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two-oscillator excitations in the target nucleus

Makio Ohkubo
N. Resonance Lab, 1663-39, Senba-cyo, Mito-shi, Ibaraki-ken 310-0851, Japan

(Received 15 May 2009; revised manuscript received 7 July 2009; published 26 August 2009)

In s-wave neutron resonances of 40Ca at En � 2.5 MeV, Sn/En for many levels is found to be of the form
17(n/m) where n,m are small integers. Statistical tests show small probabilities for the observed dispositions
of many levels at En = (j/k)(1/70)G (j, k; small integers). To meet the requirement of time periodicity of
the compound nucleus at resonance, a breathing model is developed, where the excitation energies Ex are
written as a sum of inverse integers; Ex = Sn + En = G

∑
(1/k) (k: integer). In 40Ca + n, the separation energy

Sn = 8362 keV is written as Sn = (17/70)G = (1/7 + 1/10)G, where G = 34.4 MeV. G is almost equal to
the Fermi energy of the nucleus. It is suggested that two oscillators of energy (1/7)G and (1/10)G are excited
in 40Ca by neutron incidence, in which the recurrence energy (1/70)G is resonat with neutrons of energies at
(j/k)(1/70)G, forming a simple compound nucleus.
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I. INTRODUCTION

For neutron-nucleus interactions, a vast amount of neutron
cross-section data has been accumulated relating to reactor
technology. Neutron resonance reactions are seen for every
target nucleus over a wide energy region. In the compound
nucleus (CN) formed by a neutron resonance reaction, the
excitation energy is Ex = Sn + En ∼ 8 MeV, where many
degrees of freedom will be excited and coupled to form very
complicated structures. Level densities are very high, and
depend on target mass number; some examples are ∼40/MeV
for 16O,∼400/MeV for 56Fe, and ∼105/MeV for 238U. In
fact, statistical properties of the observed resonances are
in good agreement with the predictions of random matrix
theory (RMT); good approximations are provided by the
Wigner(GOE) distribution for nearest neighbor level spacings,
the Porter-Thomas distribution for strengths, and �3 statistics
for long range correlations. Therefore the neutron resonances
are surmised to be a typical example of quantum chaos [1–3].

However, several non-random properties have been re-
ported over the past four decades, by analyzing Dij (the
spacing between two arbitrary levels) distributions, employing
Fourier-like analyses, etc. ([4–14] and references therein).
Through these analyses, special level spacings (which we
call dominant spacings D0) are found which appear more
frequently than expected from RMT [5,7]. For example,
for resonances in the eV region, dominant spacings are
found for many target nuclei; 4.4 eV(177Hf), 5.5 eV(123Sb),
14.6 eV(238U), 17.6 eV(168Er), 142 eV(75As), 213 eV(240Pu),
etc. In the keV or MeV resonance regions, dominant spac-
ings are also found; 460, 515, 1515 keV(16O), 575 keV(32S),
184 keV(40Ar), 478.4 keV(86Kr), 86.2 keV(140Ce), etc.

Moreover, it is very interesting that there are simple integer
ratios between these dominant spacings of different nuclei
[9–11,14]; in the eV region, 5.5 eV(123Sb)/4.4 eV(177Hf) =
5/4, 14.6 eV(238U)/17.6 eV(168Er) = 5/6, 142 eV(75As)/
213 eV(240Pu) = 2/3, etc. Similarly, in the keV and MeV
resonance regions, 460 keV(16O)/575.6 keV(32S) = 4/5,

460 keV(16O)/183.8 keV(40Ar) = 5/2, 575.6 keV(32S)/

478.4 keV(86Kr) = 6/5, 517 keV(16O)/86.2 keV(140Ce) =
6/1, etc.

In addition, Ex/Sn is frequently found to be a ratio of
integers in 16O + n resonances, and Ex/Sn = 4/3 and 5/3 for
many light nuclei [15], where calculations show a very small
probability for the appearance of these integer ratios, assuming
a homogeneous distribution of resonance levels. These facts
suggest simple regularities in energy/spacing in the resonance
region over a wide mass region, which are diametrically
different from its ordinary understanding as quantum chaos.
By the prevailing methods of analyses, non-statistical level
structures are smeared out and lead to a plain but incorrect
characterization as quantum chaos [1–3].

In this article, we report aspects of regular structures
observed in the dispositions of s-wave resonances of 40Ca + n,
where many of the resonance energies En are given by
(l/m) × constant, where m, l are small integers. The obser-
vations seem to suggest a dynamic mechanism of resonance
reactions; excitation of two oscillators in 40Ca in which
the recurrence frequency is coherent with the de Broglie
wave of the incident neutron. A statistical test was made
on the statement En = (l/m) × constant. For convenience in
classifying the excitation energies Ex , we use the expression
Ex = (n/m)G, where G ∼ 34.5 MeV and m, n are integers.
In Sec. II, a brief description is given of the derivation of
G. In Sec. III, integer ratios for Sn/En in 40Ca + n are
described. Probability calculations are addressed in Sec. IV,
and the resonance reaction mechanisms of 40Ca + n, 12C +
n, 16O + n, and 140Ce + n are described in Sec. V. A brief
description of the breathing model for resonance reactions
is presented in Sec. VI, and conclusions are offered in
Sec. VII.

II. DERIVATION OF G

In the course of resonance level-spacing analyses by Dij

and Fourier-like analyses, dominant spacings are found in
many nuclei. Two points become clear in such analyses:
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(a) multiple integer ratios are seen among dominant spacings
for a nucleus, and (b) integer ratios are found among the dom-
inant spacings of different nuclei, which suggest the existence
of a common spacing over many nuclei. In order to grasp more
basic furcation properties of resonance levels, we have made
level-spacing analyses on s-wave resonances of 15 even-even
light target nuclei up to several hundred keV in neutron energy,
where simple level furcations are expected because of the
small number of degrees of freedom excited. Multiple integer
ratios were found among thirty dominant spacings in the
15 nuclides, and it is clear that many of the dominant spacings
D (under recoil energy correction) can be written as D =
G/mn, where G ∼ 34.5 MeV, and m, n : integers. Also, the
excitation energies Ex themselves were found to be Ex = G/k

(k : integer) [9–11]. Our observations suggest:

(i) multi-furcation of levels characteristic to each nucleus.
(ii) a common original energy G ∼ 34.5 MeV over many

nuclei.

G is found to be almost equal to the Fermi energy,
the maximum energy of a nucleon trapped in a nuclear
potential.

The mechanism of CN formation by resonance reactions
are reconsidered, and described in Sec. VI. Assuming an
ensemble of multiple oscillators (all in normal modes)
within the CN, we have developed a “recurrence model”
[11,12] and a “breathing model” [15], where the time be-
haviors of the CN are explicitly discussed in a classical
model. The recurrence times of composite oscillators are
quantized by the unit time τ0 = 2πh̄/G = 1.20 × 10−22s =
36 (fm/C). Excitation energy is derived as a sum of inverse
integers Ex = G

∑
j (1/nj ) (nj : integer), and the level

spacings are in a form D = G[
∑

j (1/nj ) − ∑
k(1/nk)] =

G(p/q) (nj , nk, p, q : integer), which is consistent with
previous observations [9–11]. For a level composed of two
oscillators, the excitation energy is Ex = ((1/n1) + (1/n2))G,
with recurrence time τrec = LMC(n1, n2) × τ0, where LCM is

the least common multiple of n1, and n2. Recurrence energy is
Erec = G/LCM.

III. Sn/En IN 40Ca + n RESONANCES

In a previous paper, we reported the anomalously frequent
appearance of integer ratios in Ex/Sn in light nuclei [12]. Here
we describe the frequent appearance of integer ratios in Sn/En

for s-wave resonances of 40Ca + n for En � 2.5 MeV, and
Sn = 8362 keV, where En is recoil-corrected energy and Sn is
the neutron separation energy. Resonance data were obtained
from a recent edition of the Landolt-Börnstein reference data
series [13]. Forty s-wave resonances are observed in the region.
Nearest neighbor level-spacing distribution (Di,i+1) is shown
in Fig. 1(a), and the spacing distribution between two arbitrary
levels (Di,j ) is shown in Fig. 1(b). Nothing remarkable will be
seen in these figures.

However, in 24 s-wave resonances out of 40, Sn/En are
found to be in the form 17(l/m), where m, l are integers.
This leads to Sn = (17/X)G where X is an arbitrary integer.
To maintain G ∼ 34.5 MeV, we set X = 70, then G =
34434 keV. The excitation energies may be expressed in the
form

Ex = Sn + En = ((17l + m)/70l)G

= ((17/70) + (m/l)/70)G.

Fourteen resonances of simple m, l (m, l � 10) are listed in
Table I, and plotted in Fig. 2. In the Table, the meaning
of each column is illustrated using the first resonance as
an example, where the excitation energy Ex = Sn + En =
8527.2 keV, and the neutron energy En = 164.5 keV. g�n

is the neutron width multiplied by the g-factor (g = 1 for this
case). For the first resonance, the value of Sn/En is 51/1, and
m = 1, l = 3. Ex/G is (17/70) + (1/210) = (52/210), and
LCM = 210, which is proportional to the recurrence time of
the CN for this resonance. Recurrence energy Erec is defined as

TABLE I. S-wave resonances in 40Ca + n which are in simple integer ratios to En/492 (keV). 492 keV = G/70.

j Ex (keV) En (keV) g�n (keV) Sn/En Ex/G LCM Erec (keV) R δ (keV) En/492 G (keV)

0 8362.7 0 17/70 34434
1 8527.2 164.5 2.5 51/1 52/210 210 163.9 1 0.5 1/3 34436
2 8574.0 211.3 7.4 119/3 122/490 490 70.2 3 0.5 3/7 34436
3 8608.0 245.3 20 34/1 35/140 140 245.9 1 −0.6 1/2 34432
4 8739 376.3 0.5 68/3 71/280 280 123.0 3 7.0 3/4 34463
5 8800 437.3 10 170/9 179/700 700 49.2 9 −5.2 9/10 34413
6 8858 495.3 10 17/1 18/70 70 492.1 1 3.2 1/1 34447
7 8939.5 576.3 55 102/7 109/420 420 82.0 7 2.2 7/6 34445
8 8982.9 620.2 2 119/9 73/280 280 123.0 5 4.9 5/4 34454
9 9021.5 658.8 2.7 51/4 55/210 210 164.0 4 2.7 4/3 34445

10 9220.3 857.6 31 68/7 75/280 280 122.9 7 −3.0 7/4 34422
11 9342.5 979.8 12 17/2 19/70 70 491.7 2 −3.6 2/1 34419
12 9842.3 1479.6 2 17/3 20/70 70 492.1 3 3.2 3/1 34448
13 10339.0 1976.3 20 17/4 21/70 70 492.3 4 6.9 4/1 34463
14 10583.0 2220.3 30 34/9 43/140 140 246.1 9 5.2 9/2 34456
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FIG. 1. (a) Nearest neighbor level spacing distribution. (b) Spacing between two arbitrary levels.

Erec = G/LCM, and R is the integer part of En/Erec, which
is 1 for this resonance. The accuracy is δ = En − R · Erec.
The neutron energies are simple integer ratios to (1/70)G =
492 keV, and the values of (m/l) = En/492 are shown in
the second to last column. Values for G as determined by
Ex/(17/70 + (m/l)/70) are shown in the last column, where
deviations are very small for many resonances. It is very
interesting that separation energy Sn = (17/70)G is a sum
of the energies of two oscillators ((1/7) + (1/10))G of which
the recurrence energy is (1/70)G. The mechanism of neutron
resonance reactions suggested by this fact is discussed in
Sec. V.

IV. STATISTICAL TEST

We now explore the statement that many of the observed
values of En are of the form (l/m)(1/70)G. It is essential to

determine the validity of this statement. Statistical probability
calculations were made for the dispositions of many values
of En at (l/m)(1/70)G, assuming a homogeneous (random)
distribution of 40 levels over this energy region. Fig. 2 shows
g�n of resonances vs neutron energy for En � 2.5 MeV. The
average level spacing is ∼60 keV. In Table I, resonances
of (m/l) with m, l � 10 are listed. As m, l � 8 in only 2
cases, we restrict m and l to be to less than or equal to
7, and the number of resonances becomes 12. The possible
values of (l/m) (where m, l � 7) are carefully counted to be 29,
considering the observed energy region. Observed En deviated
slightly from the points (l/m)(1/70)Gav where Gav is the
averaged value. Probability calculations were performed for
two cases.

Case 1. All 12 resonances lie within a total width of
deviation 13 keV. Then the candidate region, in which
resonance is regarded as an integer ratio, is the sum of these
widths, i.e. 29 × 13 = 377 keV. The ratio of the candidate

FIG. 2. Forty s-wave neutron resonances
of 40Ca + n. Resonances marked are En =
(m/n)492 keV in Table I.
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region to the total region of (2500 − 100) = 2400 keV is
p = 377/2400 = 0.157, where 100 keV is an end effect.
Assuming 40 resonance levels are placed homogeneously in
this region, the average number of levels in the candidate region
is 40p ∼ 6.3. The probability of 12 levels on the candidate
region is calculated using a binomial distribution to be P (12) =
40C12 p12(1 − p)28 = 0.011 = 1.1%. The summation over all
levels is

∑40
j=12 P (j ) = 0.017 = 1.7%.

Case 2. For the 9 resonances that lie within a smaller
deviation width of 5 keV, similar calculations were made: p =
0.0604, 40p = 2.4, and P (9) = 0.00042 = 0.043%, with∑40

j=9 P (j ) = 0.0005 = 0.05%.
These small probabilities are sufficient to disprove the as-

sumption of homogeneous (random) distribution of resonance
levels in the region. It is therefore reasonable to infer that the
original statement is true, i.e., many of the observed values of
En occur at (l/m)(1/70)G. The physical meaning relating to
the resonance reactions is discussed below.

V. POSSIBLE MECHANISM OF 40Ca + n RESONANCES

The separation energy of 40Ca + n is Sn = 8362.7 keV =
(17/70)G which is rewritten as a sum of two oscillators
((1/7) + (1/10))G, of which LCM = 70 and the recurrence
energy is (1/70)G. In excitation levels of the target nucleus
40Ca, two 0+ levels are seen at 3352 keV and 5211 keV [17].
It is speculated that by the incidence of a neutron, these
two levels are simultaneously excited, and these energies are
deformed to (1/10)G = 3443 keV and (1/7)G = 4919 keV
with a recurrence energy (1/70)G = 492 keV. For incident
neutrons of energies (l/m)(1/70)G, resonance reactions take
place, forming a Boromian ring.

For clarity, formulations are made for the case of n1 =
7, n2 = 10, and m, l are small integers.

Sn =
(

1

n1
+ 1

n2

)
G, Ex =

[(
1

n1
+ 1

n2

)
+ 1

n1n2

m

l

]
G,

En = 1

n1n2

m

l
G,

G

n1n2
= 492 keV.

Sn

En

= (n1 + n2)
l

m
,

Ex

En

= 1 + (n1 + n2)
l

m
.

This model works fairly well for the 14 s-wave (1/2+)
resonances in Table I, and for another 14 resonances with
(m, l � 10) of different Jπ (1/2−, 3/2−, 3/2+, 5/2+).

Similar situations are found in the neutron resonances of
many nuclei.

(i) In 12C + n, Sn = 4946.3 keV = (1/7)G = (3/21)G.
Many of the resonance energies En are integer ratios
of (1/21)G = 1648 keV. For the first nine resonances
of En � 6 MeV, several numerical data are shown in
Table II, where simple integer ratios in En/1648 (keV)
are seen.

(ii) In the case of 16O + n, Sn = 4143.3 KeV = (3/25)G
is decomposed into (3/25)G = ((1/10) + (1/50))G =
((1/15) + (1/25) + (1/75))G, and LCM = 50 or 75.
Among three 5/2+ levels of 17O including Sn, the
spacing D0 = 460 keV = (1/75)G behaves as a unit
spacing [11]; 0 at the ground state(5/2+), 9D0 for
Sn = 4143 keV, 16D0 for Ex = 7378 keV (resonance
at En = 3234 keV), and 20D0 for Ex = 9194 keV
(En = 5050 keV).

(iii) In the resonances in 140Ce + n (N = 82, a nu-
clear magic number), dominant spacings of D0 =
86.2 keV are found [18]. The separation energy
Sn = 5428.6 keV = (63/400)G can be decomposed
into (63/400)G = ((1/8) + (1/50) + (1/80))G, and
LCM = 400. The observed dominant spacing D0 =
86.2 keV is exactly equal to (1/400)G. A large reso-
nance observed at En = 21.4 keV is (1/4) of 86.2 keV.

For each reaction, several ways of decomposition are
possible. However, only the minimum time recurrence (the
smallest LCM) will be realized, by analogy with Fermat’s
principle in optics and Hamilton’s principle in mechanics.

The variation of G for these four nuclides is about 1%,
suggesting the existence of some simple features in nuclear
excitation mechanisms. This may be related to the “Tuning
effect” remarked on by S. Sukhoruchkin [8,14,18].

It is surprising that such simple arithmetic seems to be
valid to describe the highly excited states of nuclei. Whereas,
similar arithmetic in frequency relationship is widely observed
in non-linear wave physics; examples include radio-frequency

TABLE II. First 9 resonances of 12C + n which are in simple integer ratios to En/1648 (keV). 1648 keV = G/21.

i J L Ex (keV) En (keV) �n

(keV)
Sn/En Ex/G LCM Erec

(keV)
R δ (keV) En/1648 G

(keV)

0 4946.3 0 1/7 34624
1 5/2 2 6864 1917.7 8.6 18/7 25/126 126 274.5 7 −4.2 7/6 34594
2 5/2 2 7547 2600.7 2.0 21/11 32/147 147 235.8 11 −6.4 11/7 34669
3 3/2 2 7686 2739.7 93.9 9/5 14/63 63 549 5 −5.3 5/3 34587
4 3/2 2 8200 3253.7 1179 3/2 5/21 21 1640 2 −26.3 2/1 34440
5 1/2 1 8860 3913.7 138 15/12 9/35 35 984.4 4 −24.1 12/5 34455
6 1/2 1 9499.8 4553.5 1.7 12/11 23/84 84 413.0 11 10.1 11/4 34694
7 3/2 1 9897 4950.7 19 3/3 2/7 7 4948 1 −2.2 3/1 34639
8 1/2 0 10460 5513.7 37 9/10 19/63 63 550.5 10 8.4 10/3 34683
9 7/2 3 10753 5806.7 50 6/7 13/42 42 827.1 7 16.6 7/2 34740
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waves transmitting through circuits with non-linear elements
(diodes etc.), and high power laser light penetrating through
a medium with non-linear polarizability. In such systems, the
presence of higher and lower harmonics and the mixing of
harmonics are familiar concepts [19,20].

VI. BREATHING MODEL OF NEUTRON
RESONANCE REACTIONS

A brief description of the nuclear model used in the above
analyses is given in this section.

By the S-matrix theory, the time response function or
breathing of the CN is time-coherent with the de Broglie
wave of the incident neutron. The wave packet of the incident
neutron is very long (∼10−8 m) compared to the nuclear
size (∼10−14 m), and is formally expressed as a plane wave
exp[i(ωt − kx)], where ω is frequency = En/h̄, t is time,
k the wave vector, and x the space coordinate. In crystal
diffraction, an incident neutron wave is scattered from atoms
at periodic lattice points, and is diffracted to directions where
constructive interference of the scattered wave is maximal.
The diffraction is in the (k, x) domain. In contrast, neutron
resonances are in the (ω, t) domain. There will be periodic
scattering centers on the time axis, which will be change
size due to flare up of neutron density on the CN surface
(entrance region), which is time coherent (synchronized) with
the incident wave at resonances. In the absence of size change
due to flare ups, only the potential scattering cross section
(∼10 barn = 10 × 10−28 m2) will be observed. Therefore, a
dynamic picture of the CN is needed to understand neutron
resonances, and to this end we have developed the “recurrence
model” [12] and the “breathing model” [15].

For a resonance, an incident neutron wave is divided
into two components, a component that passes by without
interaction and a penetrating component which is divided into
M oscillators (normal modes) excited simultaneously in the
CN. The recurrence time of each oscillator is quantized by a
unit time τ0 = 2πh̄/G = 1.20 × 10−22 s, and the recurrence
time of the ensemble is τrec = LCM(n1, n2, . . . , nM )τ0. At
every τrec, the penetrating component recurs to the initial phase,
gathers to form a high neutron-density flare on the CN surface,
and interferes with the pass-by component. The instance of the
recurrence (a few τ0) called the coalescent phase in [12], and

the gather phase in [15], is analogous to a time slit which
opens to allow interference between the two components
during a few τ0 with every τrec. Energy spectra expected from
these time structures are almost consistent with the observed
facts [12], fine structure resonances, and enveloping giant
resonances.

Excitation energy is in a form Ex = G
∑M

j=1(1/nj ), where
the numerators will be replaced by small integers. For an
oscillator of energy (1/n)G, we imagine a ring composed
of n-elements (nucleons), on which excitation is transmitted
to the next element in time τ0, with a total excitation
circulation time of nτ0. One of the elements couples to the
entrance region, where interaction takes place with the pass-by
component. Excitation at the entrance region excites M rings,
and reappears after τrec repeatedly. The incident neutron wave
period 2πh̄/En and its many harmonics are coherent with τrec

at resonances.

VII. CONCLUSION

Contrary to thier characterization as quantum chaos,
neutron resonances are a regular system if we consider
them from a different view point. In 40Ca + n resonances,
fairly simple structures are seen in resonance energies,
which are revealed by the methods presented here. Similar
analyses are valid for several light nuclei. In our breath-
ing model, several new classical concepts are introduced,
namely: G ∼ 34.5 MeV, τ0 = 2πh̄/G = 1.20 × 10−22 s, the
recurrence time of oscillators quantized by τ0, LCM of an
oscillator ensemble, and Ex as a sum of inverse integers,
equal to Ex = G

∑M
j=1(1/nj ) etc. We think that more so-

phisticated methods using quantum mechanical view points
are needed, including the non-linear Schrödinger equation and
non-linear polarizability for the incident neutron wave around
nuclear surfaces. Fine structure analyses will be an interesting
and fruitful area of study in nuclear physics in the 21st
century.
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