (A3)

where qµ = (ω, �q ), p0 =
√

m2
N + �p 2 + 	V . Both represen-

tations (A1), (A3) are compatible with Eq. (13). On the other
hand, only Eq. (A1) is consistent with Eq. (15). The asymptotic
behavior of the isobar-hole loop as given in Eq. (A3) is at odds
with the condition (15).

To derive the general results for the isobar-hole loop
functions in the presence of self-energy effects it is necessary
to establish a generalization of Eq. (A3). Without assuming a
specific form of the isobar propagator we find

�
(�h)
11 (ω, �q) = 1

q2
�

(�h)
1 (ω, �q),

�
(�h)
12 (ω, �q) = 1√

q2 − (q · u)2

×
(

q · u

q2
�

(�h)
1 (ω, �q ) − �

(�h)
2 (ω, �q )

)
,

�
(�h)
22 (ω, �q ) = q · u

q2 − (q · u)2

(A4)

×
(

q · u

q2
��h

1 (ω, �q) − 2 �
(�h)
2 (ω, �q)

+ q2

q · u
�

(�h)
3 (ω, �q )

)
,

�
(�h)
T (ω, �q) = 1

2

(
�

(�h)
4 (ω, �q ) − �

(�h)
11 (ω, �q)

−�
(�h)
22 (ω, �q)

)
as a consequence of the decomposition (16). The merit of
the representation (A4) lies in its simple realization of the
constraint equations (13). The first condition is satisfied for
any functions �i(ω, �q ) that are regular at q2 = 0. The second
equation in Eq. (13) implies the following constraint:

�3(ω, 0) = 1

ω2
�1(ω, 0), �2(ω, 0) = 1

ω
�1(ω, 0),

(A5)
�4(ω, 0) = 3 �22(ω, 0) + �11(ω, 0),

where we boosted into the rest frame of nuclear matter for
convenience. Based on the representation (16) we define

�
(�h)
i (ω, �q ) =

[
δi4 �

(�h)
3 (0, �q)

− 8

3

f 2
�

m2
π

∫ kF

0

d3p

2 (p0 − 	V ) (2π )3

(A6)

×
∫ +∞

−∞

dω̄

π

(ω

ω̄

)ni sign(ω̄) �S
(�h)
i (ω̄, �q, �p)

ω̄ − ω − i ω̄ ε

]

+ (−1)εi (qµ → −qµ),

where p0 =
√
m2

N + �p 2+	V and ε1,3,4 = 0 and ε2 = 1. Fur-
thermore n1,4 = 2 but n2 = 1 and n3 = 0. We assure that
the definition (A6) leads to a polarization tensor com-
patible with all constraints (13), (15). This is a conse-
quence of specific identities the integral kernels enjoy [see
Eq. (A9)].

The integral kernels, S
(�h)
i (q, p, u), required in Eq. (A6)

are covariant functions of the four-momenta qµ, pµ, and
uµ. Their evaluation requires the contraction of the isobar
propagator, Sµν(p + q, u), with the qµ and uµ [see Eqs. (7),
(9)]. We express the four-vector uµ, in terms of vµ and
Xµ(v, u),

uµ = −
√

(v̂ · u)2 − 1 Xµ(v, u) + (v̂ · u) v̂µ, (A7)

since the contraction of the isobar propagator with vµ and
Xµ(v, u) leads to more transparent expressions. In particular
we can take over the results from [28], where contractions
of the isobar propagator with the latter four-vectors were
computed already. The results were decomposed into the
extended algebra of projectors (23), (25) introducing the
invariant expansion coefficients S

(a)
[ij ](v, u) and S

(ab)
[ij ] (v, u) with

a, b = v, x.
We present the integral kernels of Eq. (A6), which have

transparent representations in terms of the invariant functions
introduced in Eq. (16) and c

(p,q)
[ij ] (q; v, u) of [28]. We establish

S
(�h)
1 =

8∑
i,j=3

c
(p)
[ij ] S

(p)
[ij ] +

2∑
i,j=1

c
(q)
[ij ] S

(q)
[ij ],

S
(�h)
2 =

2∑
i=1

8∑
j=3

c
(p)
[ij ]

[
(v̂ · u) S

(v)
[ij ] −

√
(v̂ · u)2 − 1 S

(x)
[ij ]

]
,

(A8)

S
(�h)
3 =

2∑
i,j=1

c
(p)
[ij ]

[
(v̂ · u)2 S

(vv)
[ij ] + ((v̂ · u)2 − 1) S

(xx)
[ij ]

− (v̂ · u)
√

(v̂ · u)2 − 1
(
S

(xv)
[ij ] + S

(vx)
[ij ]

)]
,

S
(�h)
4 =

2∑
i,j=1

c
(p)
[ij ] S

(g)
[ij ].

A straightforward computation reveals that the kernels S
(�h)
i

are correlated at vanishing three-momentum �q = 0. In this
case it holds

S
(�h)
3 = 1

ω2
S

(�h)
1 , S

(�h)
2 = 1

ω
S

(�h)
1 ,

S
(�h)
4 = 3 S

(�h)
3 − 2

ω2
S

(�h)
1 (A9)

− 3
d

d �q 2

∣∣∣�q=0

(
S

(�h)
1 − 2 ω S

(�h)
2 + ω2 S

(�h)
3

)
,

where we assumed an angle average, i.e., the presence of d��q .
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APPENDIX B

We derive

V
(p)

[33] = f 2
�

m2
π

[
2 δV δ (m� + (w̃ · v̂))

9m2
�

(
m2

� − w̃2
)

]
, V

(p)
[34] = i δ f 2

�

m2
π m2

�

√
(u · v̂)2 − 1

[
−2 δV δ

9
(
m2

� − w̃2
)
]

,

V
(p)

[35] = f 2
�√

3 m2
π m2

�

[
3m�

(
m2

� − (w̃ · v̂)2
) − δV δ (2 (w̃ · v̂) − m�)

3
(
m2

� − w̃2
)

]
,

V
(p)

[36] = −V
(p)

[45] = i δ f 2
�

m2
π m2

�

√
3(u · v̂)2 − 3

[
2
(
m2

� − (w̃ · v̂)2
)

3
(
m2

� − w̃2
)

]
,

V
(p)

[37] =
√

2 i δf 2
�

3m2
π m2

�

√
(u · v̂)2 − 1

[
3 m�(m� + (w̃ · v̂)) + 2 δV δ

3
(
m2

� − w̃2
)

]
, V

(p)
[38] = −f 2

� δ(δV (1 − (u · v̂)2) + 3δ)(m� − 2(w̃ · v̂))

9
√

2 m2
π m2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

,

V
(p)

[44] = f 2
�

m2
π m2

�

[
2δV δ ((w̃ · v̂) − m�)

9
(
m2

� − w̃2
)

]
, V

(p)
[46] = f 2

�√
3 m2

π m2
�

[
−3m�

(
m2

� − (w̃ · v̂)2
) − δV δ (2 (w̃ · v̂) + m�)

3
(
m2

� − w̃2
)

]
,

V
(p)

[47] = −f 2
� δ(δV (1 − (u · v̂)2) + 3δ)(m� + 2(w̃ · v̂))

9
√

2 m2
π m2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

, V
(p)

[48] =
√

2 i δf 2
�

3 m2
π m2

�

√
(u · v̂)2 − 1

[
3 m�(m� − (w̃ · v̂)) + 2 δV δ

3
(
m2

� − w̃2
)

]
,

V
(p)

[55] = f 2
�

3 m2
πm2

�

[−2(m� − (w̃ · v̂))(m� + (w̃ · v̂))2

m2
� − w̃2

]
, V

(p)
[56] = i δ f 2

�

m2
π m2

�

√
(u · v̂)2 − 1

[
−2

(
m2

� − (w̃ · v̂)2
)

3
(
m2

� − w̃2
)

]
,

(B1)

V
(p)

[57] = −
√

2 i δf 2
�

3
√

3 m2
π m2

�

√
(u · v̂)2 − 1

[
m2

� + 3m�(w̃ · v̂) + 2 (w̃ · v̂)2(
m2

� − w̃2
)

]
, V

(p)
[58] = f 2

� δ(δV (1−(u · v̂)2) + 3δ)(m�−2(w̃ · v̂))

3
√

6 m2
π m2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

,

V
(p)

[66] = f 2
�

3 m2
πm2

�

[−2(m� − (w̃ · v̂))2(m� + (w̃ · v̂))

m2
� − w̃2

]
, V

(p)
[67] = −f 2

� δ(δV (1 − (u · v̂)2) + 3δ)(m� + 2(w̃ · v̂))

3
√

6 m2
π m2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

,

V
(p)

[68] =
√

2 i δf 2
�

3
√

3 m2
π m2

�

√
(u · v̂)2 − 1

[
m2

� − 3m�(w̃ · v̂) + 2 (w̃ · v̂)2(
m2

� − w̃2
)

]
,

V
(p)

[77] = −f 2
� (m� + (w̃ · v̂))

m2
π

(
m2

� − w̃2
) + f 2

� δ (3δ(2m� + (w̃ · v̂)) + δV ((u · v̂)2 − 1)(2 m� + (w̃ · v̂)))

9 m2
πm2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

,

V
(p)

[78] = −iδf 2
�

(
9δ2 + ((u · v̂)2 − 1)

( −5 δV δ + 3m2
�

))
9 m2

π m2
�

(
m2

� − w̃2
)√

(u · v̂)2 − 1
3 ,

V
(p)

[88] = −f 2
� (m� − (w̃ · v̂))

m2
π

(
m2

� − w̃2
) + f 2

� δ (3δ(2m� − (w̃ · v̂)) + δV ((u · v̂)2 − 1) (2 m� − (w̃ · v̂)))

9 m2
πm2

�

(
m2

� − w̃2
)
(1 − (u · v̂)2)

,

V
(q)

[11] = f 2
� (m� + (w̃ · v̂))

m2
π

(
w̃2 − m2

�

) , V
(q)

[22] = f 2
� (m� − (w̃ · v̂))

m2
π

(
w̃2 − m2

�

) , V
(q)

[12] = i δ f 2
�

m2
π

(
w̃2 − m2

�

)√
(u · v̂)2 − 1

,

where

w̃µ = wµ − 	�
V uµ, δ = (u · v̂)(w̃ · v̂) − (u · w̃),

δV = 	N
V − 	�

V . (B2)
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