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I. INTRODUCTION

Electron-scattering reactions with nuclei have provided
the most detailed and complete information on nuclear and
nucleon structure. Analysis of data for light-to-heavy nuclei
and for different kinematical situations have been presented
in the literature [1–5]. Not only differential cross sections
but also the contribution of the separate response functions
have been considered. From the theoretical point of view, an
important effort has been devoted for the past 20 years to
the description of inclusive and exclusive processes. The high
energies and momenta involved in recent experiments have
led to the development of fully relativistic models describing
the scattering process [6–17]. Moreover, ingredients beyond
the quasielastic (QE) approach, namely meson exchange cur-
rents, correlations, etc., have been also considered following
different approaches [18–32].

Within the QE domain, which is the region considered
in this work, the treatment of final-state interactions (FSI)
between the ejected nucleon and the residual nucleus has
been proved to be essential to compare with data. This
has been well established in the case of exclusive (e, e′N )
reactions where an ejected nucleon is detected in coincidence
with the scattered electron. Analyses based on the use of
phenomenological complex potentials in the final channel have
provided results in accordance with data [1,4]. In particular,
the use of relativistic complex optical potentials within a fully
relativistic description of the reaction mechanism has led to
theoretical cross sections in excellent accordance with data
[7,8,10,11,13,15,16]. Moreover, comparison with separate
responses and asymmetries has also proved the capability of
the relativistic approach to successfully describe fine details
of data behavior [9,10,13,33,34].

In the analysis of inclusive reactions, contrary to exclusive
ones, all inelastic channels in the final state should be retained.
This means that the flux is conserved, and, consequently, the
distorted-wave impulse approximation (DWIA) based on the
use of a complex potential should be dismissed. However,
final-state interaction continues to be a main ingredient in the

inclusive process, and its appropriate description is required to
describe data. Within the framework of fully relativistic models
different approaches have been presented in the literature.
First, a description based on the relativistic distorted-wave
impulse approximation (RDWIA) has been pursued but using
purely real potentials in the final channel. This is consistent
with flux conservation. Concerning the specific potentials, the
final nucleon state has been evaluated with the real part of
the relativistic energy-dependent optical potential, denoted
as rROP, or with the same relativistic mean-field potential
considered in describing the initial nucleon state, denoted as
RMF (see Refs. [15–17,35]). A second approach of FSI makes
use of the relativistic Green’s function technique, where the
components of the nuclear response are written in terms of the
single-particle optical model Green’s function. This method,
denoted as GF, allows one to perform calculations treating FSI
consistently in the inclusive and exclusive channels. The same
relativistic (complex) optical potential is considered in both
cases, but flux is conserved in the inclusive process. Moreover,
redistribution of strength among different channels is due to
the real and also significantly to the imaginary part of the
potential (see Refs. [14,36–39] for details).

The exhaustive analysis of the (e,e′) world data has demon-
strated the quality of scaling arguments at high-momentum
transfer for excitation energies below the QE peak [40–43].
These data, and particularly those coming from the separate
longitudinal contribution, have been shown to respect scaling
of first kind (independence of the transferred momentum q)
and scaling of second kind (no dependence on the nuclear
system). The analysis of the longitudinal response, very
mildly affected by meson exchange currents and nuclear
correlations, has permitted the extraction of a phenomenolog-
ical QE superscaling function given for transferred energies
below and above the QE peak. These regions correspond
to negative and positive values of the so-called superscaling
variable, respectively [35,41–44]. Scaling analysis for electron
scattering, which was extended into the � region [20,45,46],
has been also exploited to predict inclusive charged-current
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(CC) neutrino-nucleus cross sections [35,44,45,47–50] and
neutral-current (NC) processes [51–53].

The QE phenomenological scaling function presents a
significant asymmetry with a tail extended to high values
of the transferred energy ω [positive values of the scaling
variable ψ ′(q, ω)]. This imposes strong restrictions to all
theoretical models describing QE (e,e′) processes, namely
they should be able to fulfill scaling properties and in
addition reproduce the specific shape of the scaling function.
Asymmetry in the scaling function is largely absent in
nonrelativistic models based on a mean-field approach [48].
The same comment applies to the relativistic plane wave
limit and to results based on a DWIA using real relativistic
energy-dependent optical potentials [35,44]. In contrast, asym-
metry comes out within the relativistic impulse approximation
but with FSI described using strong relativistic mean-field
potentials. An asymmetrical scaling function has been also
shown to occur within the framework of a semirelativistic
model, based on FSI given through the Dirac equation-based
(DEB) potential derived from the RMF (see Ref. [54] for
details).

Previous studies clearly illustrate the central role played
by FSI in providing theoretical results in accordance with
data. Hence, in this work we present a careful analysis of
(e,e′) processes comparing two basic descriptions of FSI:
the RMF approach and the relativistic GF technique. Both
models have their own merits. In the RMF the flux lost into
inelasticities is recovered by using the same, purely real,
energy-independent potential seen by the bound nucleons and
thus no information from scattering reactions is explicitly
incorporated in the model. In this way it is consistent with
dispersion relations [55]. The RMF leads to an asymmetrical
scaling function that is supported on overall by data behavior.
However, it breaks down scaling significantly as the transferred
momentum q increases, particularly in the region above the QE
peak. The analysis of experimental (e,e′) data indeed leaves
room for first-kind scaling breaking in this region, due partly
to � production and other contributions beyond the impulse
approximation, namely meson exchange currents and their
impact in the 2p-2h sector [24]. The GF approach provides
a consistent and unified treatment of inclusive and exclusive
electron-nucleus scattering processes. It also fulfills dispersion
relations and recovers the flux lost into inelasticities by means
of a formal summation of unobserved channels performed via
the optical potential. Most often, the optical potential is taken
from phenomenology, and thus, in this approach, information
on the observed nucleon-nucleus scattering is incorporated
into the model.

The differences observed between the predictions of the
two approaches and their behavior with regard to scaling
arguments will be helpful in establishing an appropriate
description of FSI for inclusive (e,e′) processes at different
kinematics. Further, this would be useful for understanding
nuclear effects, especially FSI, in neutrino-nucleus cross
sections [35,37,44,45,56–65], which are of paramount interest
for the ongoing and future neutrino oscillation experiments
[66–74].

Therefore, in this work we present a systematic study of
both models, comparing their predictions and analyzing their

scaling properties, with special emphasis on the specific shape
of the scaling function.

The article is organized as follows. In Sec. II, we present
the basic formalism involved in inclusive quasielastic electron
scattering with a discussion of the different models considered
in the description of FSI, namely the relativistic mean field and
the relativistic Green’s function approach. We also provide
a subsection that contains the basic facts related to scaling
arguments and introduce superscaling functions. In Sec. III, we
show and discuss our results. First, we focus on the analysis of
differential cross sections and later we analyze in detail results
for the scaling function. Finally, in Sec. IV we summarize the
main results and present our conclusions.

II. INCLUSIVE QUASIELASTIC ELECTRON SCATTERING

An electron with four-momentum Kµ = (ε, k) is scattered
through an angle ϑe to four-momentum K ′µ = (ε′, k′). The
four-momentum transfer is Qµ = Kµ − K ′µ = (ω, q). In
the one-photon exchange approximation the inclusive cross
section for the quasielastic (e,e′) scattering on a nucleus is
given by [1] (

dσ

dε′d�′

)
= σM [VLRL + VT RT ], (1)

where �′ is the scattered electron solid angle and σM is the
Mott cross section [1]. The coefficients V come from the lepton
tensor components and are defined as

VL =
( |Q2|

|q|2
)2

VT = tan2 ϑe

2
− |Q2|

2|q|2 , (2)

where |Q2| = |q|2 − ω2.
All nuclear structure information is contained in the

longitudinal and transverse response functions, RL and RT ,
expressed by

RL(q, ω) = W 00(q, ω)
(3)

RT (q, ω) = W 11(q, ω) + W 22(q, ω)

in terms of the diagonal components of the hadron tensor that
is given by bilinear products of the transition matrix elements
of the nuclear electromagnetic many-body current operator Ĵ µ

between the initial state |�0〉 of the nucleus, of energy E0, and
the final states |�f 〉, of energy Ef , both eigenstates of the
(A + 1)-body Hamiltonian H , as

Wµν(q, ω) =
∑

i

∫∑
f

〈�f |Ĵ µ(q)|�0〉

× 〈�0|Ĵ ν†(q)|�f 〉δ(E0 + ω − Ef ), (4)

involving an average over the initial states and a sum over the
undetected final states. The sum runs over the scattering states
corresponding to all of the allowed asymptotic configurations
and includes possible discrete states.

In the QE region the nuclear response is dominated by
one-nucleon knockout processes, where the scattering occurs
with only one nucleon that is subsequently emitted. The
remaining nucleons of the target behave as simple spectators.
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Therefore, QE electron scattering is adequately described in
the relativistic impulse approximation (RIA) by the sum of
incoherent processes involving only one nucleon scattering.

In the RIA the nuclear current operator is assumed to be
the sum of single-nucleon currents ĵ µ, for which different
relativistic free nucleon expressions [75] can be used. In the
present calculations we use the option denoted as CC2, i.e.,

ĵ µ = F1(Q2)γ µ + i
κ

2M
F2(Q2)σµνQν, (5)

where κ is the anomalous part of the magnetic moment and
σµν = (i/2) [γ µ, γ ν]. F1 and F2 are the Dirac and Pauli
nucleon form factors [76].

Within the RIA framework and under the assumption of a
shell-model description for nuclear structure, the components
of the hadron tensor are obtained from the sum, over all the
single-particle (s.p.) shell-model states, of the squared absolute
value of the transition matrix elements of the single-nucleon
current 〈

χ
(−)
E (E)|ĵ µ(q)|ϕn

〉
, (6)

where χ
(−)
E (E) is the scattering state of the emitted nucleon

and the overlap ϕn between the ground state of the target |�0〉
and the final state |n〉 of the residual nucleus is a single-particle
shell-model state.

In the calculations presented in this work the bound nucleon
states ϕn are taken as self-consistent Dirac-Hartree solutions
derived within a RMF approach using a Lagrangian containing
σ, ω, and ρ mesons [77–81].

Different prescriptions are used to calculate the relativistic
s.p. scattering wave functions. In the simplest approach
the plane-wave limit is considered, i.e., the relativistic plane-
wave impulse approximation (RPWIA), where FSI between
the outgoing nucleon and the residual nucleus are neglected. In
the approaches based on the relativistic distorted-wave impulse
approximation FSI effects are accounted for by solving
the Dirac equation with relativistic optical potentials. The
use of relativistic energy-dependent complex optical potentials
fitted to elastic proton-nucleus scattering data has been very
successful in describing exclusive (e, e′p) data [1,4,7–13]. In
the exclusive scattering the imaginary part of the optical po-
tential produces an absorption that reduces the calculated cross
section and accounts for the flux lost in the considered elastic
channel toward other channels. This approach is appropriate
for the exclusive process where only one channel is considered,
but it would be inconsistent for the inclusive scattering, where
all the inelastic channels should be retained and the total flux,
although redistributed among all possible channels due to FSI,
must be conserved. As a result, in the RDWIA (with complex
potentials) the flux is not conserved and the inclusive (e,e′)
cross section is underestimated [15–17,36]. A simple way of
estimating the inclusive response within the RIA, avoiding
spurious flux absorption, is to use purely real potentials. In
a first approach, the imaginary part of the phenomenological
relativistic energy-dependent optical potentials [82] is set to
zero, thus retaining in the calculations only the real part. In a
second approach, the scattering states are described by using
the same RMF theory potentials considered in the description
of the initial bound state ϕn. We refer to these two different

FSI descriptions as real relativistic optical potential (rROP)
and relativistic mean field (RMF), respectively.

We note that rROP conserves the flux and thus it is
inconsistent with the exclusive process, where a complex
optical potential must be used. Moreover, the use of a real
optical potential is unsatisfactory from a theoretical point of
view, because it is an energy-dependent potential, reflecting
the different contribution of open inelastic channels for each
energy. Dispersion relation then dictates that the potential
should have a nonzero imaginary term [55]. However, the
RMF model is based on the use of the same strong energy-
independent real potential for both bound and scattering
states, so it fulfills the dispersion relation [55] and, further,
it maintains the continuity equation.

Green’s function techniques are exploited to derive the
inclusive response in a different model where the flux is
conserved and the use of a complex optical potential allows one
to treat FSI consistently in the inclusive and in the exclusive
reactions. Detailed discussions of this Green’s function (GF)
approach can be found in Refs. [14,36–39]. Here we recall
only the essential features of the model.

In the GF approach the components of the nuclear response
in Eq. (4) are written in terms of the s.p. optical model Green’s
function. This is the result of suitable approximations, such as
the one-body current assumption and subtler approximations
related to the IA. The explicit calculation of the s.p. Green’s
function can be avoided by its spectral representation, which is
based on a biorthogonal expansion in terms of a non-Hermitian
optical potential and of its Hermitian conjugate. The nuclear
response of Eq. (4) is then obtained in the form [36]

Wµµ(q, ω) =
∑

n

[
ReT µµ

n (Ef − εn, Ef − εn)

− 1

π
P

∫ ∞

M

dE 1

Ef − εn − E

× ImT µµ
n (E, Ef − εn)

]
, (7)

where n denotes the eigenstate of the residual nucleus related
to the discrete eigenvalue εn and

T µµ
n (E, E) = 〈ϕn|ĵ µ†(q)

√
1 − V ′(E)|χ̃ (−)

E (E)〉
× 〈χ (−)

E (E)|
√

1 − V ′(E)ĵ µ(q)|ϕn〉. (8)

The factor
√

1 − V ′(E), where V ′(E) is the energy derivative
of the optical potential, accounts for interference effects
between different channels and justifies the replacement in
the calculations of the Feshbach optical potential V of the
GF model, for which neither microscopic nor empirical cal-
culations are available, by the local phenomenological optical
potential [36,38]. Disregarding the square-root correction, the
second matrix element in Eq. (8) is the transition amplitude
of single-nucleon knockout of Eq. (6), where the imaginary
part of the optical potential accounts for the flux lost in the
channel n toward the channels different from n. In the inclusive
response this loss is compensated by a corresponding gain of
flux due to the flux lost, toward the channel n, by the other final
states asymptotically originated by the channels different from
n. This compensation is performed by the first matrix element
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in the right-hand side of Eq. (8) that is similar to the matrix
element of Eq. (6) but involves the eigenfunction χ̃

(−)
E (E) of

the Hermitian conjugate optical potential, where the imaginary
part has an opposite sign and has the effect of increasing the
strength. In the GF approach the imaginary part of the optical
potential redistributes the flux lost in a channel in the other
channels, and in the sum over n the total flux is conserved.

The hadron tensor in Eq. (7) is the sum of two terms. The
calculation of the second term requires integration over all
the eigenfunctions of the continuum spectrum of the optical
potential. If the imaginary part of the optical potential is
neglected, the second term in Eq. (7) vanishes and, but for the
square root factor (whose contribution is however generally
small in the calculations), the first term gives the rROP
approach.

A. Scaling at the quasielastic peak

Scaling ideas applied to inclusive QE electron-nucleus-
scattering reactions have been shown to work properly to
high accuracy [41–43]. In fact, an exhaustive analysis of QE
(e,e′) world data has demonstrated that scaling property is well
respected at high-momentum transfer for excitation energies
falling below the QE peak. These data, when plotted against
a properly chosen variable (the scaling variable), show a mild
dependence on the momentum transfer (reasonable scaling of
first kind) and almost no dependence on the nuclear target
(excellent scaling of second kind). Simultaneous fulfillment
of both conditions leads to superscaling. The analysis of
the separated longitudinal contribution to (e,e′) data has
led to introduce a phenomenological scaling function that
contains the relevant information about the nuclear dynamics
explored by the probe. Scaling and superscaling are general
phenomena exhibited by nature which any “reliable” model
providing a description of the scattering process should be
able to reproduce. Not only superscaling behavior should be
described but also the specific magnitude and shape of the
“universal” phenomenological superscaling function needs to
be reproduced.

The usual procedure to get the scaling function consists
of dividing the inclusive differential cross section (1) by the
appropriate single-nucleon eN elastic cross section weighted
by the corresponding proton and neutron numbers [41–43,83]
involved in the process,

f (ψ ′, q) ≡ kF

[
dσ

dε′d�′

]

σM [VLGL(q, ω) + VT GT (q, ω)]
. (9)

Analogously, the analysis of the separated longitudinal (L) and
transverse (T ) contributions leads to scaling functions,

fL(T )(ψ
′, q) ≡ kF

RL(T )(q, ω)

GL(T )(q, ω)
. (10)

The term ψ ′(q, ω) is the dimensionless scaling variable
extracted from the relativistic Fermi gas (RFG) analysis that
incorporates the typical momentum scale for the selected
nucleus [35,41]. The fully relativistic expressions for GL(T ) in-
volve the proton and neutron form factors G

pn

E(M), weighted by

the proton and neutron numbers, and an additional dependence
on the nuclear scale given through the Fermi momentum kF

(explicit expressions are given by Eqs. (16)–(19) in Ref. [41]).
Whereas L data are compatible with superscaling behavior,

permitting the extraction of the phenomenological function
f

exp
L (ψ ′), scaling is known to be violated in the T channel

at energies above the QE peak by effects beyond the impulse
approximation [20–24,84]. It is important to point out that,
although many models based on the impulse approximation
exhibit superscaling, even perfectly as the RFG, only a few
of them are capable to accurately reproduce the asymmetric
shape of f

exp
L with a significant tail extended to high transferred

energies (large positive values of the scaling variable ψ ′).
One of these is based on the RIA with final-state interactions
described by means of strong relativistic mean-field potentials.
On the contrary, calculations based on the plane wave limit
and/or the use of real relativistic optical potentials in the
final state, although satisfying superscaling properties, lead
to “symmetrical-shape” scaling functions that are not in
accordance with data analysis [35,44,47].

In this work we extend the analysis of scaling to the
relativistic GF approach, whose predictions will be compared
with previous results obtained within the RMF, RPWIA, and
rROP frameworks. This study will show to which degree
superscaling is fulfilled by the GF calculations, and, moreover,
how the GF scaling function compares with the experiment.
As already mentioned, the GF treats FSI consistently in the
inclusive and exclusive reactions, hence its application to
scaling and superscaling ideas, which emerge as an essential
outcome of nature, results mandatory. This allows us to get a
clear insight concerning the capability of the relativistic GF
approach applied to QE inclusive (e,e′) reactions, as well as
the uncertainties ascribed to the various ingredients of the
model, particularly the specific energy-dependent terms in the
complex optical potentials involved.

III. RESULTS AND DISCUSSION

In this section the numerical results of the different
relativistic models developed by the Pavia and the Madrid-
Sevilla groups to describe FSI in the inclusive quasielastic
electron-nucleus scattering are considered. As a first step
results obtained by the two groups in the RPWIA and rROP
approaches are compared to check the consistency of the
numerical programs when calculations are carried out under
the same conditions. Then the results corresponding to the
RMF model developed by the Madrid-Sevilla group and
the relativistic GF model developed by the Pavia group are
compared. This comparison is performed for the 12C(e, e′)
cross section and scaling function calculated with various
models under different kinematics.

A. Differential cross section

The 12C(e, e′) cross section has been calculated for a fixed
value of the incident electron energy ε = 1 GeV and three
values of the momentum transfer, i.e., q = 500, 800, and
1000 MeV/c. The relativistic initial states are taken as
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FIG. 1. Differential cross section of the
12C(e, e′) reaction for an incident electron
energy ε = 1 GeV and three values of the
momentum transfer, i.e., q = 500, 800, and
1000 MeV/c, calculated by the Pavia (solid
lines) and the Madrid-Sevilla (dashed lines)
groups with RPWIA (left column) and rROP
(right column).

Dirac-Hartree solutions of a relativistic Lagrangian written in
the context of a relativistic mean-field theory with the NLSH
parametrization [79–81].

The cross sections calculated in RPWIA and in rROP by
the Pavia and the Madrid-Sevilla groups are compared in
Fig. 1. The calculations are performed using the same
ingredients for the relativistic wave functions and the current
operator. Almost identical results are obtained in RPWIA. In
rROP the two results are very similar, up to a few percentages.

The comparison in Fig. 1 is a first important and necessary
benchmark of the two independent computer programs, which
allows us to estimate the numerical uncertainties and gives
enough confidence on the reliability of both calculations.
Further discrepancies between the results of the two groups
can now be ascribed to differences of the models but not to
inconsistencies in the calculations.

The cross sections evaluated with the RMF and GF
models for the same kinematics as in Fig. 1 are presented
in Fig. 2. In the case of the GF approach two different
parametrizations for the relativistic optical potential have been
used: the energy-dependent and A-dependent EDAD1 and
EDAD2 complex phenomenological potentials of Ref. [82],
which are fitted to proton elastic-scattering data on several
nuclei in an energy range up to 1040 MeV. In the figures
the results obtained with EDAD1 and EDAD2 are denoted
as GF1 and GF2, respectively. The differences between
the results of the RMF and GF models increase with the
momentum transfer. Moreover, discrepancies between the GF1
and GF2 cross sections depend on the momentum transfer. At

q = 500 MeV/c the three results in Fig. 2 are similar, both in
magnitude and shape. At larger q, q = 800 MeV/c, moderate
differences are found, whereas the discrepancy between the
three approaches gets larger at q = 1000 MeV/c. The shape
of the RMF cross section shows an asymmetry, with a long
tail extending toward higher values of ω that is essentially due
to the strong energy-independent scalar and vector potentials
present in the RMF approach. On the contrary, in the case
of GF1 and GF2, the asymmetry toward higher ω is less
significant but still visible. The GF1 and GF2 cross sections
show a similar shape but with a significant difference in the
magnitude. At q = 1000 MeV/c both of them are higher than
the RMF cross section in the region where the maximum
occurs. However, note that a stronger enhancement is obtained
with GF1, which at the peak overshoots the RMF cross
section up to 40%. Overall, taking into account the different
ingredients that these estimates of the inclusive response
contain, the similarity of the predictions for the inclusive cross
section is remarkable, particularly at the two lower values of
q. The larger differences seen for the largest q value, not only
between the RMF and GF models but also between the two
GF results, is simply an indication of the difference in the
ingredients of these calculations.

Indeed, the different behavior presented by the RMF and
GF results as a function of q and ω is directly linked to
the specific structure of the relativistic potentials involved
in the RMF and GF models. Whereas the RMF is based
on the use of a strong energy-independent real potential,
the GF approach makes use of a complex energy-dependent

024605-5



MEUCCI, CABALLERO, GIUSTI, PACATI, AND UDÍAS PHYSICAL REVIEW C 80, 024605 (2009)

FIG. 2. Differential cross section of the
12C(e,e′) reaction in the same kinematics as in
Fig. 1. The solid and long dot-dashed lines are
the GF results calculated with the two different
optical potentials EDAD1 and EDAD2. The
dashed lines are the results of the RMF model.

optical potential. In GF calculations the behavior of the optical
potential changes with the momentum and energy transferred
in the process, and higher values of q and ω correspond to
higher energies for the optical potential. The results obtained
with GF1 and GF2 are consistent with the general behavior of
the phenomenological relativistic optical potentials and are
basically due to their imaginary part. To make this clear,
we present again in Fig. 3 the GF and RMF cross sections
for q = 500 and 1000 MeV/c compared directly with the
corresponding results obtained within the RPWIA and rROP
models. It is known that the real terms of the relativistic optical
potentials are very similar for the different parametrizations.
This explains why the cross section evaluated within the
rROP approach does not show sensitivity to the particular
parametrization considered for the ROP. However, the energy-
dependent scalar and vector components of the real part of the
ROP get smaller with increasing energies. Thus the rROP result
approaches the RPWIA one for large values of ω. In contrast,
the imaginary (scalar and vector) part presents its maximum
strength around 500 MeV being also sensitive to the particular
ROP parametrizations. This explains the differences observed
between the rROP and the two GF results as a function of
ω and q. This significant discrepancy between GF and rROP
cross sections in Fig. 3 seems to contradict previous results
shown in Ref. [37]. However, kinematical conditions reported
in Ref. [37] corresponded to lower values of the momentum
transfer, where there is no reason a priori to expect the rROP
and GF predictions to be closer or further apart.

Of particular relevance is the difference between the GF1
and GF2 results. These are obtained with optical potentials
that reproduce the elastic proton-nucleus phenomenology to a

similar degree [82]. However, one must keep in mind that
elastic observables do not completely constrain optical poten-
tials, and indeed it has been often seen how the predictions of
the EDAD1 and EDAD2 potentials for nonelastic observables,
such as for instance (e, e′p) or electron trasparencies [56,57],
differ significantly. The differences between GF1 and GF2
are mostly due to their different imaginary part, that includes
the overall effect of the inelastic channels and is not uni-
vocally determined by the elastic phenomenology. The most
convenient choice of the phenomelogical optical potential to
be employed within the GF approach should thus be made
after a comparison to inclusive data.

In Fig. 4 the GF1, GF2, and RMF results are compared with
the experimental cross sections for three different kinematics
[85–87]. A recent review of the experimental situation as
well as different theoretical approaches can be found in
Ref. [2]. Results in Fig. 4 show that the three models lead
to similar cross sections. The main differences are presented
for higher values of the momentum transfer, about 800 MeV/c
(bottom panel), where the GF1 cross section (solid line) is
larger than the GF2 (dot-dashed) and RMF (dashed) ones.
The experimental cross section is slightly underpredicted in
the top panel and well described in the middle panel by all
calculations. Finally, results in the bottom panel show a fair
agreement with data in the case of GF1, whereas GF2 and RMF
underpredict the experiment. Summarizing, the comparison
with data, although satisfactory on general grounds, gives
only an indication and cannot be conclusive until contributions
beyond the QE peak, like meson exchange currents and Delta
effects, which may play a significant role in the analysis of
data even at the maximum of the QE peak, are carefully
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FIG. 3. Differential cross section of the
12C(e, e′) reaction for ε = 1 GeV and q = 500
and 1000 MeV/c. The solid, long dot-dashed,
and dashed lines are the same as in Fig. 2. The
dot-dashed and dotted lines are the rROP and
RPWIA results, respectively.

evaluated [20,45,46]. These processes contribute to the cross
section and the comparison of the pure nucleonic predictions of
the GF1, GF2, and RMF models to data will only indicate what

FIG. 4. Differential cross section of the 12C(e, e′) reaction for dif-
ferent beam energies and electron scattering angles. Line convention
as in Fig. 2; experimental data from Refs. [85–87].

is the contribution of the non-nucleonic degrees of freedom to
the cross sections.

B. Scaling functions

The effects already discussed for the differential cross
sections are also present in the scaling functions. Here we
compare results for the longitudinal component of the scaling
function fL(ψ ′) using the same descriptions for the final-
state interactions already considered for the differential cross
sections.

As a first step, the longitudinal contribution fL(ψ ′) obtained
in RPWIA and rROP by the Pavia and the Madrid-Sevilla
groups at three values of the momentum transfer is displayed
in Fig. 5 showing almost coincident results. Similar comments
apply to the transverse contribution fT (ψ ′). These results, in
addition to the cross sections in Fig. 1, confirm the consistency
of the numerical codes when calculations are performed under
the same conditions.

The scaling function fL(ψ ′) evaluated within RPWIA and
rROP shows a very mild dependence on the momentum
transfer for both positive and negative values of the scaling
variable ψ ′, i.e., violation of scaling of first kind is small.

In Figs. 6 and 7 we compare fL(ψ ′) evaluated with different
models and for several values of the momentum transfer with
the averaged QE phenomenological scaling function extracted
from the analysis of (e,e′) data [41–43]. As already shown
in previous works [35,44,47], the RMF model produces an
asymmetric shape with a long tail in the region with ψ ′ > 0 that
follows closely the phenomenological function behavior. The
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FIG. 5. Longitudinal contribution to the scaling function for
three values of the momentum transfer, i.e., q = 500, 800, and
1000 MeV/c, obtained by the Pavia (solid lines) and the Madrid-
Sevilla (dashed lines) groups with RPWIA (left column) and rROP
(right column).

asymmetry in the data has usually been attributed to physical
effects beyond the mean field such as two-body currents
and short-range correlations [24]. Within a nonrelativistic
framework such contributions need to be considered to get
asymmetry [24,88,89]. By contrast, the RMF approach is
capable of explaining the asymmetric behavior of data within

FIG. 6. Longitudinal contribution to the scaling function for q =
500, 800, and 1000 MeV/c with the GF1 (solid), GF2 (long dot-
dashed), and RMF (dashed) models compared with the averaged
experimental scaling function.

FIG. 7. Longitudinal contributions to the scaling function for
q = 500 and 1000 MeV/c compared with the averaged experimental
scaling function. Line convention as in Fig. 3.

the framework of the relativistic impulse approximation taking
advantage of its strong relativistic scalar and vector potentials.
The results with the GF model are similar to those obtained
with RMF at q = 500 MeV/c and, with moderate differences,
at q = 800 MeV/c, while visible discrepancies appear at q =
1000 MeV/c. However, discussion of results for the scaling
functions follows similar trends to the one already applied to
the behavior of the cross sections in Fig. 2, i.e., at higher q

values the maximum strength occurs for the GF1 model being
the RMF one the weakest.

The asymmetric shape with a tail in the region of positive
ψ ′ is obtained in both RMF and GF models that involve
descriptions of FSI either with a strong energy-independent
real potential or with a complex energy-dependent optical
potential, respectively. The scaling functions corresponding
to RPWIA and rROP, which are also presented in Fig. 7
show no significant asymmetric tail for ψ ′ > 0. The different
dependence on the momentum transfer shown by the potentials
involved in the RMF and GF approaches makes the GF scaling
function tail less pronounced as the value of q goes up.

The comparison of the different models to the longitudinal
scaling function is illuminating. We must recall that the
experimental longitudinal response can be considered as a
much better representation of the pure nucleonic contribution
to the inclusive cross section than the total cross section.
It is remarkable that, as seen in Figs. 6 and 7, except
for the highest value of q considered (1000 MeV/c), GF1,
GF2, and RMF approaches yield very similar predictions
for the longitudinal response, in good agreement with the
experimental longitudinal response. The asymmetric tail of
the data and the strength at the peak are fairly reproduced
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FIG. 8. Analysis of first-kind scaling, fL(ψ ′) for q = 500 (solid)
q = 800 (dot-dashed) and 1000 MeV/c (dashed) with the GF1 (top
panel), GF2 (middle panel), and RMF (bottom panel) models using
the same results already displayed in Fig. 6.

by the three approaches. However, for q = 1000 MeV/c, only
the RMF approach seems to be favored from the comparison
to the data, while GF1 and GF2 now yield rather different
predictions than the RMF approach that seem to be ruled out
by data. We must keep in mind that the GF approach uses as
input the phenomenological optical potentials. It is clear that,
as the momentum transfer increases, the phenomenological
optical potential will (implicitily) incorporate a larger amount
of contributions from non-nucleonic degrees of freedom, such
as for instance the loss of (elastic) flux into the inelastic delta
excitation with or without real pion production. Thus the input
of the GF formalism is contaminated by not purely nucleonic
contributions. Consequently, GF predictions depart from the
experimental QE longitudinal response that effectively isolates
only nucleonic contributions. This difference, which is larger
with increasing momentum transfer, emerges as an excess of
strength predicted by the GF model as it translates a loss of flux
due to non-nucleonic processes into inclusive purely nucleonic
strength. However, the RMF model uses as input the effective
mean field that reproduces saturation properties of nuclear
matter and of the ground state of the nuclei involved, and thus it
is much more suited to estimate purely nucleonic contributions
to the inclusive cross section, even at q = 1000 MeV/c. Taking
these facts into account, the comparison of the models to the
data, both for total cross sections and longitudinal responses,
yields what one reasonably expects.

An analysis of the scaling of first-kind, i.e., independence
of the momentum transfer, is illustrated in Fig. 8. The results
are the same already shown in Fig. 6 but are presented in a
different way. Each panel corresponds to a specific description
of FSI (GF1, GF2, and RMF) and includes results obtained for
different values of q. The experimental data are compatible

with a mild violation of first-kind scaling, particularly in
the positive ψ ′ region. In Refs. [35,44] the scaling functions
evaluated with the RPWIA and rROP models were shown
to depend very mildly on the transferred momentum in the
whole, positive and negative, ψ ′ region. In the case of the RMF
approach, there is a slight shift in the region ψ ′ < 0, whereas
the model breaks scaling approximately at 30% level when
ψ ′ > 0. Similar results are obtained with the GF models, where
a shift in the region of negative ψ ′ also occurs, and scaling is
broken for ψ ′ > 0. This scaling violation for ψ ′ > 0 is larger
with GF1 due to the enhancement produced in the region of the
QE peak by this phenomenological optical potential at higher
values of q. As a consequence, the comparison between the
experimental QE scaling function and the GF1 results is worse
than the corresponding comparison for GF2.

IV. SUMMARY AND CONCLUSIONS

The work developed in this article has emerged as a
close collaboration between the Pavia and Madrid-Sevilla
groups. For the past several years, both groups have been
deeply involved in studies of lepton-scattering reactions with
nuclei. Inclusive and exclusive electron-scattering processes
have been analyzed, as well as reactions involving the use
of neutrinos. The calculations performed by the two groups,
which are similar in some aspects, i.e., treatment of relativistic
ingredients, bound-nucleon wave functions, single-nucleon
current operators, etc., present also clear differences concern-
ing the description of final-state interactions, which constitute
an essential ingredient for a successful comparison with data.

The consistency of the numerical calculations developed
by our two groups is checked by comparing results in the
plane-wave limit (RPWIA) and making use of the real part
of the relativistic optical potential (rROP). Almost identical
predictions come out within RPWIA and very similar ones
with rROP. This reinforces our confidence on the reliability of
both calculations. As known, the description of inclusive (e,e′)
reactions requires the contribution from the inelastic channels
to be retained. Within the framework of the relativistic impulse
approximation, a simple recipe to compute the inclusive
strength is the use of purely real potentials in the final state.
This is the case of the rROP approach (phenomenological
relativistic optical potential but without the imaginary part).
However, although rROP conserves the flux, its use for
inclusive processes is not entirely satisfactory because the
(complex) relativistic optical potential has its origin in the
description of exclusive processes where only the elastic
channel contributes to the observables. Two other models
based on the relativistic impulse approximation have been used
recently to account for FSI. The former (see Refs. [17,35])
employes distorted waves obtained with the same relativistic
mean field considered for the initial bound states. This is
denoted as RMF and it fulfills the dispersion relation and the
continuity equation. The latter procedure is based on the rela-
tivistic Green’s function (GF) approach (see Refs. [14,36–39]),
which allows one to treat FSI consistently in the inclusive and
exclusive reactions.
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Differential cross sections and scaling functions evaluated
with both models for different kinematical situations have
been compared. Discrepancies are shown to increase with the
momentum transfer. This is linked to the energy-dependent
optical potentials involved in the relativistic GF method by
contrast to the strong energy-independent RMF potentials.
Moreover, results presented for two different parametrizations
of the ROP, namely EDAD1 vs. EDAD2, prove the importance
of the imaginary term, which gets its maximum strength around
500 MeV, whereas the real part gets smaller as the energy
increases. This explains the different behavior shown by the
results of the GF and rROP models, the latter approaching
the RPWIA results for higher values of the transferred energy
and momentum. Furthermore, discrepancies between the GF
and RMF results are also clearly visible as q goes up, due to
the contribution from not purely nucleonic inelasticities to the
phenomenological optical potential

All models considered respect scaling and superscaling
properties. Furthermore, the significant asymmetry in the
scaling function produced by the RMF is strongly supported
by data [35]. On the contrary, asymmetry is largely absent in
RPWIA and rROP predictions. The relativistic GF approach
leads to similar results to RMF, i.e., with presence of the
asymmetry for intermediate q values. On the contrary, visible
discrepancies emerge for larger q, being the GF scaling
function tail less pronounced but showing more strength
in the region where the maximum occurs. Moreover, the
GF results for high q present a strong dependence on the
specific parametrization considered for the optical potential.
These results are directly linked to effects introduced by
the imaginary (scalar and vector) term in the optical po-
tential that presents a high sensitivity to the particular ROP
parametrization. The relativistic GF approach, even based on
the use of a complex optical potential, is shown to preserve
flux conservation, hence the imaginary term in the potential
leading to a redistribution of the strength among different
channels. This explains the difference observed between RMF
and GF predictions, the latter with additional strength in
the region close to the maximum in the QE response. This

behavior could be connected with effects coming from the
contribution of the � that are, somehow, accounted for in
a phenomenological way by the GF approach, modifying
consequently the responses even in the region where the
QE peak gives the main contribution. Note that the higher
the transfer momentum the stronger the overlap between
the QE and � peaks. This makes it very difficult to isolate
contributions coming from either region.

Although great caution should be exercised in extending
the above comments before more conclusive studies are
performed, the present analysis can be helpful in disentangling
different treatments of FSI and their connections with different
physics aspects involved in the process. The similarities of
the GF and RMF predictions for the inclusive cross sections,
particularly for intermediate values of q, in spite of the very
different phenomenological ingredients they consider, and the
very reasonable agreement with the data for the longitudinal
scaled response, that constitutes a good representation of the
experimentally measured purely nucleonic response to the
inclusive cross sections, are a clear indication of the fact that
both models make a very decent job in estimating the inclusive
contribution. It will be interesting to investigate the possibility
of disentangling in the phenomenological optical potential the
contributions due to non-nucleonic inelasticities and extract a
“purely nucleonic” optical potential that could then be used
in the GF approach and contrasted against the experimental
longitudinal scaling function. This work can be considered a
first step in this direction.
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