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Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method
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We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole
process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels
method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member
of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly
affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with
the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels
calculation. The calculations are performed for a strongly deformed nucleus 169Tm, and selected cross sections
for the ground and first excited states are compared. The calculation is also made for actinides to investigate
possible modification to the fission cross section when the target is excited. It is shown that both the level coupling
for the entrance channel, and the different target spin, change the fission cross section.
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I. INTRODUCTION

Understanding nuclear reactions on excited nuclei is of
physical interest for studying nucleosynthesis in nuclear astro-
physics. Nuclear reaction rates for astrophysical applications
are corrected by the stellar enhancement factor (SEF) [1],
taking account of the thermal excitation of the target [2]. In
a natural environment nuclear reactions normally take place
on stable nuclei, with the target nucleus in its ground state or
isomeric state. In the case of shape and spin isomers, because
the excited state hardly couples to the ground state, they can
be treated as if the target was in a ground state, but with
a straightforward modification to the reaction Q value. The
excitation energy of the isomers is released by impinging
neutrons, for example, via a compound nucleus reaction. It is
sometimes referred to as a superelastic process [3,4], because
the outgoing neutron is accelerated.

In a high-density high-temperature neutron and γ -ray
environment, such as neutron stars or supernovae, it is likely
that neutron-induced nuclear reactions occur on the excited
states, even though the lifetime of the excited state is often in
the order of a nanosecond or shorter. For example, the half-life
of the first excited state of 169Tm is 4.08 ns, and that for 239Pu
is 36 ps [5]. The nuclear reaction rates on the excited state
could be different from those on the ground state, primarily
because of the difference in phase space of levels accessible:
the spin and parity of the ground and excited states usually
differ, and the target excitation energy shifts the excitation
energy of the compound system. This process can be calculated
with a standard Hauser-Feshbach model [6] with an additional
excitation energy on the target nucleus.

When a target nucleus is strongly deformed, we observe a
rotational spectrum on each K band, and this modifies the
accessible phase space depending on which target state is
excited. In the case where the excited target is a member of
the ground-state rotational band, a direct reaction caused by
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an incident neutron can de-excite the target without forming
a compound nucleus. In this direct inelastic scattering, the
incoming neutron gains energy during the process. The direct
reaction also may change the compound nuclear reaction
process, because the total compound formation cross section
and corresponding transmission coefficients differ if the target
nucleus is in an excited state.

We study the nuclear reactions on the excited nuclei in
the framework of the coupled-channels (CC) formalism [7,8].
The direct cross sections for the ground or excited states are
calculated by solving the coupled Schrödinger equations, and
transmission coefficients for both ground and excited states
are obtained from the same scattering (S) matrix elements,
using a symmetry property of the S matrix. We calculate
nuclear reactions on 169Tm, because of properties that simplify
our calculations: there are precedent studies by Madland [9],
and Madland and Doolen [10], the target is well deformed
(β2 = 0.3) [11], it does not fission by a fast energy neutron,
and charged particle emission channels can be ignored. The
calculations for 169Tm are performed at low energies [below
the (n,2n) reaction threshold energy], where we expect a
constraint effect of target spin and partial wave angular
momentum couplings. We also perform studies of the fission
cross sections of 239Pu using the Hauser-Feshbach model that
includes multiple-chance fission in the higher-energy range.

The excited nuclei at low-lying states are produced in
various way, e.g., by neutron inelastic scattering, γ ray
absorption, neutron radiative capture, inverse internal conver-
sion, and so on. For example, the nuclear reaction process
during ICF (inertial confinement fusion) may involve neutron
interactions on the excited nuclei. It should be emphasized
that measurements of nuclear reaction cross sections on
very short-lived targets are extremely difficult, or impossible,
within an acceptable uncertainty, so that prediction of these
cross sections by model calculations is essential. The method
described in this study is general, and it can be applied to
any medium/heavy nucleus whenever knowledge of nuclear
reactions on the excited target is crucial in applications. This
may provide some insight on possible modifications to the
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nuclear reaction rates on important waiting point nuclei in
nucleosynthesis.

II. THEORY

A. Direct nuclear reaction

The formulation of the CC method is given in Refs. [7,8].
Solving a set of coupled equations gives a scattering matrix
element SJ�

cc′ , where the channel c is specified by quantum
numbers of the incoming/outgoing wave (l, s, j ), J� the total
spin and parity, and the target state n that designates the spin
In and parity πn. n = 0 stands for the ground state, n = 1 is
for the first excited state, the quantities with a prime are for
the exit channel, and so on.

We limit ourselves to consider neutron-induced reactions.
Because the scattering matrix element SJ�

cc′ is symmetric, the
direct cross sections from any n-th level can be calculated by

σ
(n)
R = π

k2
n

∑
J�

∑
c

δnc,ngJ

(
1 −

∑
c′

∣∣SJ�
cc′

∣∣2

)
, (1)

σ
(nn′)
D = π

k2
n

∑
J�

∑
c

δnc,ngJ

∑
c′

∣∣δcc′ − SJ�
cc′

∣∣2
δnc′n′ , (2)

where gJ is the spin factor given by

gJ = 2J + 1

(2s + 1)(2In + 1)
, (3)

where s is the intrinsic spin of neutron, kn is the incoming
wave number, nc is the index of the excited level to which the
channel c belongs, σ

(n)
R is the reaction (compound formation)

cross section when the target is at the n-th level, and σ
(nn′)
D is

the direct inelastic-scattering cross section from the n-th to the
n′-th level. For a special case, n = n′ is for the shape elastic
scattering σ

(n)
E . The total cross section σ

(n)
T can be expressed

in terms of the S-matrix elements, or more conveniently,

σ
(n)
T = σ

(n)
R +

∑
n′

σ
(nn′)
D . (4)

Figure 1 shows a scheme of CC calculation for the
ground-state rotational band [(1/2)+-(3/2)+-(5/2)+-(7/2)+],

FIG. 1. An example of coupled-channels calculation for the
excited state. The target is at the first (3/2)+ state, which is a member
of ground-state rotational band. The coupled equations give a set of
direct cross sections and the compound formation cross section. In
this case the direct transition to the (3/2)+ level is elastic scattering
and to other levels is inelastic scattering.

when the target is at the (3/2)+ level. In this case the elastic
scattering is a direct transition to the first excited (3/2)+ level.
The direct process to the ground state (1/2)+ is one of the
inelastic-scattering channels, although the outgoing neutron
energy becomes higher than the incident neutron energy, which
is often called superelastic (or sometimes superinelastic). In
this article we regard this as one of the inelastic-scattering
process. Not only the direct reaction but also the compound
process to the ground state, A∗ + n → (A + 1)∗ → A + n′,
releases the target excitation energy too.

As the reaction cross section σR is calculated in Eq. (1), the
generalized transmission coefficient T

(n)
lj , which is defined as

the probability of formation of compound nucleus on the n-th
state by a neutron having the orbital angular momentum and
spin of l, j , is given by

T
(n)
lj =

∑
J�

∑
c

2s + 1

2jc + 1
gJ

(
1 −

∑
c′

∣∣SJ�
cc′

∣∣2

)
δnc,nδlc,lδjc,j ,

(5)

where δlc,l is the Kronecker delta. Equation (5) gives a partial-
wave contribution to the total reaction cross section as

σ
(n)
R = π

k2
n

∑
lj

2j + 1

2s + 1
T

(n)
lj . (6)

The transmission coefficient in Eq. (5) is the one we can use
in the Hauser-Feshbach model. In many previous calculations
Tlj in the Hauser-Feshbach model is calculated for the ground
state, and the decay channel transmission coefficients T

(n)
lj

are replaced by the ground state T
(0)
lj calculated at a shifted

energy, T
(n)
lj (E) = T

(0)
lj (E − Ex). Because our method gives a

correct T
(n)
lj for all excited states, such an approximation is not

involved in our Hauser-Feshbach calculations.

B. Compound nuclear reaction

The Hauser-Feshbach theory [6] needs to be modified
when the number of open channels is small [12]. This
width fluctuation correction has been studied for the spherical
nucleus case [13–16]. Two independent computational studies
of Igarasi [17] and Hilaire, Lagrange, and Koning [18] showed
that the integration method with Monte Carlo simulation for
the channel degree-of-freedom ν by Moldauer [14] gives
almost an identical result to the most exact solution by
Verbaarschot et al. of the energy-averaged S-matrix element
using the Gaussian orthogonal ensemble (GOE) [16].

Kawai, Kerman, and McVoy (KKM) [19] formulated the
compound nuclear reaction in terms of the CC method, in
which the nuclear deformation is automatically taken into
account. In KKM, the generalized transmission coefficient in
Eq. (5) is not used, but the compound cross section is defined
in terms of a penetration matrix P , which is calculated from
the S matrix as [20]

Pcc′ = δcc′ −
∑
c′′

Scc′′S∗
c′′c′ . (7)
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Other techniques deal with the direct channels in the com-
pound reaction by a unitary transformation (Engelbrecht-
Weidenmüller transformation) [21,22] to diagonalize the S

matrix. A method of Nishioka, Weidenmüller, and Yoshida
[23] is a natural extension of the GOE triple integral to
the penetration matrix, which is, however, not practical for
numerical calculations. We have shown [24] that the KKM
theory gives very similar cross sections to that of Moldauer’s
method, and we do not expect a large modification to the
calculated result because this is a correction to the width
fluctuation correction factor (inclusion of direct channel,
which is typically about ∼5–10% contribution to the total
scattering.) Therefore, in this study, the compound cross
section is not calculated from Eq. (7), but the spin-averaged
form in Eq. (5).

In our calculations, therefore, the width fluctuation cor-
rection to the Hauser-Feshbach theory is calculated by the
Moldauer’s method [14], using the generalized transmission
coefficient in Eq. (5). This is a so-called detailed balance
calculation [7]. The systematics of ν are replaced by a recent
study of Ernebjerg and Herman [25], which better reproduces
the GOE calculations. When the target is in an excited state, the
width fluctuation elastic enhancement occurs for the excited
state. This method has been applied to calculate neutron
radiative capture cross sections on actinides [26,27], and it
was shown that the calculated capture cross sections on 237Np
and 241Am well reproduce the experimental data from Los
Alamos.

As schematically shown in Fig. 2 all the transmission
coefficients for the compound nucleus decay channels are
easily obtained by the CC calculation with the detailed
balance technique. For example, the transmission coefficient
from the compound nucleus to the excited (3/2)+ state (exit
channel) is identical to that of compound formation probability
(entrance channel). A transmission coefficient to uncoupled
states (shown by the dotted arrow in Fig. 2) is given by solving
a spherical optical model on this excited state, which forms
the same compound state as the entrance channel. The optical

FIG. 2. Transmission coefficients used in the Hauser-Feshbach
calculation. The transmission coefficients for the rotational band
members are obtained by the CC calculation. For the uncoupled state,
we perform a spherical optical model calculation.

potential for these spherical calculations would be different
from that for the CC calculation. Indeed, it is possible to
increase the imaginary potential phenomenologically or apply
a global spherical optical potential for those uncoupled states
to account for eliminating the direct channels in the CC
calculation. In this study we simply adopt the same optical
potential parameters of the CC model for the uncoupled states
and perform spherical optical model calculations. The same
procedure is used both for calculations of targets in their
ground state and in their excited states.

III. RESULTS AND DISCUSSION

A. Coupled-channels calculation for 169Tm

The CC optical potential parameter for 169Tm was taken
from Ref. [9]: they are

V = 46.87 − 0.25 E MeV, (8)

Ws = 3.6 + 0.6 E MeV, (9)

Vso = 6.0 MeV, (10)

where V is the Wood-Saxon central potential depth, Ws is
the derivative Woods-Saxon imaginary potential, Vso is the
Thomas-type spin-orbit potential, and E is the incident neutron
energy in MeV. The radius r and diffuseness a for each
potential are rv = rw = rso = 1.27 fm, av = aso = 0.63 fm,
and aw = 0.48 fm, in common notation. The deformation
parameters of 169Tm are β2 = 0.31 and β4 = −0.01. We
coupled five levels of the ground-state rotational band,
(1/2)+, (3/2)+, (5/2)+, (7/2)+, and (9/2)+, and calculated the
direct cross sections for two cases: (1) the target is in the
ground state and (2) the target is in the first excited state,
(3/2)+8.41 keV. The neutron incident energies considered
are from 1 keV up to 20 MeV, but we are mostly interested
in the low-energy region. We expect noticeable differences
in the calculated cross sections at low energies, because the
number of incoming partial waves is not so large, which limits
the accessible spin-space in the reaction and amplifies the
calculated differences for the target in its ground state versus
excited states.

The calculated total, shape elastic, and reaction (compound
formation) cross sections are shown in Fig. 3. The thick lines
are the calculated results when the target is in the ground
state, and the thin lines are for the first excited state case.
Differences are clearly observed in the low-energy region, as
we expected. At 1 keV, σ (1)

R /σ
(0)
R is 1.33 and σ

(1)
E /σ

(0)
E are about

0.77. The increase in σR at low energies is due to the s-wave
transmission coefficient, and therefore can be related to the
s-wave strength function. The calculated S0 for the ground
state and first excited cases are 1.81 × 10−4 and 2.44 × 10−4,
respectively. However, the p-wave strength function S1 for
both cases are not so different (less than 5% difference).

Above 5 MeV or so, differences in these cross sections
become very small, and this is expected because the excitation
energy of the first level is only 8.41 keV, which is only 0.1% of
the incident energies. In addition, there are many partial waves
that couple to the total J�, which washes out the difference
in the target spin (which is only 1h̄ anyway).
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FIG. 3. Calculated total (solid line), shape elastic scattering
(dashed line), and reaction cross sections (dotted line) for 169Tm.
The thick lines are for the ground-state case, and thin lines are for the
first excited state.

The target spin effect appears only in the CC model, because
spherical optical model (SOM) calculations are target spin
independent. In the SOM case, the transmission coefficients
on the excited states are calculated regardless of the Iπ of the
state. Note that this implies that the same spherical optical
potential obtained for the ground-state target can be applied
to the excited states, although there might be a nonoverlapped
phase space; compound states that satisfy the spin selection
rule |I − j | � J � I + j are different.

The direct cross sections are depicted in Fig. 4. The thick
curves are the usual CC calculations, in which the target
is at the ground state. Our unique calculation is the direct
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FIG. 4. Calculated direct inelastic scattering cross sections for
two cases; target at the ground state (thick curves), and at the first
excited state (thin curves). Although we coupled the (9/2)+ state too,
the cross sections are not plotted here for clearer visibility. For the
ground state case, the solid line is the direct cross section to the (3/2)+

state. In the case of excited target, the solid line is the direct cross
section to the (1/2)+ ground state. The dot-dashed curves are the sum
of all direct reactions.

TABLE I. Nmerical comparison of the calculated cross sections
for the target in its ground state (1/2)+ and in its first excited state
(3/2)+ at the neutron incident energy of 100 keV, with those by
Madland [9]. The cross sections are in barns.

Present Madland [9]

(1/2)+ (3/2)+ (1/2)+ (3/2)+

Total 10.1 8.89 10.3 8.98
Shape elastic 5.86 4.34 5.91 4.45
Compound formation 4.26 4.53 4.35 4.52
Total inelastic 1.03 0.569 1.17 0.650
Capture 0.625 0.852 0.625 0.941

transition from the first excited (3/2)+ state to the ground
state, shown by the thin solid curve. This process has a positive
Q value, which means the scattered neutrons are accelerated.
This cross section is a factor of 2 smaller than the normal
process: from the ground state to the first excited state (thick
solid curve). However, the inelastic scattering to the (7/2)+
state is significantly enhanced. It is interesting to note that the
sum of all direct inelastic scattering cross sections, shown by
the dot-dashed curve, are not so different. Although we see
20% difference in the total inelastic-scattering cross section at
20 MeV, this is only 1% of the total reaction cross section.

The direct cross section from the (3/2)+ state to the ground
state is about a half of the cross section from the ground
state to the (3/2)+ excited state, and this is the same ratio as
(2I0 + 1)/(2I1 + 1). This is related to the spin-factor of Eq. (3).
Because the S-matrix is symmetric whichever the incident
particle channel is in, the difference in the direct cross section
σ

(nn′)
D comes from gJ and a channel selection δnc,n and δnc′ ,n′

in summation in Eq. (2), and the simplest case is just equal to
the ratio of gJ ’s. In addition, differences also occur because
we adopted the energy-dependent optical potential parameters
of Eqs. (8)–(10).

We also compared the present results numerically with
the independent calculations in Ref. [9]. Table I shows the
calculated cross sections at 100 keV. The table shows that the
two independent solutions for the ground- and excited-state
scattering cross sections yield essentially the same results, and
this gives credence to the approach.

B. Statistical model calculation for 169Tm

1. Neutron radiative capture

The calculated transmission coefficients of Eq. (5) are fed to
the statistical Hauser-Feshbach-Moldauer model calculations.
The CC calculation for the entrance channel is performed by
coupling the five ground-state rotational band members [up
to 332 keV (9/2)+ level]. Discrete levels are included up to
938 keV (13/2)− level, and their spin and parity are taken from
the reference input parameter library version 2, RIPL-2 [28].
Above 938 keV, the Gilbert-Cameron level-density formulas
[29] with a parameter systematics in Ref. [30] are employed.
There is a 316-keV (7/2)+ level, whose excitation energy is
lower than the 332-keV (9/2)+ level. We included this level as
an uncoupled state in the Hauser-Feshbach model calculation.
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FIG. 5. Comparison of calculated neutron radiative capture cross
section with experimental data. The solid curve is for the ground state
case, and the dashed curve is for the excited state. All the experimental
data are for the ground state.

The E1 γ -ray strength function for the radiative capture
channel is calculated with the generalized Lorentzian form
[31], with the giant dipole resonance parameter in Ref. [28].
For higher multipole radiations, we include E2 and M1
transitions. The γ -ray strength function is then renormalized
to the complied 〈�γ 〉/D0 value taken to be 0.0118 [32]. This
normalization factor for the γ -ray strength function must be
obtained for the ground state, because the 〈�γ 〉/D0 value is
for the ground state. Then, of course the same normalization
factor is applied for the excited state cases, because we assume
that a giant-dipole state on the excited state is the same as on
the ground state by the Brink-Axel hypothesis.

The calculation is performed up to the neutron incident
energy of 8 MeV. At higher energies, the dominant neutron
capture reaction becomes the direct/semidirect process [33]
that requires a target state wave function. Anyway we do not
expect a large difference in the calculated cross sections for
both cases at high energies, because the total reaction cross
sections σ

(0)
R and σ

(1)
R are almost the same.

Comparison of the calculated neutron capture cross section
with the experimental data are shown in Fig. 5. The solid line
is a calculation when the target is in its ground state, and the
dashed line is for the first excited state case, respectively. The
numerical comparison with the results in Ref. [9] is also shown
in Table I. The ground-state calculation is compared with the
experimental data available [34–38]. Agreement between the
ground-state calculation and the experimental data is seen and
it is fairly good, though in this figure we are more focused on
a prediction of differences between ground state and excited
state capture. The shape of the calculated capture cross sections
on both states are very similar, but the absolute magnitudes
differ by 20–30% below 100 keV. One of the reasons of this
difference is the compound formation cross sections, which
are different for both cases as shown in Fig. 3. However,
the differences between σ

(0)
R and σ

(1)
R are visible only below

100 keV. Another reason could be a difference in the total
spin of the compound nucleus. Assuming the incoming partial
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FIG. 6. Ratios of the calculated capture cross sections of excited
state to the ground state. The solid line is for the coupled-channels
calculation, and the dashed line is for the spherical optical model
case. The arrows on the x axis are the inelastic channel threshold
energies.

wave is just an s-wave, the spin of compound state is I ± 1/2,
and this gives a different γ -ray cascading pattern from the
compound state and different competition of neutron emission
processes.

When an SOM calculation to the entrance channels is
employed, the compound formation cross section does not
depend on the target spin (however, the spin distribution of
the compound nucleus is still different). To see the effect
of channel coupling, we also performed the neutron capture
calculation with the spherical optical model (SOM) poten-
tial. The global optical potential parameters of Koning and
Delaroche [39] were used. Figure 6 shows a ratio of the
calculated capture cross sections on the excited state to the
ground state. Because the shape of both curves are similar
above 100 keV, the enhancement of the capture cross sections
in the energy range 100 keV to 1 MeV is probably due
to the target spin effect. At low energies CC and SOM
calculations give somewhat different tendencies. The SOM
calculation enhances the capture cross section significantly
from 10 to 100 keV. Although an old-fashioned spherical
optical model and Hauser-Feshbach model gives the same
compound formation cross section, there would still be an
enhancement to the capture cross section, because of J�

coupling.

2. Neutron elastic and inelastic scattering

The calculated neutron elastic-scattering cross section is
shown in Fig. 7. The dashed lines are the shape elastic
scattering, which are identical to those in Fig. 3. The
dot-dashed lines are the compound elastic, and the solid line is
the total elastic-scattering cross sections. For the excited target
case, reduction in the shape elastic scattering σ

(1)
E , having

the similar total cross sections for both cases, results in an
increase in the compound formation σ

(1)
R , which enhances the

compound elastic-scattering cross section [σ (1)
R is the sum of

the compound elastic and neutron capture below 8.41 keV].
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FIG. 7. Comparison of calculated neu-
tron elastic-scattering cross sections. The
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the thin lines are for the excited state. The
solid lines are the total inelastic-scattering
cross sections, dashed lines are the shape elas-
tic, and dot-dashed lines are the compound
elastic scattering.

The total elastic-scattering cross sections look identical
below 10 keV. This is, however, probably a coincidence,
because the total elastic scattering at low energies depends on
how large the neutron capture competition is. Above 2 MeV the
compound elastic-scattering cross section becomes negligible,
because many neutron inelastic-scattering channels open.

The calculated neutron inelastic-scattering cross sections,
including both the direct and compound processes, are shown
in Fig. 8. The thick solid line is the total inelastic scattering,
which is a threshold reaction. The thin solid line is the result
for the excited target with a negative Q value. The dashed
and dot-dashed lines are the production cross section of the
8.41- and 118-keV levels, respectively. The compound cross
sections to the higher energy levels (above 118-keV levels)
become similar for both cases, because a large phase space

(many partial waves and large numbers of spin couplings)
washes out the spin selection rule that is important when only
a few partial waves are involved.

One obvious difference seen in Fig. 8 is, of course, the
transition from the excited state to the ground state, which
has no threshold. The superelastic cross section is, however,
only 15% of the total elastic scattering (see Fig. 7). To observe
the superelastically scattered neutrons, very high resolution
experiments would be needed.

C. Fission calculation for 239Pu

In the case of actinides, the low-incident neutron energy
regime is dominated by capture and fission reaction processes.
At relatively low neutron energies, the fission cross section is
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FIG. 8. Comparison of calculated neu-
tron inelastic-scattering cross sections. The
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solid lines are the total inelastic-scattering
cross sections.
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FIG. 9. (a) The neutron-induced fission cross section of 239Pu calculated in the two cases where the target nucleus is in its first excited state
versus in its ground state; (b) the ratio of fission cross section for excited 239Pu to the ground-state target.

dominated by a relatively few transition states at the barrier
deformations. In particular, the compound nucleus 240Pu is
believed, from experimental evidence on shape isomers and
theoretical calculations of energy as a function of deformation,
to have a higher inner barrier peak than outer. Its fission
probability in a state of given total angular momentum and
parity is therefore strongly affected by the small number of
transition states below the pairing energy gap at the inner
barrier. A change in the spin and parity of the target nucleus,
and hence of the compound nucleus, can have a significant
impact on the fission cross section.

We have investigated this question by calculating the
neutron induced fission cross section on 239Pu, either in its
ground state [Iπ = (1/2)+] or in its first excited state [Ex =
7.86 keV; Iπ = (3/2)+]. The coupled-channels calculations
was performed using the optical potential of P. G. Young
[28,40] and considering the first five states of the ground-state
rotational band.

We have performed Hauser-Feshbach calculations using
the GNASH code [41] and more detailed fission cross-section
calculations using the AVXSF code by J. E. Lynn [42,43].
Because these two codes have different specialities, comparing
two results may reduce code-specific problems in the fission
calculations within the Hauser-Feshbach formalism. The
modeling of the fission channel in GNASH is not particularly
well suited for calculating the fission cross section below
the barrier, as the coupling between class I and class II
states is neglected. We also neglected the width fluctuation
correction to the GNASH calculation. Better fission physics
has been implemented in the AVXSF code, including correct
treatments of the class I and class II states coupling. However,
the neutron transmission coefficients are calculated from the
experimental neutron strength function, and they are assumed
to be the same for both the ground and excited states.
However, GNASH employs the coupled-channels transmission
coefficients.

Before we performed the Hauser-Feshbach calculations, we
compared the reaction cross sections σR calculated with the
coupled-channels method, just as in Fig. 3. It was observed that
these cross sections for both cases are very similar, except that
we saw an increase in σR for the first excited state. This might
be due to the optical potential employed. At least we could say
here that the comparison of fission calculation may reveal the
target spin dependence of the fission process. An assumption
made in the AVXSF calculation is that the same neutron strength
function is used for both ground and excited states, and this is
supported by the coupled-channels calculation.

Figure 9 shows the calculated fission cross section in the
two situations, with two different codes. Two thick curves are
for the ground-state case; the solid curve is with GNASH and the
dotted curve is with AVXSF. Other thin curves are for the excited
state case; the dashed curve is for GNASH, and the dot-dashed
curve is for AVXSF. Note that the AVXSF calculations go up
to 500 keV. Both codes indicate that the calculated fission
cross sections are enhanced when the target is in its excited
state. The cross section ratios of the excited to the ground
states are shown in the lower panel of Fig. 9. Although the
absolute magnitude of the enhancement is different in GNASH

and AVXSF, their tendency is very similar, and the fact that
both calculations lead to the same qualitative conclusion is
comforting and indicates that the underlying physics of the
transition states is correct.

At 10 keV the calculated first excited-state cross section
with GNASH is about 30% higher than the ground-state cross
section. This enhancement becomes 50% for the case of AVXSF.
We understand that the enhancement reflects the different
spin of the target state [(3/2)+ for the first excited state and
(1/2)+ for the ground state], which modifies possible fission
paths through the discrete transition states lying on top of
the barriers. At low energies a few partial waves contribute
to the compound formation, and decay of the compound
nucleus is strongly constrained by the spin selection rule.
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For example, the s-wave coupled with the ground state of
the target nucleus produces the compound nucleus states of
0+ (with spin statistical weighting of 1/4) and 1+ (with spin
statistical weighting of 3/4), whereas two spin states 1+ and
2+ (with respective weightings of 3/8 and 5/8) are possible in
the case of the Iπ = 3/2+ excited state. The 1+ transition state
at the inner barrier plays a special role as it is expected to lie
much higher in excitation energy than other spin-parity states,
due to its intrinsic complexity (e.g., a combination of bending
and mass-asymmetry vibrations). Therefore the fission cross
section observed for the 239Pu in its ground state is hindered
compared to the one for the first excited state. In the AVXSF

calculation the class II intermediate structure associated with
the 1+ state has the effect of further reducing the average
fission cross section, and this could explain the higher ratio of
excited state to ground state cross sections shown in Fig. 9

Above 1 MeV neutron incident energy, the two results
with GNASH are practically identical because the number of
incoming partial waves becomes large, then the available phase
spaces for both cases get very similar.

With the AVXSF code, we performed more fission cross
section calculations for the cases in which the target nucleus
is in the higher excited states, not only the ground state
rotational band, but also K = (5/2)+ band members whose
bandhead energy is 285 keV. Because the angular-momentum
conservation during the fission process is not well understood
(K mixing [42]), a quantitative argument requires more
detailed information of nuclear structure for strongly deformed
systems. However, qualitatively the calculated fission cross
section is larger than that for the ground state, and this
enhancement tends to be larger if the target spin is higher.

IV. CONCLUSION

We have applied a CC method to calculate nuclear
reaction cross sections for excited nuclei. The direct reac-
tions among the members of ground-state rotational band

are calculated with the CC method, and the generalized
transmission coefficients from both ground and excited states
are calculated. These transmission coefficients are fed to
the statistical Hauser-Feshbach model calculation to obtain
compound reaction cross sections.

We performed a numerical comparison of cross sections
for 169Tm. The statistical model calculation on the excited
nucleus gives different cross sections from the calculation for
the ground state. However, the differences are visible only
below neutron energies of about 1 MeV. The difference of the
cross sections comes from both the level coupling effect and
the target spin effect. It was shown that the target spin effect is
important, when a number of contributing partial waves is not
so large. The level coupling effect is also important, which was
shown by comparing with the spherical model calculation. Our
results have confirmed the original excited-state calculations
of Ref. [9].

The same technique is also applied to calculate fission cross
sections of 239Pu, as the level structure of 239Pu is very similar
to 169Tm. To reduce ambiguities in fission modeling in the
Hauser-Feshbach framework, we employed two independent
nuclear reaction model codes, GNASH and AVXSF. These two
codes gave relatively similar tendency for the fission cross
section when the target nucleus is in its excited state. At low
energies (below 1 MeV), the calculated fission cross section
for the first excited state is larger than that for the ground state,
and the difference becomes smaller at higher energies. This
observation is consistent with the phase-space argument; low
energy reactions are strongly constrained by the spin selection
rule.
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