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Calculations of 8He+ p elastic cross sections using a microscopic optical potential
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An approach to calculate microscopic optical potential with the real part obtained by a folding procedure and
with the imaginary part inherent in the high-energy approximation is applied to study the 8He+p elastic-scattering
data at energies of tens of MeV/nucleon. The neutron and proton density distributions obtained in different models
for 8He are used in the calculations of the differential cross sections. The role of the spin-orbit potential is studied.
Comparison of the calculations with the available experimental data on the elastic-scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66, and 73 MeV/nucleon is performed. The problem of the
ambiguities of the depths of each component of the optical potential is considered by means of the imposed
physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is
shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies
(e.g., 15.7 and 26.25 MeV/nucleon).
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I. INTRODUCTION

The experiments with intensive secondary radioactive
nuclear beams have made it possible to investigate the structure
of light nuclei near the neutron and proton drip lines as well
as the mechanism of scattering of the weakly bound nuclei.
Special attention has been paid to the neutron-rich isotopes of
helium (6,8He), lithium (11Li), berilium (14Be), and others,
in which several neutrons are situated in the far extended
nuclear periphery and form a “halo.” A widely used way to
study the structure of exotic nuclei is to analyze their elastic
scattering on protons or nuclear targets at different energies.
Here we would like to mention, for example, the experiments
on scattering of helium isotopes on protons at incident energies
Einc less than 100 MeV/nucleon, namely for 6He at energy
25.2 [1–5], 38.3 [6], 41.6 [7–9], and 71 MeV/nucleon [10,11],
for 8He at energy 15.7 [12], 26 [3], 32 [10,11], 66 [10,11], and
73 MeV/nucleon [10,11,13], also at energy 700 MeV/nucleon
for He and Li isotopes (e.g., Refs. [14–18]).

The experimental data on differential and total reaction
cross sections of processes with light exotic nuclei have
been analyzed using a variety of phenomenological and
microscopic methods (e.g., Refs. [10,11,14–40]). Among the
latter methods we note, e.g., the microscopic analysis based
on the coordinate-space g-matrix folding method [25–32],
as well as works where the real part of optical potential
(OP) is microscopically calculated using the folding approach
(e.g., Refs. [22–26,40–45]). Usually the imaginary part of
the OP’s and the spin-orbit (SO) terms have been determined
phenomenologically. Thus, the OP’s have a number of fitting
parameters. For example, OP’s have been used to elaborate the
elastic differential cross sections of 6He+p, 6He+4He (Einc =
25 MeV/nucleon) [22], and 6He+p and 8He+p (Einc <

100 MeV/nucleon) [23] by means of the M3Y-Paris effective
NN interaction [42,43,46]. In the calculations the proton
and neutron densities of the helium isotopes obtained by
Tanihata et al. [47] and also in the cluster-orbital shell-model

approximation (COSMA) [10,11,20,21] were applied. It was
shown [23] that the elastic scattering is sensitive to different
density distributions used in the folding approach.

In our previous work [40] to exclude the usage of the
phenomenological imaginary part of OP we have performed
calculations of 6He+p elastic differential cross sections by
means of the microscopic OP with the imaginary part taken
from the OP derived in Refs. [48,49] on the basis of the
high-energy approximation (HEA) [50–52]. This method
(Glauber approach) in its optical limit [52] makes it possible
to obtain an analytic expression of the scattering ampli-
tude with the eikonal phase in the form of the so-called
profile function. The latter is proportional to the integral of
the one-particle density distributions of the colliding systems,
and the integration is performed along a straight-line trajectory
of motion. Generally, the integral contains also the form factor
of the NN scattering amplitude and thus its form is akin to
that of the standard folding potential with the NN potential
instead of the NN amplitude. The NN amplitude itself is
known from the experimental data and, therefore, the usage
of a profile function offers certain advantages over approaches
based on the folding potential. So, in nuclear physics, the HEA
amplitude is applied to energies larger than 100 MeV/nucleon
(see, e.g., Refs. [14,53,54]). However, in the past two decades
the HEA was generalized and applied to lower energies. The
prescription to calculate the profile function consists in a
replacement of the straight-line trajectory impact parameter
b by the distance of closest approach rc in the Coulomb
field or by the respective distance rcn in the presence of the
nuclear field (real part of OP). By doing so, a reasonable
agreement with the experimental data on the proton- and
nucleus-nucleus reaction cross sections has been obtained in
the region of energies from 10 to 1000 MeV/nucleon (see,
e.g., Refs. [48,49,55–60]). However, this approach becomes
fairly rough when one calculates differential cross sections
and also the total cross sections at comparably low energies.
Moreover, in the case of the microscopic OP given in a form
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of tables, this approach needs a numerical solution of the
classical equation of motion to get the corresponding trajectory
of motion. For this reason the method is not efficient for
applications because of quite complicated calculations. In this
case the better way is to explore the equivalent HEA optical
potential outlined in [48,49] and then to solve the respective
Schrödinger equation numerically using a standard code that
enables one to get the exact scattering amplitude and the total
reaction cross sections, including the interference terms.

We used this approach in Ref. [40] to get the microscopic
HEA imaginary part of the OP (ImOP) and added the real
part of OP (ReOP) [41,42]. The ReOP includes the direct
term and the exchange one that involves nonlinearity effects.
Also, the role of the spin-orbit interaction has been considered.
Additionally, the density dependence of the effective NN

interaction, as well as the sensitivity of the results to the
predictions of different theoretical models for the density
of 6He have been studied. It was shown that the more
sophisticated large-scale shell model (LSSM) [44,45] density
of 6He is the most preferable one because it has led to a better
agreement with the data. It was concluded in Ref. [40] that
the use of the microscopic folding ReOP (V F ) and the HEA
ImOP (WH ) has led to agreement with the data on 6He+p

elastic-scattering cross sections for 41.6 and 71 MeV/nucleon.
However, the data at lowest energy 25.2 MeV/nucleon have
been explained only on a qualitative level that is related to
the limitations of using the HEA ImOP for energies around
and less than 25 MeV/nucleon. This has led to the necessity
to reduce strongly the depth of HEA ImOP. It was shown in
Ref. [40] that the OP in the form Uopt = NRV F + iNIW

H with
both V F and WH calculated microscopically and using only
two free parameters NR and NI that renormalize the ReOP
and ImOP depths can be reasonably applied to calculations of
scattering cross sections at energies Einc < 100 MeV/nucleon,
such as 41.6 and 71 MeV/nucleon.

In the present work we apply the developed approach
to study the existing experimental data on 8He+p elas-
tic scattering cross sections at incident energies less than
100 MeV/nucleon. Various model densities of 8He, such as
those obtained within the approach of Tanihata et al. [47],
LSSM [44,45], and the Jastrow correlation method (JCM)
[61,62], are used to calculate the OP’s. We study the role
of the spin-orbit terms and, in addition to our previous
study [40], we consider two more parameters, NSO

R and NSO
I

(when necessary), that renormalize the depths of the real and
imaginary parts of the SO potential, respectively. In addition,
the nuclear surface effects are also studied by introducing an
additional surface term in OP. This is related to investigations
of the lowest energy limit of the applicability of the HEA OP in
8He+p elastic scattering. Also we pay attention to the energy
dependence of the parameters NR and NI as well as to the
respective volume integrals. We note the necessity to analyze
the differential cross sections estimating simultaneously the
values of the total reaction cross section. This would give an
additional test of the various ingredients of the approach.

The theoretical scheme to calculate microscopically the real
and imaginary parts of the OP, as well as the spin-orbit term,
is given in Sec. II. The results of the calculations of OP’s and
elastic-scattering differential cross sections, including those

from some methodical ones, and their discussion are given
in Sec. III. The summary of the work and conclusions of the
results are presented in Sec. IV.

II. THEORETICAL SCHEME

A. Direct and exchange parts of the real OP (ReOP)

Here we give briefly the main expressions for the real part
of the nucleon-nucleus OP that is assumed to be a result of a
single folding of the effective NN potential and the nuclear
densities. It involves the direct and exchange parts (for more
details, see, e.g., Refs. [41–43] and also [40]):

V F (r) = V D(r) + V EX(r). (1)

In Eq. (1) the direct part (V D) is composed of the isoscalar
(IS) and isovector (IV) contributrions, correspondingly:

V D
IS (r) =

∫
ρ2(r2)g(E)F (ρ2)vD

00(s)dr2, (2)

V D
IV(r) =

∫
δρ2(r2)g(E)F (ρ2)vD

01(s)dr2, (3)

where s = r + r2,

ρ2(r2) = ρ2,p(r2,p) + ρ2,n(r2,n), (4)

δρ2(r2) = ρ2,p(r2,p) − ρ2,n(r2,n). (5)

In Eqs. (4) and (5) ρ2,p(r2,p) and ρ2,n(r2,n) are the proton and
neutron densities of the target nucleus. In Eqs. (2) and (3) the
energy dependence of the effective NN interaction is taken in
the usually used form:

g(E) = 1 − 0.003E. (6)

Also, for the NN potentials vD
00 and vD

01 we use the expression
from Ref. [43] for the CDM3Y6 type of the effective
interaction based on the solution of the equation for the g

matrix, in which the Paris NN potential has been used. The
density dependence of the effective interaction is taken in the
following form:

F (ρ) = C[1 + αe−βρ(r) − γρ(r)], (7)

where C = 0.2658, α = 3.8033, β = 1.4099 fm3, and γ =
4.0 fm3.

The isoscalar part of the exchange contribution to the ReOP
has the form (see, e.g., Ref. [40]):

V EX
IS (r) = g(E)

∫
ρ2(r2, r2 − s)F

[
ρ2

(
r2 − s

2

)]

×vEX
00 (s)j0[k(r)s]dr2, (8)

where the density matrix ρ2(r2, r2 − s) is usually approxi-
mated by the expression:

ρ2(r2, r2 − s) � ρ2

(∣∣∣r2 − s
2

∣∣∣) ĵ1

[
kF,2

(∣∣∣r2 − s
2

∣∣∣) · s
]

(9)

with

ĵ1(x) = 3

x
j1(x) = 3

x3
(sin x − x cos x) (10)

and vEX
00 (s) is the isoscalar part of the exchange contribution

to the effective NN interaction. The local momentum k(r) of
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the incident nucleon in the field of the Coulomb and nuclear
potential (ReOP) is [63]:

k2(r) =
(

2m

h̄2

)
[Ec.m. − Vc(r) − V (r)]

(
1 + A2

A2

)
. (11)

Substituting Eq. (11) in Eq. (8) the iteration procedure was
used to get the final result for the folding potential. One can
see that in this procedure the required microscopic potential
V (r) [that has to be calculated according to Eq. (1)] appears
in the expression for k2(r) [Eq. (11)] and, correspondingly, in
the integrand of the integral in Eq. (8), i.e., in the expression
for the exchange contribution to the OP. Thus, nonlinearity
effects occur as typical ingredients of the model and they
have to be taken carefully into account. In our consideration,
for the highest energy (73 MeV/nucleon) 8 iterations and for
the lowest one (15.7 MeV/nucleon) 13 iterations were large
enough in the calculations of the folding potentials.

In Eq. (9) kF,2 is the average relative momentum of a
nucleon in a nucleus [63,64]:

kF,2(r) =
{

5

3ρ

[
τ (ρ) − 1

4
∇2ρ(r)

]}1/2

, (12)

where we choose for the kinetic energy density τ (ρ) the
expression from the extended Thomas-Fermi approximation
[65,66]:

τ (ρ)

2
� τq(ρq) = 3

5
(3π2)2/3[ρq(r)]5/3

+ |∇ρq(r)|2
36ρq(r)

+ ∇2ρq(r)

3
(13)

valid for each kind of particles q = n, p. It is shown in
Ref. [40] how the isovector part of the exchange ReOP can
be obtained.

B. Density distributions of 8He

In the calculations of the OP’s we use the following point-
nucleon density distributions of 8He:

(i) The Tanihata densities deduced in Ref. [47] by means
of comparison of the measured total reaction cross
section of 6,8He+12C at 800A MeV with the respective
expression from [67] derived in the framework of the
optical limit of the Glauber theory:

ρX
point = 2

π3/2

{
1

a3
exp

[
−

( r

a

)2
]

+ 1

b3

(X − 2)

3

( r

b

)2
exp

[
−

( r

b

)2
]}

. (14)

Here X = Z,N and the parameter values of a and b

can be determined from

a2 = a∗2
(

1 − 1

A

)
, b2 = b∗2

(
1 − 1

A

)
, (15)

where a∗ = 1.53 fm and b∗ = 2.06 fm; hence a =
1.43 fm and b = 1.93 fm for 8He. So, the proton
distribution is defined by the first term only, while
an excess of neutrons is described by the additional

second term. The rms radii of the point-proton and
point-neutron densities of 8He are equal to 1.76 and
2.69 fm, correspondingly;

(ii) The LSSM densities calculated in a complex 4h̄ω shell-
model space [44,45] using the Woods-Saxon (WS)
basis of single-particle wave functions with realistic
exponential asymptotic behavior;

(iii) The densities obtained in Refs. [61,62] with accounting
for the NN central-type short-range Jastrow correla-
tions.

C. Optical potential within the high-energy approximation

In Ref. [40] the so-called complex HEA optical potential
has been applied to explain the available data on the 6He+p

elastic differential cross sections and energies less than
100 MeV/nucleon. The HEA OP was derived in Ref. [48]
on the basis of the eikonal phase inherent in the optical limit
of the Glauber theory. Then, by means of this potential or
taking only its imaginary part together with the folding real
part of OP, the cross sections were calculated using the code
DWUCK4 [68] for solving the Schrödinger equation. Thus, we
do not apply the Glauber theory for calculating the scattering
amplitude at relatively low energies but use the equivalent
HEA OP to solve numerically the respective wave equation.
In this case, the use of the ordinary Glauber theory leads to
insuperable problems in performing integration in the eikonal
phase mentioned in the Introduction. Indeed, there one should
take into account the distortion of the integration path along
classical trajectories in the field of the Coulomb and nuclear
potentials (see, e.g., Refs. [48,55–60]). At the same time, to
calculate the HEA OP one can use the definition of the eikonal
phase as an integral of the nucleon-nucleus potential over the
trajectory of the straight-line propagation, and have to compare
it with the corresponding Glauber expression for the phase in
the optical limit approximation. Doing so, the HEA OP can
be obtained as a folding of form factors of the nuclear density
and the NN amplitude fNN (q) [48,49]:

UH
opt = V H + iWH = − h̄v

(2π )2
(ᾱNN + i)σ̄NN

×
∫ ∞

0
dqq2j0(qr)ρ2(q)fNN (q). (16)

In Ref. (16) σ̄NN and ᾱNN are, respectively, the NN total scat-
tering cross section and the ratio of the real to imaginary parts
of the forward NN scattering amplitude both averaged over
the isospin of the nucleus. They both have been parametrized
in Refs. [57,69] as functions of energies in a wide range from
10 MeV to 1 GeV and also at energies lower than 10 MeV. The
values of these quantities can also account for the in-medium
effect by a factor from Ref. [70].

D. The spin-orbit term

Following Refs. [68,71,72] the expression for the spin-orbit
contribution to the OP can be written in the form:

VLS(r) = 2λ2
π

[
V0

1

r

dfR(r)

dr
+ iW0

1

r

dfI (r)

dr

]
(l · s), (17)
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FIG. 1. Total [(a) and (a′)], point-proton (b), and point-neutron
(c) densities of 8He from the model of Tanihata [47], COSMA [20,21],
LSSM [44,45], and JCM calculations [61,62].

where λ2
π = 2 fm2 is the squared pion Compton wavelength,

V0 and W0 are the real and imaginary parts of the microscopic
OP at r = 0, and f (r) is the form of the real [fR(r)] and
imaginary [fI (r)] parts of the microscopic OP taken as WS
forms f (r, RR, aR) and f (r, RI , aI ). In our calculations the
parameters [half-radius RR(RI ) and diffuseness aR(aI )] are
obtained by fitting the WS potential to the microscopically
calculated real and imaginary contributions to the OP V (r)
and W (r).

III. RESULTS AND DISCUSSION

In this section we present the results of the calculations
of the microscopic OP’s and the respective 8He+p elas-
tic scattering differential cross sections at energies Einc <

100 MeV/nucleon. In principle, the OP’s do not contain free
parameters, but they depend on the density distribution of
the target nucleus. This allows one to test advanced theoretical
methods that give predictions for the density distribution. In the
case of 8He we used the semiempirical model of Tanihata [47],
the large-scale shell model [44,45], as well as the results of
the approach [61,62] within the JCM. In Fig. 1 in logarithmic
and linear scales are shown the proton ρp(r), neutron ρn(r),
and matter ρ(r) densities of 8He obtained in different models.
Also, for comparison, the known COSMA densities [20,21] are
presented. We note that among them only the LSSM densities
have a realistic exponential asymptotics, whereas the others
have a Gaussian one. The results for the JCM densities are
given for the value of the correlation parameter β = 2.5 fm−1

in the Jastrow correlation factor 1 − e−β2r2
, where r is the

distance between neutrons. It was shown in Refs. [61,62]
that the inclusion of this factor causes a slight increase of the

FIG. 2. Microscopic real part (V F ) of OP [(a), (b), and (c)]
and HEA imaginary part (WH ) [(a′), (b′), and (c′)] calculated
using the LSSM, Tanihata, and JCM (β = 2.5 fm−1) densities of
8He for energies E = 15.7 (solid lines), 32 (dashed lines), and
73 MeV/nucleon (dotted lines).

density in the central part of the nucleus. Simultaneously, as
can be seen in Fig. 2, this leads to a small decrease of the depth
of the imaginary part of OP in comparison with the case of
the Tanihata density. In the same figure we show as examples
the real V F and imaginary WH parts of the 8He+p OP’s
for energies 15.7, 32, and 73 MeV/nucleon calculated using
different densities. V F is calculated by a folding procedure and
WH within the HEA (see Sec. II). It is seen that the increase
of the energy leads to reduced depths and slopes of ReOP and
ImOP.

We calculated the 8He+p elastic scattering differential
cross sections using the program DWUCK4 [68] and using
the microscopically obtained real V F and imaginary WH

contributions to the optical potential:

Uopt(r) = NRV F (r) + iNIW
H (r) + 2λ2

π

{
NSO

R V F
0

1

r

dfR(r)

dr

+ iNSO
I WH

0
1

r

dfI (r)

dr

}
(l · s), (18)

where V F
0 and WH

0 are the depths of the SO optical potential
obtained simultaneously with RR(RI ) and aR(aI ) from the
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approximation of the volume real and imaginary OP’s by
Woods-Saxon form.

So, further in the present work we consider the set of
the N coefficients as parameters to be found out from
comparisons with the experimental data. We consider such a
model as the appropriate physical basis, which constraints the
fitting procedure by the established model forms of searching
potentials. We emphasize here that in our work we do not
aim to find perfect agreement with the empirical data. In this
sense, the introduction of the fitting parameters (N ’s) related
to the depths of the different components of the OP’s can be
considered as a way to introduce a quantitative measure of the
deviations of the predictions of our approach from the reality
(e.g., the differences of N ’s from unity for given energies, as
can be seen below).

The discussion that follows is based on the fitting proce-
dure, where the additionally introduced strength parameters
NR,NI ,N

SO
R ,NSO

I are varied step by step. So, we start from
the case NR = NI = 1, NSO

R = NSO
I = 0, then fit successively

both coefficients NR and NI , and after that the values of
NSO

R and NSO
I . First, we give in Fig. 3 the results of our

FIG. 3. The 8He+p elastic-scattering cross sections at different
energies calculated using Uopt [Eq. (18)] for values of the parameters
NR = NI = 1 and NSO

R = NSO
I = 0. The used densities of 8He are

LSSM (solid line), Tanihata (dash-dotted line), and JCM (β =
2.5 fm−1) (dashed line). Experimental data are taken for 15.7 [12],
26 [3], 32 [10,11], 66 [10,11], and 73 MeV/nucleon [10,11,13].

methodical calculations of the cross sections for different
energies (15.7, 26, 32, 66, and 73 MeV/nucleon) using the
densities of 8He from LSSM, Tanihata, and JCM approaches
in the case when NR = NI = 1 and NSO

R = NSO
I = 0 (i.e.,

without spin-orbit interaction). It can be seen that the behavior
of the cross sections for a given energy and interval of
angles is weakly sensitive to the choice of the model for the
density of 8He. In spite of this uncertainty we choose for
the further applications the LSSM density because it has a
realistic exponential behavior in the peripheral region of the
nucleus.

The second methodical study is a test of the effect of
Jastrow central short-range NN correlations on mechanism
of the considered process of scattering. As known, the main
parameter that governs the contribution of these correlations
is β, and we change it in wide limits from 2.5 to 50 fm−1.
It is seen in Fig. 4 that these changes result in an increase of
the neutron density of about 2.5 times in the central part of
8He but this has no important effect on the calculated OP’s
and on the shape of the respective differential cross sections.
Therefore, in the further calculations we do not account for
the short-range correlation effects.

Later, as a next step, we allow the “depth” of each of the
parts of the OP (18) in our semimicroscopic models to vary
to find the optimal values of the parameters NR,NI ,N

SO
R ,

FIG. 4. Point-neutron density of 8He (a), V F and WH of
OP [(b) and (b′)] for energy E = 32 MeV/nucleon, and 8He+p

elastic-scattering cross sections (c) at energies E = 15.7, 32, and
73 MeV/nucleon calculated using JCM densities of 8He for three
values of the correlation parameter β.
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FIG. 5. The 8He+p elastic-scattering cross sections at different
energies calculated using Uopt [Eq. (18)] for various values of the
renormalization parameters NR,NI , N

SO
R , and NSO

I (presented in
Table I) giving the best agreement with the data. The used density
of 8He is LSSM. Experimental data are taken for 15.7 [12], 26 [3],
32 [10,11], 66 [10,11], and 73 MeV/nucleon [10,11,13].

and NSO
I by a fitting procedure to the available experimental

data for the cross sections. In Fig. 5 we present the results of
our calculations of 8He+p elastic scattering cross sections for
various energies and the LSSM density with the fitted values
of the parameters NR,NI ,N

SO
R , and NSO

I . The values of these
renormalization parameters are given in Table I together with
the predicted total reaction cross sections. The results obtained
using the values of the parameters from the first line of this
table for each energy are given by solid line in Fig. 5, while
those from the second line for each energy are given by dashed
line.

As is known, however, the problem of the ambiguity of the
values of the parameters N arises when the fitting procedure
is applied to a limited number of experimental data. For
instance, in the case of the LSSM density, the values of
NR = 1.0 and 0.9, and correspondingly NI = 0.236 and 0.1
(with NSO

R = 0.107 and NSO
I = 0.040) lead to similar results

in the case of 15.7 MeV/nucleon. For E = 32 MeV/nucleon
the results are similar when NR = 1.0, NI = 0.374 and
NR = 0.438, NI = 0.036; for E = 66 MeV/nucleon the re-
sults are similar when NR = 0.876, NI = 0.071 and NR =
0.854, NI = 0.086; for E = 73 MeV/nucleon they are simi-

TABLE I. The renormalization parameters NR, NI ,N
SO
R , and

NSO
I obtained by fitting the experimental data in Fig. 5 in the case

of LSSM density. The energies are in MeV/nucleon and the total
reaction cross sections σR are in mb.

E NR NI NSO
R NSO

I σR

15.7 1.0 0.236 0 0 603.6
15.7 0.9 0.1 0.107 0.040 693
26 0.422 0.104 0.090 0.010 275.11
26 0.439 0.144 0.087 0.023 377.22
32 0.438 0.036 0.096 0 71.9
32 1.0 0.374 0 0 419.5
66 0.876 0.071 0 0 55.7
66 0.854 0.086 0 0 65.9
73 0.875 0.02 0 0 1.48
73 0.869 0.01 0.010 0.002 1.22

lar when NR = 0.875, NI = 0.020; NR = 0.869, NI = 0.010
(with NSO

R = 0.009 and NSO
I = 0.002). Our calculations pro-

duce similar results when using the Tanihata density. We note
that in some cases it has been enough to vary only the volume
part of the OP, i.e., the values of the parameters NR and NI

without the spin-orbit parts of the OP. When all four parameters
N are fitted the results for a given energy are similar, as
already mentioned above. Thus, the problem to choose the
most physical values of the parameters N arises. It is known
that because the procedure of fitting belongs to the class of
the ill-posed problems (see, e.g., Ref. [73]), it is necessary
to impose some physical constraints on the choice of the set
of parameters N . One of them is the total cross section of
scattering and reaction. However, the corresponding values
are missing at the energy interval considered in our work. To
our knowledge, the total reaction cross section σR of 8He+p

process is known only at energy 670 MeV and it is about
200 mb [14].

Another physical criterion that has to be imposed on the
choice of the values of the parameters N is the behavior of the
volume integrals [41]

JV = 4π

A

∫
drr2[NRV F (r)], (19)

JW = 4π

A

∫
drr2[NIW

H (r)] (20)

as functions of the energy.
It has been pointed out (see, e.g., Romanovsky et al. [74]

and references therein) that the values of the volume integral
JV decrease with the increase of the energy in the interval
0 < E < 100 MeV/nucleon, while JW is almost constant in
the same interval. Imposing this behavior of JV and JW on our
OP’s (i.e., on their “depth” parameters NR and NI ), we obtain
by the fitting procedure the values of the parameters given in
Table II.

The results of the calculations of the cross sections are
presented in Fig. 6 for the case of the LSSM density together
with the volume integrals JV and JW as functions of the
energy. The results obtained using the values of the parameters
from the first line of Table II for the energies 15.7 and
73 MeV/nucleon are given by solid line in Fig. 6(a), while
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TABLE II. The parameters NR, NI ,N
SO
R , and NSO

I , the volume
integrals JV and JW (in MeV fm3) as functions of the energy E (in
MeV/nucleon) [selected in correspondence to the behavior shown in
Figs. 6(b) and 6(c)], and the total reaction cross sections σR (in mb)
for the 8He+p scattering in the case of LSSM density [the results of
the fit are shown in Fig. 6(a)].

E NR NI NSO
R NSO

I JV JW σR

15.7 0.630 0.064 0.139 0.070 411.1 58.6 722.0
15.7 0.630 0.052 0.166 0.057 411.1 47.6 701.2
26 0.644 0.128 0.035 0.026 377.7 84.35 381.2
32 0.648 0.120 0.062 0.022 358.3 69 302.7
66 0.852 0.131 0 0 344.2 45 95.2
73 0.869 0.090 0.004 0 330.0 29 60.9
73 0.869 0.063 0.010 0 330.0 20.25 43.9

those from the second line for these energies are given by
dashed line. In comparison to the data in Table I one can see
that the total reaction cross sections decrease monotonically
with the energy increased. Also, we reach the smooth change
of the values of the volume integrals with the energy increase.
Moreover, with the energy increase one sees the monotonic
increase of the renormalization coefficients NR of the volume
real part of OP together with an “average” decreasing of NI

inherent in the imaginary part of OP. Almost a regular behavior
is obtained for the spin-orbit correction coefficients NSO

R and
NSO

I . So, the NR coefficient is going to 1 in coincidence with

FIG. 6. The 8He+p elastic-scattering cross sections (a) at dif-
ferent energies using LSSM density of 8He and parameters from
Table II. Experimental data are taken for 15.7 [12], 26 [3], 32 [10,11],
66 [10,11], and 73 MeV/nucleon [10,11,13]. The obtained values of
the volume integrals JV (b) and JW (c) (given by points) are shown
as functions of the incident energy, while the dashed lines give the
trend of this dependence.

a general conception of a folding procedure. But the obtained
small values of NI and problems with the fitting of our OP at
low energies deserves a special attention.

It is known that the fitting of the phenomenological OP’s
to the data of proton scattering on light nuclei leads to
“shallow” imaginary parts of the OP’s whose depths are
sufficiently smaller than that of the real part of the OP. This
has been observed in our previous works [40,75] for the case
of 6He+p elastic scattering. This is the case also in our present
calculations. Another remark is connected with the difficulties
in the description of the cross sections at low energies. In this
case we cannot fit the data using only the volume form of OP.
Instead, if one adds the contribution of a surface part of OP,
then a better agreement with the data can be achieved. We note
that such an admixture had been used in the earlier applications
of the phenomenological OP (see, e.g., Ref. [72]).

For this reason we consider also the contribution of the
surface potential:

U ′
opt(r) = Uopt(r) − i4aNS

dV F (r)

dr
, (21)

where the first term in the right-hand side is the expression
for the OP given by Eq. (18) [in which the ImOP is taken
in the form of V F (r)] and the second term is responsible for
the surface effects. We note that, in particular, for the lowest
incident energy, the combination of the microscopically folded
real and imaginary parts in the form of V F is more appropriate.
In Eq. (21) a is the diffuseness parameter of V F (r) fitted by
WS form.

We present in Fig. 7(a) our results for both the volume
and all components of the imaginary part of the potential
U ′

opt(r) and in Fig. 7(b) for the cross section in the case of
E = 15.7 MeV/nucleon obtained using the LSSM density of
8He. The calculations are performed by fitting the strength
parameters NR,NI ,N

SO
R ,NSO

I entering Eqs. (18) and (21)
and the depth parameter NS of the surface term of the OP
[Eq. (21)]. In this case NR = 1.078, NI = 0.036, NSO

R =
NSO

I = 0, NS = 0.207, a = 0.686 fm, σR = 791.1 mb. It is
seen from Fig. 7 that the inclusion of the surface contribution to
the imaginary part of the OP improves the agreement with the
experimental data, especially for small angles and in the region
of the cross-section minimum. Obviously, for more successful
description of the cross sections at low energies (15.7 and
26 MeV/nucleon) our method has to be modified and improved
by an inclusion of virtual excitations of inelastic and decay
channels of the reactions.

From the results presented in this section one can see
that a notable renormalization of the imaginary parts of the
microscopic OP and the necessity of its shape correction
at lower energies are needed for a reliable explanation of
the data. In this connection one should note that both the
folding and HEA potentials have the same physical origin,
namely they are one-particle folding potentials, and thus they
do not account for more complicated dynamical processes.
We have already mentioned the role of the inelastic and
breakup channels. In the last years many works have appeared
where amplitudes of these processes were calculated within
the distorted-wave approximation and also by using the
coupled-channels methods. The latter also provide a way
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FIG. 7. (a) Volume (dashed line) and total (solid line) imaginary
parts of the OP U ′

opt(r) [Eq. (21)] calculated using the LSSM
density of 8He for energy E = 15.7 MeV/nucleon; (b) The 8He+p

elastic-scattering cross section at energy E = 15.7 MeV/nucleon
using LSSM density of 8He with fitted values of NR, NI , N

SO
R ,NSO

I ,
and NS given in the text. Experimental data are taken from Ref. [12].

of estimating the elastic-scattering cross sections (see, e.g.,
Ref. [76] and references therein). However, if one considers
the elastic channel itself, the general and formally established
concept of the Feshbach theory [77] can give us a basis for
the following qualitative physical suggestion. Indeed, in this
theory the elastic-scattering potential is composed of two
parts, the bare potential composed from one-particle matrix
elements and the so-called dynamical polarization potential.
Then, transforming this concept onto our model of OP, one
can suppose that the bare OP is the microscopically calculated
Vsp = V F + iWH potential having the strength NR,I

∼= 1. And
the residual part of the optical potential Vpol

∼= Vfit − Vsp, being
the difference between the fitted OP and Vsp, may be identified
with a polarization potential. In the framework of this outline
of the scattering mechanism one can compare, for example, the
imaginary part Wpol with the imaginary part Wbreakup obtained
by fitting the breakup cross sections with the respective
experimental data (see, e.g., Ref. [78]) to make conclusions on
the contributions of the breakup channel to the whole picture
of scattering. In fact, it is seen in Fig. 7 a broad minimum of the
ImU ′

opt(r) around r = 2.6 fm that illustrates qualitatively the

strong effect of the breakup channel on the elastic-scattering
cross section.

IV. SUMMARY AND CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) The optical potentials and cross sections of 8He+p

elastic scattering were calculated at the energies of 15.7,
26, 32, 66, and 73 MeV/nucleon and comparison with
the available experimental data was performed.
(a) The direct and exchange parts of the real OP

(V F ) were calculated microscopically using the
folding procedure and density-dependent M3Y
(CDM3Y6-type) effective interaction based on the
Paris NN potential.

(b) The imaginary part of the OP (WH ) was calculated
using the high-energy approximation.

(c) Three different model densities of protons and
neutrons in 8He were used in the calculations:
the Tanihata densities [47], the LSSM densities
[44,45], and the densities obtained in an approach
[61,62] with accounting for the central-type NN

short-range Jastrow correlations.
(d) The spin-orbit contribution to the OP was also

included in the calculations.
(e) The 8He+p elastic-scattering differential cross

sections and total reaction cross sections were
calculated using the program DWUCK4 [68].

(ii) The density and energy dependence of the effective
NN interaction were studied. It was shown that the
behavior of the cross sections for given energies and
interval of angles is weakly sensitive to the choice of
the model for the 8He density. The further calculations
of the cross sections were performed using the LSSM
density because it has a realistic exponential behavior
in a peripheral region of the nucleus.

(iii) It was shown that the effects of the Jastrow central
short-range NN correlations on the OP’s and on the
shape of differential cross sections are weak.

(iv) We note that the regularization of the OP’s used in
this work by the introduction of the fitting parameters
(N ’s) can serve as a quantitative test of our method
but not as a tool to obtain a best agreement with the
experimental data. The problem of the ambiguity of
the values of the parameters NR,NI ,N

SO
R ,NSO

I (that
give the “depth” of each component of the OP) when
the fitting procedure is applied to a limited number
of experimental data is considered. It was shown
that, generally, at energies E > 20 MeV/nucleon a
good agreement with the experimental data for the
differential cross sections can be achieved by varying
mainly the volume part of the OP neglecting the SO
contribution. A physical criterion imposed in our work
on the choice of the values of the parameters N was
the known behavior (e.g., Ref. [74]) of the volume
integrals JV and JW as functions of the incident energy
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in the interval 0 < Einc < 100 MeV/nucleon. Another
criterion is related to the values of the total cross section
of scattering and reaction. However, the corresponding
empirical data for these values are missing at the energy
interval considered in our work.

(v) It was shown that the difficulties arising in the explana-
tion of the 8He+p cross sections at lower energies (e.g.,
15.7 and 26.25 MeV/nucleon) lead to the necessity
to account for the effects of the nuclear surface (and,
correspondingly, of the diffuse region of the OP). For
this reason we included in the cross-section calculations
the surface component of the OP and applied it to the
case of E = 15.7 MeV/nucleon. In our opinion, the
account of the latter can be considered as an imitation
of the breakup channel effects. A more successful
explanation of the cross section at low energies could

be given by inclusion of polarization contributions due
to virtual excitations of inelastic and decay channels of
the reactions.
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