
PHYSICAL REVIEW C 80, 024604 (2009)

Isospin dependent nucleon-nucleus optical potential with Skyrme interactions
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In this paper, the isospin dependent nucleon-nucleus optical potential theory is introduced on the basis of
the effective Skyrme interactions. From the view of the many-body theory, the nucleon optical potential can be
identified with the mass operator of the one-particle Green function. The first and second order mass operators
of the one particle Green function in nuclear matter are derived, and the real and imaginary parts of the optical
potential for finite nuclei are obtained as usual by applying a local density approximation. Our results, in most
cases, can be derived and expressed analytically. From an extensive comparison with experimental data of various
quantities of interests, it is concluded that for certain versions of Skyrme interactions without parameter adjusting
the agreement between theory and experiments can be obtained satisfactorily. We define the ratio of the difference
and summation of the neutron and proton nonelastic cross sections as the isospin effect value. The calculated
results show that the isopin effect value decreases as the incident energy increases and increases as the asymmetric
parameter α0 = (N -Z)/A of the target nucleus increases.
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I. INTRODUCTION

The optical model is one of the most fundamental the-
oretical tools in the analysis of nuclear reaction data. The
phenomenological optical potential with many adjustable
parameters can reproduce the experimental data quite well,
but cannot predict the unknown data with certainty. Thus, the
derivation of the optical potential from the more basic theory
is one of the most important problems in nuclear theory, which
is of both theoretical and practical interest.

As early as 1959, Bell and Squires [1,2] show that from the
view of the many-body theory the nucleon optical potential can
be identified with the mass operator of the one-particle Green
function. This identification makes it possible to utilize the
many-body theory technique to obtain a microscopic optical
potential (MOP) without free parameters. More specifically,
two different approaches have been formulated. One is the
“nuclear matter approach” [3–5] in which one starts from
the realistic nuclear force to calculate the mass operator via
the Brueckner-Hartree-Fock (BHF) approximation in nuclear
matter. From here the MOP for finite nuclei is obtained by
making a local density approximation (LDA). Thus, the MOP
for all target nuclei can be obtained in principle. The other
approach is the “nuclear structure approach” [6,7], in which
one only applies the two-body effective nuclear force via the
Hartree-Fock (HF) method, in conjunction with the random
phase approximation (RPA), to calculate the MOP for some
specific finite nuclei. Thus, the second approach involves
specific features of the nuclear structure of the target nucleus,
while the “nuclear matter approach” involves the effects of the
nuclear structure only in an average way (via the LDA).

Both approaches have their merits and limitations. Since
we are more interested in the global properties of the optical
potential, encouraged by the success of the nuclear matter
approach and the phenomenological Skyrme interactions,
we adopt a simpler and more economical way for MOP
calculation [8–14]. We calculate the mass operator of the
one-particle Green function only up to the second order in
nuclear matter by using the Skyrme interactions. The optical

potential for the finite nuclei is then obtained as usual by
LDA. Since the Skyrme interactions can be viewed as effective
G matrices in the Hartree-Fock calculations [15,16], we let
only the first-order mass operator M(1) represent the real
part of the optical potential and consider the imaginary part
of the second-order mass operator M(2) as the imaginary
part of the optical potential. The spin-orbit potential has also
been obtained approximately. While this approach is not as
basic as the MOP based on the realistic nuclear force, by
using the Skyrme interaction we can get very simple, in most
cases analytical, expressions for the optical potential, which is
physically more transparent and easier to apply. In addition, at
present there exist many sets of Skyrme interactions, most of
which are quite successful in the calculations of the average
ground state properties of nuclei. As is known, the different
Skyrme interactions give the same good agreement for HF
calculations but yield quite different results for excited states
[17]. Thus, from another point of view our work might provide
a good testing ground for different Skyrme interactions in
reproducing not only the nuclear ground state properties but
also the excited state properties of nucleus.

Moreover, much efforts [18–20] has been devoted to study-
ing the (off-shell) energy-dependent single-particle potential
[off-shell mass operator M(k,E) where E can differ from the
on-shell energy]. However, most of these studies are based on
the effective interactions which seem too simple and not very
realistic. On the other hand, the standard Brueckner-Hartree-
Fock approximation is very hard to carry out with enough nu-
merical accuracy and clear physical interpretation. In addition,
it only sums particle-particle ladders without the so-called cor-
relation term. Thus, it seems very desirable that one could use a
rather realistic effective nucleon-nucleon interaction as a basis
for deriving a single-particle potential which is both complex
and dynamic in an unified and consistent way. Extending our
studies to (off-shell) energy-dependence of the single-particle
potential [21–23], we calculate the off-shell imaginary part
W (k,E) of the second-order mass operator M(2) in nuclear
matter analytically with those Skyrme interactions which give
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TABLE I. The parameters of the conventional Skyrme force.

t0 MeV · fm3 t1 MeV · fm5 t2 MeV · fm5 t03 MeV · fm6 x0 W0 MeV · fm5

SII −1169.9 585.6 −27.1 9331.1 0.34 105
SIII −1128.75 395.0 −95.0 14000 0.45 120
SIV −1205.6 765.0 35.0 5000 0.05 150
SV −1248.29 970.56 107.22 0 −0.17 150
SVI −1101.81 271.67 −138.33 17000 0.583 115

“good” optical potential. The real part of M(2) is then obtained
with the help of the dispersion relation. From here the effective
mass, the single-particle widths, the spectral function and
the hole occupation numbers are calculated and subsequently
compared with available empirical values such that reasonable
agreement is obtained. We also extend our theoretical method
to calculate the temperature-dependent nucleon microscopic
optical potential [24–26] in which some interesting results are
uncovered.

In recent years, new experimental data (especially above
20 MeV) have been produced, that can be used to examine
our theoretical method. Having performed calculations and
comparisons with nearly every available Skyrme interactions,
our results show that there indeed exist some sets of Skyrme
interactions with which we can obtain MOP in agreement
with the experimental data. Moreover, the MOP we obtain is
isospin dependent. The nuclear reaction isospin effect includes
the difference of the reaction cross sections induced by neutron
and proton as well as the effect of the rich neutron degree of
the target nucleus. We define the ratio of the difference and
summation of the neutron and proton nonelastic cross sections
as the isospin effect value which is studied. The formulas of
the MOP on the basis of the effective Skyrme interactions are
also reviewed in this paper.

In Sec. II, the basic theory and formulas are introduced. In
Sec. III, the formulation of the nucleon microscopic optical
potential is presented. The calculated results and analysis are
given in Sec. IV. Finally, a summary is given in Sec. V.

II. BASIC THEORY AND FORMULAS

A. Skyrme interactions

At present there exist many sets of Skyrme interactions.
They can be summarized as follows.

1. The conventional Skyrme force

The two-body interactions of the conventional Skyrme
force are as follows [15]:

V12(�r) = t0(1 + x0P
σ )δ(

⇀

r ) + 1
2 t1(

⇀

k′2δ(
⇀

r ) + δ(
⇀

r )
⇀

k2)

+ t2
⇀

k′ · δ(
⇀

r )
⇀

k + iW0(⇀
σ 1 + ⇀

σ 2) · ⇀

k′ × δ(
⇀

r )
⇀

k, (2.1)

where

⇀

r = ⇀

r 1 − ⇀

r 2, (2.2)
⇀

k = 1

2i

(⇀∇1 − ⇀∇2
)
, acting on the right,

(2.3)
⇀

k′ = − 1

2i

(⇀∇1 − ⇀∇2
)
, acting on the left.

P σ is the spin exchange operator and ⇀
σ is the Pauli spin matrx.

The three-body interaction has the following form:

W123(
⇀

r 1,
⇀

r 2,
⇀

r 3) = t03δ(
⇀

r 1 − ⇀

r 2)δ(
⇀

r 2 − ⇀

r 3). (2.4)

In Eqs. (2.1) and (2.4) t0, t1, t2, t03, x0, and W0 are
the parameters of the Skyrme interaction. The conventional
Skyrme interaction parameters SII [15] and SIII∼SVI [27] are
listed in Table I.

2. The extended Skyrme force

The extended Skyrme force is only a two-body effective
interaction described by a density- and momentum-dependent
delta function. It can be written in a unified form as follows:

V12(
⇀

R,
⇀

r )

= t0(1 + x0P
σ )δ(

⇀

r ) + 1
6 t3(1 + x3P

σ )ρa(
⇀

R)δ(
⇀

r )

+ 1
2 t1(1 + x1P

σ ) (
⇀

k′2δ(
⇀

r ) + δ(
⇀

r )
⇀

k2)

+ 1
2 t4(1 + x4P

σ ) (
⇀

k′2ρ(
⇀

R)δ(
⇀

r ) + δ(
⇀

r )ρ(
⇀

R)
⇀

k2)

+ t2(1 + x2P
σ )

⇀

k′ · δ(
⇀

r )
⇀

k + t5(1 + x5P
σ )

⇀

k′

· ρ(
⇀

R)δ(
⇀

r )
⇀

k + iW0(⇀
σ 1 + ⇀

σ 2) · ⇀

k′ × δ(
⇀

r )
⇀

k, (2.5)

where

�R = 1
2 (

⇀

r 1 + ⇀

r 2). (2.6)

From Skyrme-Hartree-Fock theory [15] we can see that the
three-body interaction given by Eq. (2.4) is equivalent to a
two-body density-dependent interaction

V12 = 1
6 t03(1 + P σ )ρ( �R)δ(

⇀

r ). (2.7)

The extended Skyrme interaction parameters GS1∼GS6
[17], SG0I and SG0II [28], Ska and Skb [29], SKM [30], SGI,
and SGII [31], and SkMP [32] are listed in Table II.
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TABLE II. The parameters of the extended Skyrme force.a

t0 MeV
· fm3

t1 MeV
· fm5

t2 MeV
· fm5

t3 t4 MeV
· fm8

x0 x1 x2 x3 x4 W0 MeV
· fm5

α

GS1 −1268 887 −77.3 14485 −1853 0.15 0 0 1 1 105 1
GS2 −1177 670 −49.7 11054 −775 0.124 0 0 1 1 105 1
GS3 −1037 336 −7.3 5774 883 0.074 0 0 1 1 105 1
GS4 −1242 760 −146.2 19362 −2157 0.206 0 0 1 1 105 1
GS5 −1152 543 −118.6 15989 −1079 0.182 0 0 1 1 105 1
GS6 −1012 209 −76.3 10619 579 0.139 0 0 1 1 105 1
SGOI −1089 558.8 −83.7 8272 0 0.412 0 0 0 0 130 1
SGOII −2248 558.8 −83.7 11224 0 0.715 0 0 0 0 130 1/6
Ska −1602.78 570.88 −67.70 8000 0 −0.02 0 0 −0.286 0 125 1/3
Skb −1602.78 570.88 −67.70 8000 0 −0.165 0 0 −0.286 0 125 1/3
SKM −2645 385 −120 15595 0 0.09 0 0 0 0 130 1/6
SGI −1603 515.9 84.5 8000 0 −0.02 −0.5 −1.731 0.1381 0 115 1/3
SGII −2645 340 −41.9 15595 0 0.09 −0.0588 1.425 0.06044 0 105 1/6
SkMP −2372.24 503.623 57.2783 12585.3 0 −0.157563 −0.402886 −2.95571 −0.267933 0 160 1/6

at5(MeV · fm8) = 0, x5 = 0.

B. Mass operator

The Hamiltonian simultaneously composed of the two-
body and three-body interactions can be written as

H = H0 + H1, (2.8)

where

H0 =
∑

i

(ti + Ui), (2.9)

H1 = 1

2!

∑
i �=j

Vij + 1

3!

∑
i �=j �=k

Wijk −
∑

i

Ui . (2.10)

Here Ho is the single-particle Hamiltonian, H1 is the
residual interaction, and Ui is the mean field of the single-
particle.

Let the single-particle Green function be written as
Gαβ(t1 − t2) and expand it into the perturbation series. The
Fourier transformation for the one-particle Green function is
defined as

Gαβ(ω) =
∫ ∞

−∞
dt e

i
h̄
ωtGαβ(t). (2.11)

Next, applying the Fourier transformation to Gαβ(t1 − t2)
based on Eq. (2.11), we obtain

Gαβ(ω) = δαβG(0)
α (ω) + G

(1)
αβ(ω) + G

(2)
αβ(ω) + · · · (2.12)

which satisfies the Dyson equation

Gαβ(ω) = δαβG(0)
α (ω) + G

(0)
αβ (ω)

×
∑

γ

[Uαγ − Mαγ (ω)]Gγβ(ω), (2.13)

where Uαγ is the mean field, Mαγ (ω) is the mass operator, and

Mαγ (ω) = M (1)
αγ (ω) + M (2)

αγ (ω) + · · · (2.14)

The mass operator Mαα(E) can be identified with the optical
model potential for the scattering process with the energy
of E.

Figure 1 shows the first order Feynman diagrams of the
one-particle Green functions. The dashed line in Fig. 1(a)
represents the mean field. Figures 1(b) and 1(c) correspond
to the contributions by two-body and tree-body interactions,
respectively. Now, the HF mean field Uαα is expressed as

Uαα = M (1)
αα =

∑
ρ

Vαρ,αρnρ + 1

2

∑
ρδ

Wαρδ,αρδnρnδ, (2.15)

where

nρ =
{

1, below the Fermi surface

0, above the Fermi surface
. (2.16)

On the right-hand side of Eq. (2.15) the first term comes
from the contribution of the two-body interactions and the
second term is that of the three-body interactions. Their matrix
elements are, respectively,

Vαρ,αρ = 〈αρ|V |αρ〉A, (2.17)

Wαρδ,αρδ = 〈αρδ|W |αρδ〉A, (2.18)

where A denotes the antisymmetrization.
The 15 second order Feynman diagrams of the one-particle

Green functions in Fig. 2 can be offset with the mean field
chosen by Eq. (2.15). The second order mass operator obtained
by seven second order Feynman diagrams in Fig. 3 are as

(a) (b) (c)

FIG. 1. First order Feynman diagrams of the one-particle Green
functions.
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FIG. 2. Second order Feynman diagrams of the one-particle
Green functions which can be offset by the mean field.

follows:

M (2)
αα (ω) =

∑
λµv

(1 − nλ)(1 − nµ)nv

ω + εv − ελ − εµ + iε
Aαλµvα

+
∑

λµvξζ

(1 − nλ)(1 − nµ)(1 − nξ )nvnζ

ω + εv + εζ − ελ − εµ − εξ + iε
Bαλµvξζα

+
∑
µvξζ

(1 − nµ)(1 − nξ )nvnζ

εv + εζ − εµ − εξ + iε
Cαµvξζα, (2.19)

where

Aαλµvα = 1

2
Vαv,λµVλµ,αv + 1

2

[
Vαv,λµ

(∑
ρ

Wλµρ,αvρnρ

)

+
(∑

ρ

Wαvρ,λµρnρ

)
Vλµ,αv

]

+ 1

2

(∑
ρ

Wαvρ,λµρnρ

)(∑
δ

Wλµδ,αvδnδ

)
,

(2.20)

Bαλµvξζα = 1

12
Wαvζ,λµξWλµξ,αvζ , (2.21)

Cαµvξζα = 1

4
Wαvζ,αµξ

[
Vµξ,vζ +

(∑
ρ

Wµξρ,vζρnρ

)]
.

(2.22)

In Eq. (2.19) the first term is the contribution of the diagrams
with 2p-1h in the intermediate processes corresponding to the
first four diagrams in Fig. 3, the second term is that of the fifth
diagram with 3p-2h in the intermediate process, and the third
term is that of the sixth and seventh diagrams with 2p-2h in the
intermediate process. There is no time propagation in the sixth

FIG. 3. Second order Feynman diagrams of the one-particle
Green functions which cannot be offset by the mean field.

and seventh diagrams of Fig. 3. If only two-body interactions
exist, then there is only the first diagram in Fig. 3.

III. FORMULATION OF THE NUCLEON MICROSCOPIC
OPTICAL POTENTIAL

In order to simplify the calculation, we use the nuclear
matter approach. In the Fermi gas model for symmetric nuclear
matter, which has equal numbers of neutrons and protons,
the density ρ of the nuclear matter is related to the Fermi
momentum kF by

ρ = 2

3π2
k3
F . (3.1)

The symmetric nuclear matter is the special case of the asym-
metric nuclear matter. For asymmetric nuclear matter where
the neutrons and protons have different Fermi momentum kn

and kp, the neutron density ρn and proton density ρp are
expressed by

ρτ = 1

3π2
k3
τ , τ = n or p. (3.2)

Defining the asymmetric parameter α0 as

α0 = (ρn − ρp)/ρ, ρ = ρn + ρp (3.3)

Eq. (3.2) can be written as

ρn = 1
2 (1 + α0)ρ, ρp = 1

2 (1 − α0)ρ (3.4)

and

kn = (1 + α0)1/3kF , kp = (1 − α0)1/3kF . (3.5)
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The Coulomb potential in nuclear matter is expressed as

VC = 3zZe2

2Rc

. (3.6)

In the nuclear matter the wave function of nucleon α is just
the plane wave function

ψα(
⇀

r ) = 1√
�

ei�kα ·⇀r xσα
xτα

, (3.7)

where χσα
and χτα

are the spin and isospin wave functions,
respectively, � is the volume, spin σα = 1

2 or − 1
2 and isospin

τα = 1
2 (for neutron) or − 1

2 (for proton).
Our purpose is to investigate the MOP for even-even nuclei

with the asymmetric nuclear matter approximation.
The real part of the nucleon MOP is obtained with the first

order mass operator based on Eq. (2.15)

Vτα
= M (1)

αα =
∑
ρ � F

Vαρ,αρ + 1

2

∑
ρ,δ � F

Wαρδ,αρδ. (3.8)

The summation conditions �F and >F represent below and
above Fermi surfaces, respectively. The second order diagrams
are the lowest order diagrams to contribute to the imaginary
part of the MOP. That means

Wτα
= Im M (2)

αα . (3.9)

The formula for the principle value integral is expressed as

1

x ± iε
= �

1

x
∓ iπδ(x). (3.10)

Based on the above formula we can see that the sixth and
seventh diagrams in Fig. 3 have no contribution to the
imaginary part of MOP since εv + εζ − εµ − εξ < 0 in any
case. Then from Eq. (2.19) we have

Wτα
= WA + WB, (3.11)

where

WA = −π
∑
λ,µ>F

v � F

Aαλµvαδ(εα + εv − ελ − εµ), (3.12)

WB = −π
∑

λ,µ, ξ > F

v, ζ � F

Bαλµvξζαδ(εα + εv + εζ − ελ − εµ − εξ ),

(3.13)

εα = ω is the incident particle energy. From Eqs. (2.20) and
(2.21) Aαλµvα and Bαλµvξζα are obtained as follows:

Aαλµvα = 1

2
Vαv,λµVλµ,αv + 1

2
Vαv,λµ

⎛
⎝∑

ρ � F

Wλµρ,αvρ

⎞
⎠

+ 1

2

⎛
⎝∑

ρ � F

Wαvρ,λµρ

⎞
⎠Vλµ,αv

+ 1

2

⎛
⎝∑

ρ � F

Wαvρ,λµρ

⎞
⎠
⎛
⎝∑

δ � F

Wλµδ,αvδ

⎞
⎠, (3.14)

Bαλµvξζα = 1

12
Wαvζ,λµξWλµξ,αvζ . (3.15)

Based on Eqs. (2.17) and (2.18) the two-body and three-body
interaction matrix elements read

Vαv,λµ = 〈ψα(
⇀

r 1)ψv(
⇀

r 2)|V12(
⇀

R,
⇀

r )|(ψλ(
⇀

r 1)ψµ(
⇀

r 2)

−ψµ(
⇀

r 1)ψλ(
⇀

r 2))〉, (3.16)

Wαvζ,λµξ = 〈ψα(
⇀

r 1)ψv(
⇀

r 2)ψζ (
⇀

r 3)|W123

× (
⇀

r 1,
⇀

r 2,
⇀

r 3)

∣∣∣∣∑
p

(−)pψλ(
⇀

r 1)ψµ(
⇀

r 2)ψξ (
⇀

r 3)

〉
,

(3.17)

where |∑p · · ·〉 means antisymmetrization. Note the state
number of phase space in nuclear matter is

∑
τσ

�
∫

d
⇀

p

(2πh̄)3 =
∑
τσ

�
∫

d
⇀

k

(2π )3 . (3.18)

The summations to spin and isispin are included in the above
expression. Putting Eqs. (2.5), (2.4), (3.7) into Eqs. (3.16),
(3.17), (3.8) and using the following formulas:

1

(2π )3

∫
ei

⇀
k ·⇀r d

⇀

r = δ(
⇀

k), (3.19)

1

�

∫
d

⇀

r = 1, ρτα
= Nτα

/
�, (3.20)

⇀
σ =

∑
p

(−)pσp
⇀

e−p =
∑

p

σp
⇀
e∗
p , (3.21)

Jµ|jm〉 =
√

j (j + 1)Cj m+µ

jm 1µ |j m + µ〉,
(3.22)

σpxµ =
√

3C
1
2 µ+p
1
2 µ 1p

xµ+p,

where Nτα
is the number of nucleon τα below Fermi surface,

the real part of the nucleon MOP for even-even nucleus are
obtained as follows:

Vτα
= t0

[(
1 + x0

2

)
ρ −

(
x0 + 1

2

)
ρτα

]

+ 1

6
t3ρ

α

[(
1 + x3

2

)
ρ −

(
x3 + 1

2

)
ρτα

]

+ 1

4
t03
(
ρ2 − ρ2

τα

)
+ 1

4

{
t1

[(
1 + x1

2

)
ρ −

(
x1 + 1

2

)
ρτα

]

+ t4ρ

[(
1 + x4

2

)
ρ −

(
x4 + 1

2

)
ρτα

]

+ t2

[(
1 + x2

2

)
ρ +

(
x2 + 1

2

)
ρτα

]

+ t5ρ

[(
1 + x5

2

)
ρ +

(
x5 + 1

2

)
ρτα

]}
k2
α

+ 1

40π2

{
[t1(1 − x1) + t4ρ(1 − x4) + 3t2(1 + x2)

+ 3t5ρ(1 + x5)]k5
τα

+ [t1(2 + x1) + t4ρ(2 + x4)

+ t2(2 + x2) + t5ρ(2 + x5)]k5
−τα

}
, (3.23)

where kτα
is the Fermi momentum of the nucleon τα . From the

above expression we can see that the W0 term of Skyrme force
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FIG. 4. Radial dependence of the neutron MOP for 56Fe at
energies 10–90 MeV. The curves are the theoretical values computed
with GS2. (a) The real parts. (b) The imaginary parts.

has no contribution to the real part of nucleon MOP. Then the
nucleon effective mass m∗ can be obtained as follows:

m∗
τα

mτα

=
{

1 + mτα

2h̄2

{
t1

[(
1 + x1

2

)
ρ −

(
x1 + 1

2

)
ρτα

]

+ t4ρ

[(
1 + x4

2

)
ρ −

(
x4 + 1

2

)
ρτα

]

+ t2

[(
1 + x2

2

)
ρ +

(
x2 + 1

2

)
ρτα

]

+ t5ρ

[(
1 + x5

2

)
ρ +

(
x5 + 1

2

)
ρτα

]}}−1

,

(3.24)

where k2
α is given by

k2
α = 2mτα

h̄2

(
M

M + mτα

EL − Vτα
− VC

)
(3.25)

and mτα
and M are the mass of the nucleon τα and the target

nucleus, respectively. EL is the energy of the incident nucleon
in the laboratory frame. VC is the Coulomb potential. Then we
have

Vτα
= m∗

τα

mτα

{
t0

[(
1 + x0

2

)
ρ −

(
x0 + 1

2

)
ρτα

]

+ t3

6
ρα

[(
1 + x3

2

)
ρ −

(
x3 + 1

2

)
ρτα

]
+ t03

4

(
ρ2 − ρ2

τα

)
+ 1

4

{
t1

[(
1 + x1

2

)
ρ −

(
x1 + 1

2

)
ρτα

]

+ t4ρ

[(
1 + x4

2

)
ρ −

(
x4 + 1

2

)
ρτα

]

FIG. 5. Radial dependence of the proton MOP for 56Fe at energies
10–90 MeV. The curves are the theoretical values computed with GS2.
(a) The real parts. (b) The imaginary parts.

+ t2

[(
1 + x2

2

)
ρ +

(
x2 + 1

2

)
ρτα

]

+ t5ρ

[(
1 + x5

2

)
ρ +

(
x5 + 1

2

)
ρτα

]}

× 2mτα

h̄2

(
M

M + mτα

EL − VC

)

+ 1

40π2
{[t1(1 − x1) + t4ρ(1 − x4)

+ 3t2(1 + x2) + 3t5ρ(1 + x5)]k5
τα

+ [t1(2 + x1) + t4ρ(2 + x4) + t2(2 + x2)

+ t5ρ(2 + x5)]k5
−τα

}
. (3.26)

This expression shows that the real part of the nucleon MOP
has a linear relation with EL and is isospin dependent.

By using Eq. (3.19) the following relations can be proved:

(2π )3

�2
δ(

⇀

kλ + ⇀

kµ − ⇀

kα − ⇀

kv)
(2π )3

�2
δ(

⇀

kα + ⇀

kv − ⇀

kλ − ⇀

kµ)

= (2π )3

�3
δ(

⇀

kα + ⇀

kv − ⇀

kλ − ⇀

kµ), (3.27)

(2π )3

�3
δ(

⇀

kλ + ⇀

kµ + ⇀

kξ − ⇀

kα − ⇀

kv − ⇀

kζ )

× (2π )3

�3
δ(

⇀

kα + ⇀

kv + ⇀

kζ − ⇀

kλ − ⇀

kµ − ⇀

kξ )

= (2π )3

�5
δ(

⇀

kα + ⇀

kv + ⇀

kζ − ⇀

kλ − ⇀

kµ − ⇀

kξ ). (3.28)
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FIG. 6. Radial dependence of the real parts of the spin-orbit
potential for 56Fe. The curves are the theoretical values computed
with W0 = 105 and 125. (a) Neutron. (b) Proton.

Putting Eqs. (2.5), (2.4), and (3.7) into Eqs. (3.11)–(3.17) and
using the following formulas:

⇀

A =
∑

p

(−)pAp
⇀

e−p =
∑

p

Ap
⇀
e∗
p ,

⇀
e∗
p · ⇀

ep′ = δpp′ , (3.29)

Vτα
= V0 + bk2

α, εα = h̄2k2
α

2m
+ Vτα

= h̄2k2
α

2m∗
τα

+ V0, (3.30)

the imaginary part of the nucleon MOP for the even-even
nucleus are obtained as follows:

WA = − π

(2π )6

7∑
i=1

Wi, (3.31)

WB = − π

(2π )12
WT , (3.32)

FIG. 7. Calculated neutron total cross sections compared with
experimental data [36–38] for n + 27Al reaction. The theoretical
values computed with GS2 are shown as the solid curve, those
computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.

FIG. 8. Calculated neutron nonelastic cross sections compared
with experimental data [39–45] for n + 27Al reaction. The theoretical
values computed with GS2 are shown as the solid curve, those
computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.

where

W1 = [2(1 + x0 + x2
0

)
t2
0 + 1

18

(
1 + x3 + x2

3

)
t2
3 ρ2α

+ 1
3 (2 + x0 + x3 + 2x0x3)t0t3ρα

+ (2 + x0)t0t03ρ + 1
6 (2 + x3)t0t03ρ

1+α + 1
2 t2

03ρ
2
]

× [I1(τα, τα) + I1(τα,−τα)]

− [(1 + 4x0 + x2
0

)
t2
0 + 1

36

(
1 + 4x3 + x2

3

)
t2
3 ρ2α

+ 1
3 (1 + 2x0 + 2x3 + x0x3)t0t3ρα + (1 + 2x0)t0t03ρ

+ 1
6 (1 + 2x3)t3t03ρ

1+α + 1
4 t2

03ρ
2
]
I1(τα, τα), (3.33)

W2 = 1
2

[
(2 + x0 + x1 + 2x0x1)t0t1

+ (2 + x0 + x4 + 2x0x4)t0t4ρ

+ 1
6 (2 + x3 + x1 + 2x3x1)t3t1ρα

+ 1
6 (2 + x3 + x4 + 2x3x4)t3t4ρ1+α

+ 1
2 (2 + x1)t1t03ρ + 1

2 (2 + x4)t4t03ρ
2
]

× [I2(τα, τα) + I2(τα,−τα)]

− 1
2

[
(1 + 2x0 + 2x1 + x0x1)t0t1

+ (1 + 2x0 + 2x4 + x0x4)t0t4ρ

+ 1
6 (1 + 2x3 + 2x1 + x3x1)t3t1ρα

+ 1
6 (1 + 2x3 + 2x4 + x3x4)t3t4ρ1+α

+ 1
2 (1 + 2x1)t03t1ρ

+ 1
2 (1 + 2x4)t03t4ρ

2
]
I2(τα, τα), (3.34)

W3 = 1
8

[(
1 + x1 + x2

1

)
t2
1 + (1 + x4 + x2

4

)
t2
4 ρ2

+ (2 + x1 + x4 + 2x1x4)t1t4ρ
][

I3(τα, τα)

+ I3(τα,−τα)
]− 1

16

[(
1 + 4x1 + x2

1

)
t2
1

+ (1 + 4x4 + x2
4

)
t2
4 ρ2 + 2(1 + 2x1 + 2x4

+ x1x4)t1t4ρ
]
I3(τα, τα), (3.35)

W4 = 1
2

[
(2 + x0 + x2 + 2x0x2)t0t2

+ (2 + x0 + x5 + 2x0x5)t0t5ρ

+ 1
6 (2 + x3 + x2 + 2x3x2)t3t2ρα

+ 1
6 (2 + x3 + x5 + 2x3x5)t3t5ρ1+α

+ 1
2 (2 + x2)t03t2ρ + 1

2 (2 + x5)t03t5ρ
2
]
I4(τα,−τα),

(3.36)
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FIG. 9. Calculated neutron elastic scattering angular distributions (solid line) compared with experimental data [46–57] for n + 27Al
reaction. The results are offset by factors of 10.

W5 = 1
8

[
(2 + x1 + x2 + 2x1x2)t1t2

+ (2 + x1 + x5 + 2x1x5)t1t5ρ

+ (2 + x4 + x2 + 2x4x2)t4t2ρ

+ (2 + x4 + x5 + 2x4x5)t4t5ρ
2]I5(τα,−τα), (3.37)

W6 = 1
8

[(
1 + x2 + x2

2

)
t2
2 + (1 + x5 + x2

5

)
t2
5 ρ2

+ (2 + x2 + x5 + 2x2x5)t2t5ρ
]

× [I6(τα, τα) + I6(τα,−τα)] + 1
16

[(
1 + 4x2 + x2

2

)
t2
2

+ (1 + 4x5 + x2
5

)
t2
5 ρ2 + 2(1 + 2x2

+ 2x5 + x2x5)t2t5ρ
]
I6(τα, τα), (3.38)

W7 = 1
4W 2

0 [2I7(τα, τα) + I7(τα,−τα)], (3.39)

WT = t2
03[2IB(τα, τα,−τα) + IB(τα,−τα,−τα)], (3.40)

Ii(τα, τν) ≡ Ii(τατντατν), i = 1 ∼ 7, (3.41)

IB(τα, τν, τζ ) ≡ IB(τατντζ τατντζ ) (3.42)

Ii(τατντατν) =
∫

d
⇀

kνd
⇀

kλd
⇀

kµfi(
⇀

kαν,
⇀

kλµ)

× δ(
⇀

kα + ⇀

kν − ⇀

kλ − ⇀

kµ)

× δ(εα + εν − ελ − εµ), i = 1 ∼ 7,

(3.43)

f1 = 1, f2 = 1
2

(
k2
αν + k2

λµ

)
,

f3 = 1
4

(
k2
αν + k2

λµ

)2
, f4 = ⇀

kαν · ⇀

kλµ,

f5 = 1
2

(
k2
αν + k2

λµ

)
(

⇀

kαν · ⇀

kλµ),

(3.44)
f6 = 1

2 (
⇀

kαν · ⇀

kλµ)2, f7 = (
⇀

kαν × ⇀

kλµ)2,
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⇀

kαν ≡ ⇀

kα − ⇀

kν,
⇀

kλµ ≡ ⇀

kλ − ⇀

kµ

IB(τατντζ τατντζ ) =
∫

d
⇀

kνd
⇀

kζ d
⇀

kλd
⇀

kµd
⇀

kξ

× δ(
⇀

kα + ⇀

kν + ⇀

kζ − ⇀

kλ − ⇀

kµ − ⇀

kξ )

× δ(εα + εν + εζ − ελ − εµ − εξ ).

(3.45)

The integral IB is for three-body force only. In the above
integrals the condition ν, ς � F and α, λ, µ, ξ > F must be
satisfied. h̄

⇀

kα is the incident nucleon momentum. For asym-
metric nuclear matter the integrals (3.43) and (3.45) are
provided in Appendixes A and B, respectively.

The simplest way to obtain MOP for a finite nucleus is to
use the LDA [33]. We assume that the densities of the neutrons
and protons in a spherical nucleus have the same geometrical
distributions and are expressed by Negele’s empirical formula

ρτ (r) = ρ0τ

1 + exp[(r − c)/a]
, τ = n or p, (3.46)

where

ρ0τ = 3Nτ

4πc3(1 + π2a2/c2)
,

Nτ =
{

N for τ = n

Z for τ = p
, (3.47)

c = (0.978 + 0.0206A1/3)A1/3, a = 0.54. (3.48)

In this case the asymmetric parameter can be deduced as

α0 = (N − Z)/A. (3.49)

In general the optical potential has the following form:

Uτα
(r) = Vτα

(r) + iWτα
(r)

+ [V τα

so (r) + iWτα

so (r)
]
(�σ · �l). (3.50)

However, we only have Vτα
(r) and Wτα

(r) without spin-orbit
parts V τα

so (r) and Wτα
so (r) which, as is known, vanish in nuclear

matter. In order to get the spin-orbit term, we start from the HF
calculation for the finite nuclei. In the HF calculation of the
spherical nuclei, for the extended Skyrme force, the spin-orbit
term of the real part is expressed as [17]

V τα

so (r) = 1

2
W0

1

r

d

dr
[ρ(r) + ρτα

(r)]

− 1

8r
[t1x1 + t2x2 + t4x4ρ(r) + t5x5ρ(r)]J (r)

+ 1

8r
[t1 − t2 + t4ρ(r) − t5ρ(r)]Jτα

(r), (3.51)

where Jτα
(r) is the spin density. The numerical result

[15,34] show that the contribution of the term produced by
the central force involving Jτα

(r) is much smaller than the
first term directly arising from the two-body spin-orbit force
W0. Thus we only keep the first term and Eq. (3.51) can be
reduced to

V τα

so (r) = 1

2
W0

1

r

d

dr
[ρ(r) + ρτα

(r)], (3.52)

where ρ(r) and ρτα
(r) are described by Negele’s empirical

formula (3.46) as before. Then Eq. (3.52) is an analytical
expression.

The imaginary part of the spin-orbit potential Wτα
so (r) below

100 MeV is usually very small, which is often omitted. Its
contribution to MOP is also omitted here.

Above, the nucleon MOP formulas are derived for the even-
even nucleus. We know that in the nuclear matter approach the
average effect of the nucleus is studied. For heavier nuclei,
the difference between the nucleus with one more neutron
or one more proton than the even-even nucleus is small and
the difference between the nucleus with the spin up or spin
down neutron (or proton) is also small, so we could take their
average value. Therefore, the MOP obtained above can be
applied to the odd-even nucleus approximately. Similarly, the
difference between the nucleus with the unpaired neutron or
unpaired proton is small, so we could take their average value.
Therefore, the MOP obtained above can be applied to the
odd-odd nucleus approximately too. In principle the MOP
obtained above can be applied to all nuclei which are not too
light and the real N , Z, A of the target nucleus should be used
in calculations.

IV. RESULTS AND ANALYSES

Firstly, we use the conventional Skyrme forces SII-SVI to
calculate the MOP. In certain energy regions the calculated
MOP are in reasonable agreement with the phenomenological
optical potential (POP) [35] and the MOP based on the BHF
approximation [3]. Comparing the results calculated with five
sets of parameters SII–SVI, we have found that the real part
of the MOP calculated with SIII is the best, but the imaginary
parts of such are poor, because its energy dependence rises
too steeply. Considering both the real and the imaginary parts
as a whole it seems that the MOP with SII is the best one.
In addition, there also appear some shortcomings in the MOP
calculated with the conventional Skyrme forces. For example,
the surface region of the real parts in the low energy region
has the unnecessary peak; the depths of the real parts are
smaller; energy variation of the imaginary parts is too fast, etc.
We come to use the extended Skyrme forces (t03 = 0) to

FIG. 10. Calculated reaction cross sections compared with ex-
perimental data [58–63] for p + 27Al reaction. The theoretical values
computed with GS2 are shown as the solid curve, those computed
with Ska are shown as the dashed curve, and those computed with
SII are shown as the dot-dashed curve.
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FIG. 11. Calculated elastic scattering angular distributions
(solid line) compared with experimental data [64–70] for p + 27Al
reaction. The results are offset by factors of 10.

FIG. 12. Calculated neutron total cross sections compared with
experimental data [71–73] for n + 56Fe reaction. The theoretical
values computed with GS2 are shown as the solid curve, those
computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.

calculate MOP to test whether this kind of Skyrme force
can improve the results. The calculations show that with
the extended Skyrme forces many shortcomings due to the
conventional Skyrme forces can indeed be overcome, and
the agreements with the empirical data have obviously been
improved. The results by GS1–GS3 are all quite good, among
which the GS2 is the best one. We also show that the calculated
results by Ska and Skb are better. In the following presentation,
we just show the comparison of the calculation results of cross
sections by GS2, Ska, and SII and the angular distributions by
GS2 with experimental data for targets 27Al, 56Fe, and 208Pb.

In Figs. 4 and 5 the real and imaginary parts of the
neutron and proton MOP for 56Fe in the energy range of E =
10–90 MeV computed with GS2 are illustrated. The imaginary
part of the MOP changes from the dominant surface absorption
into the volume absorption as energy increase as expected from
the POP. From the figures above we can also see that the real
parts of proton MOP are deeper and the imaginary parts of the
proton MOP are shallower than the neutron MOP, especially
for low energy and at the surface region of the target nucleus. In
other words, the absorption of the protons is less than neutrons.

Figure 6 shows the real parts of the neutron and proton
spine-orbit potential for 56Fe calculated by Eq. (3.52) with

FIG. 13. Calculated neutron nonelastic cross sections compared
with experimental data [45,74–76] for n + 56Fe reaction. The the-
oretical values computed with GS2 are shown as the solid curve,
those computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.
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FIG. 14. Calculated elastic scattering angular distributions
(solid line) compared with experimental data [77–79] for n + 56Fe
reaction. The results are offset by factors of 10.

W0 = 105 and W0 = 125. Their shape and value are reason-
able.

The comparisons of calculated results of neutron total and
nonelastic cross sections with experimental data for 27Al are
given in Figs. 7 and 8. The calculated neutron total cross

sections computed with GS2 are in good agreement with the
experimental data [36–38] except those for the incident energy
from 20 to 40 MeV where the present results are lower than
experimental data. The calculated neutron total cross section
computed with Ska is in good agreement with the experimental
data for the incident energy below 55 MeV, where for higher
energies, the magnitudes are larger than the experimental data.
As shown in Fig. 8, the shape of calculated neutron nonelastic
cross sections computed with GS2, SII and Ska are similar
to experimental data [39–45], while the calculated results by
GS2 and SII are better in fitting the experimental data for the
incident energy below 20 MeV. And the calculated result by
GS2 agrees with the trend of experimental data even more.

The calculated neutron elastic scattering angular distribu-
tions for 27Al at incident energies from 1.5 to 96.0 MeV
are compared with experimental data [46–57] in Fig. 9, the
theoretical calculated results are in reasonable agreement with
experimental data.

The comparison of calculated results of proton reaction
cross sections with experimental data [58–63] for 27Al is
given in Fig. 10. The shape of calculated proton reaction
cross sections computed with GS2, SII, and Ska are similar
to experimental data, while the values for the incident energy
below 10 MeV are in reasonable agreement with experimental
data. For the higher energies, the calculated values are larger
than the experimental data.

The calculated proton elastic scattering angular distribu-
tions for 27Al at incident energies from 2.004 to 95.7 MeV
are compared with experimental data [64–70] in Fig. 11, the
theoretical calculated results are in reasonable agreement with
experimental data.

The comparisons of calculated results of neutron total and
nonelastic cross sections for 56Fe with experimental data are
given in Figs. 12 and 13. As shown in Fig. 12, the calculated
neutron total cross section computed with Ska is in reasonable
agreement with the experimental data for natural iron taken
from Ref. [73], while the calculated result computed with
GS2 is in good agreement with the experimental data for
the nuclide of 56Fe taken from Refs. [71,72]. As shown in
Fig. 13, the calculated nonelastic cross sections by GS2 is in
reasonable agreement with the experimental data [45,74–76]

FIG. 15. Calculated proton reaction cross sections compared with
experimental data [58,80–82] for p + 56Fe reaction. The theoretical
values computed with GS2 are shown as the solid curve, those
computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.
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FIG. 16. Calculated elastic scattering angular distributions
(solid line) compared with experimental data [69,83–90] for p + 56Fe
reaction. The results are offset by factors of 10.

for the incident energy below 55 MeV, where for the
higher energies, the calculated magnitudes are larger than
the experimental data. And the calculated result by GS2 is
better in fitting the experimental data than those by Ska and
SII.

FIG. 17. Calculated neutron total cross sections compared with
experimental data [36,91] for n + 208Pb reaction. The theoretical
values computed with GS2 are shown as the solid curve, those
computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.

The calculated neutron elastic scattering angular distribu-
tions for 56Fe at incident energies from 9.41 to 75.0 MeV
are compared with experimental data [77–79] in Fig. 14, the
theoretical calculated results are in reasonable agreement with
experimental data.

The comparison of calculated results of proton reaction
cross sections with experimental data [58,80–82] for 56Fe
is given in Fig. 15. The trend of the calculated results by
GS2, SII, and Ska are similar to experimental data, but only
the calculated values by Ska for the incident energy below
25 MeV are in reasonable agreement with experimental data.

The calculated proton elastic scattering angular distribu-
tions for 56Fe at incident energies from 4.08 to 65.0 MeV
are compared with experimental data [69,83–90] in Fig. 16,
the theoretical calculated results are in good agreement with
experimental data.

The comparisons of calculated results of neutron total and
nonelastic cross sections for 208Pb with experimental data are
given in Figs. 17 and 18. As shown in Fig. 17, the shapes of
calculated neutron total cross section computed with GS2, Ska,
and SII are similar to those of the experimental data [36,91],
but the values are inconsistent with the experimental data. In
Fig. 18, it can be seen that the calculated nonelastic cross sec-
tions by GS2 is in reasonable agreement with the experimental

FIG. 18. Calculated neutron nonelastic cross sections compared
with experimental data [42,74,92] for n + 208Pb reaction. The
theoretical values computed with GS2 are shown as the solid curve,
those computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.
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FIG. 19. Calculated elastic scattering angular distributions
(solid line) compared with experimental data [54,93–99] for n +
208Pb reaction. The results are offset by factors of 10.

FIG. 20. Calculated proton reaction cross sections compared
with experimental data [82,100–104] for p + 208Pb reaction. The
theoretical values computed with GS2 are shown as the solid curve,
those computed with Ska are shown as the dashed curve, and those
computed with SII are shown as the dot-dashed curve.

data [42,74,92], and the calculated result by GS2 is better in
fitting the experimental data than those by Ska and SII.

The calculated neutron elastic scattering angular distribu-
tions for 208Pb at incident energies from 1.8 to 65.0 MeV
are compared with experimental data [54,93–99] in Fig. 19,
the theoretical calculated results are in good agreement with
experimental data.

The comparison of calculated results of proton reaction
cross sections for 208Pb with experimental data [82,100–104]
is given in Fig. 20. The shapes of calculated results by
GS2, Ska, and SII are similar to the experimental data. The
calculated values by SII are in reasonable agreement with the
experimental data for the incident energy higher than 50 MeV,
where for the lower energies, the magnitudes of calculated
results by GS2, Ska, and SII are all smaller than those of
experimental data.

FIG. 21. Calculated elastic scattering angular distributions
(solid line) compared with experimental data [68,85,105–107] for
p + 208Pb reaction. The results are offset by factors of 10.
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FIG. 22. The calculated isospin effect values for different target
nucleus by MOP below 120 MeV.

The calculated proton elastic scattering angular distribu-
tions for 208Pb at incident energies from 16.0 to 80.0 MeV
are compared with experimental data [68,85,105–107] in
Fig. 21. For the energies below 40 MeV, the theoretical calcu-
lated results are in good agreement with experimental data for
the angles less than 70 degrees, while for the greater angles,
the calculated values are inconsistent with the experimental
data. For the higher energy, the theoretical calculated results
are in reasonable agreement with experimental data.

We define the isospin effect value as

�τσnon = σnon,n − σnon,p

σnon,n + σnon,p

. (4.1)

The target nuclei with different asymmetric parameter α0
given by Eq. (3.49) are chosen. They are 208Pb (α0 = 0.2115),
169Tm(α0 = 0.1834), 127I(α0 = 0.1654), 90Zr (α0 = 0.1111),
56Fe (α0 = 0.0714), and 27Al (α0 = 0.0370). Their neutron
and proton nonelastic cross sections are calculated by MOP
for incident energies below 120 MeV. The calculated isospin
effect values are shown in Fig. 22. For very low energy σnon,p

equals zero, then �τσnon tend to 1. The calculated results show
that the isopin effect value decreases as the incident energy
increases and increases as the asymmetric parameter α0 of
the target nucleus increases. The isopin effect value above
100 MeV even for 208Pb(α0 = 0.2115) is less than 0.05, which
means that in the high energy region the isospin effect is very
small. These results are reasonable.

V. SUMMARY

In this paper we have presented the progress of our
effort on the microscopic theory of the nucleon-nucleus
optical potential with Skyrme interactions and its applications.
With certain versions of the Skyrme interactions we have
obtained the microscopic optical potential for finite nuclei
(via the local density approximation) which shows that for
certain energy regions the potential depth, shape, relative
contributions of the surface and volume parts, as well as
the energy dependences are in reasonable agreement with
the phenomenological optical potentials and those based on
realistic nucleon-nucleon interaction. The calculated results,
such as the total and nonelastic cross sections and angular
distributions of elastic scattering, are in good agreement with

the experimental data and, to a certain extent, comparable with
the phenomenological optical potentials. The comparisons
among the different versions of Skyrme interactions show that
all the real parts (only HF term included) with various Skyrme
interactions are close to each other, while the imaginary
parts with those differ very much. Considering both the real
and imaginary parts as a whole among all kinds of Skyrme
interactions the GS2 is the best, and the Ska and Skb are good.
We also define the ratio of the difference and summation of
the neutron and proton nonelastic cross sections as the isospin
effect value. The calculated results show that the isopin effect
value decreases as the incident energy increases and increases
as the asymmetric parameter α0 = (N -Z)/A of the target
nucleus increases.
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APPENDIX A: INTEGRALS OF THREE MOMENTUM
VECTORS FOR ASYMMETRIC NUCLEAR MATTER

The seven integrals in Eq. (3.43) are evaluated in this
appendix. The energy ετ of a particle or a hole is related
to the effective mass m∗

τ as

ετ = h̄2k2

2mτ

+ Vτ = h̄2k2

2m∗
τ

+ V 0
τ , (A1)

V 0
τ is a constant. Let

βτ = h̄2

2m∗
τ

. (A2)

According to the conservation of charge,

εα + εν − ελ − εµ = βτα
k2
α + βτν

k2
ν − βτα

k2
λ − βτν

k2
µ. (A3)

Thus Eq. (3.43) can be expressed as

Ii(τα, τν) =
∫

d
⇀

kνd
⇀

kλd
⇀

kµfi(
⇀

kαν,
⇀

kλµ)δ(
⇀

kα + ⇀

kν − ⇀

kλ − ⇀

kµ)

× δ
(
βτα

k2
α + βτν

k2
ν − βτα

k2
λ − βτν

k2
µ

)
. (A4)

Let
⇀

kp = ⇀

kλ + ⇀

kµ,
⇀

qp = 1
2 (

⇀

kλ − ⇀

kµ). (A5)

It is easy to proved that d
⇀

kλd
⇀

kµ = d
⇀

kpd�qp, and it can be seen
that

⇀

kλ = 1
2

⇀

kp + ⇀

qp,
⇀

kµ = 1
2

⇀

kp − ⇀

qp,
(A6)

⇀

kλ − ⇀

kµ = 2�qp,

k2
λ = 1

4k2
p + q2

p + ⇀

kp · ⇀

qp,
(A7)

k2
µ = 1

4k2
p + q2

p − ⇀

kp · ⇀

qp,
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FIG. 23. Momentum composition of two particles.

βτα
k2
λ + βτν

k2
µ = (βτα

+ βτν

)(
1
4k2

p + q2
p

)
+ (βτα

− βτν

)
(

⇀

kp · ⇀

qp). (A8)

According to the conservation of momentum expressed by the
first δ function in Eq. (A4), it can be seen that

⇀

kp = ⇀

kα + ⇀

kν, (A9)

and Eq. (A4) can be reduced to

Ii(τα, τν) =
∫

d
⇀

kνd
⇀

qpfi(
⇀

kαν, 2
⇀

qp),

× δ

(
βτα

k2
α + βτν

k2
ν − (βτα

+ βτν

) (1

4
k2
p + q2

p

)

− (βτα
− βτν

)
(

⇀

kp · ⇀

qp)

)
. (A10)

⇀

kp is chosen as the pole axis for the integration variable
⇀

qp,
the included angle is θp (shown as Fig. 23), and

⇀

kα is chosen
as the pole axis for the integration variable

⇀

kν , the included
angle is θν , and µ = cos θν , so

kp =
√

k2
α + k2

ν + 2kαkνµ. (A11)

In Eq. (A10), for i = 1, 2, 3, fi(kαν, 2
⇀

qp) is only dependent
on the absolute values of

⇀

kαν and
⇀

qp, so Ii(τα, τν) can be
rewritten as

Ii(τα, τν) = (2π )2
∫

k2
νdkν

∫ 1

−1
dµ

×
∫

q2
pdqp

∫
d cos θpfi

(⇀
kαν, 2

⇀

qp

)
× δ

(
βτα

k2
α + βτν

k2
ν − (βτα

+ βτν

) (1

4
k2
p + q2

p

)

− (βτα
− βτν

)
kpqp cos θp

)

= (2π )2

βτα
− βτν

∫
k2
νdkν

∫ 1

−1

dµ

kp

∫
qpdqp

×
∫

d cos θpfi

(⇀
kαν, 2

⇀

qp

)

× δ

(
βτα

k2
α + βτν

k2
ν − (βτα

+ βτν

)(
1
4k2

p + q2
p

)
(
βτα

− βτν

)
kpqp

− cos θp

)
, i = 1, 2, 3. (A12)

kτα
and kτν

are the fermi momentums of nuclons α and ν,
respectively. Since k2

λ � k2
τα

, k2
µ � k2

τν
, it can be obtained from

Eq. (A7)

1

4
k2
p + q2

p + kpqp cos θp � k2
τα

,

(A13)
1

4
k2
p + q2

p − kpqp cos θp � k2
τν

−
1
4k2

p + q2
p − k2

τα

kpqp

� cos θp �
1
4k2

p + q2
p − k2

τν

kpqp

. (A14)

Equation (A14) gives the range of cos θp. According to the
upper limit of cos θp and the δ function in Eq. (A12), it can be
obtained that(

βτα
− βτν

) (1

4
k2
p + q2

p − k2
τν

)

� βτα
k2
α + βτν

k2
ν − (βτα

+ βτν

) (1

4
k2
p + q2

p

)
,

q2
p �

H1 + βτν
k2
ν − 1

2βτα
k2
p

2βτα

≡ Q2
1, (A15)

where

H1 = βτα
k2
α + (βτα

− βτν

)
k2
τν

. (A16)

According to the lower limit of cos θp and the δ function in
Eq. (A12), it can be obtained that

−(βτα
− βτν

) (1

4
k2
p + q2

p − k2
τα

)

� βτα
k2
α + βτν

k2
ν − (βτα

+ βτν

) (1

4
k2
p + q2

p

)

q2
p �

H2 + βτν
k2
ν − 1

2βτν
k2
p

2βτν

≡ Q2
2, (A17)

where

H2 = βτα
k2
α − (βτα

− βτν

)
k2
τα

. (A18)

Then Eq. (A12) can be reduced to

Ii(τα, τν) = (2π )2

βτα
− βτν

∫
k2
νdkν

∫ 1

−1

dµ

kp

×
∫ Q2

Q1

qpfi(
⇀

kαν, 2
⇀

qp)dqp, i = 1, 2, 3. (A19)

Since f1 = 1, I1(τα, τν) can be expressed as

I1(τα, τν) = (2π )2

2

∫
k2
νdkν

∫ 1

−1

dµ

kp

Q2
2 − Q2

1

βτα
− βτν

. (A20)

It can be obtained form Eqs. (A15)–(A18) that

Q2
2 − Q2

1 = βτα
− βτν

2βτα

(
k2
ν − B0

)
, (A21)

where

B0 = 1

βτν

[
βτν

k2
τν

− βτα

(
k2
α − k2

τα

)]
. (A22)
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Then it is easy to get

I1(τα, τν) = π2

βτα

∫ (
k2
ν − B0

)
k2
νdkν

∫ 1

−1

dµ

kp

(A23)

and then

I1(τα, τν) = 2π2

βτα
kα

∫ (
k2
ν − B0

)
k2
νdkν. (A24)

According to the δ function in Eq. (A4),

βτα
k2
α + βτν

k2
ν = βτα

k2
λ + βτν

k2
µ � βτα

k2
τα

+ βτν
k2
τν

,

kν must satisfy

k2
ν � B0 (A25)

so the range of kν can be

kτν
� kν �

{
0 B0 � 0√

B0 B0 > 0
. (A26)

Then the integral (A24) can be obtained:

I1(τα, τν) = 2π2

15βτα
kα

[(
3k2

τν
− 5B0

)
k3
τν

+ 2B
5/2
0 �(B0)

]
,

(A27)

where

�(B0) =
{

1 B0 � 0

0 B0 < 0
. (A28)

It can be obtained similarly that

I2(τα, τν) = π2

105βτα
kα

1

βτα
βτν

{[
15B2k

4
τν

+ 21(B1 − B0B2)k2
τν

− 35B0B1
]
k3
τν

+ 2(7B1 + 3B0B2)B5/2
0 �(B0)

}
,

(A29)

I3(τα, τv) = 2π2

945βτα
kα

1

β2
τα

β2
τv

{[
35B5k

6
τv

+ 45(B4 − B0B5)k4
τv

+ 63(B3 − B0B4)k2
τv

− 105B0B3
]
k3
τv

+ 2
(
21B3 + 9B0B4 + 5B2

0B5
)
B

5/2
0 �(B0)

}
,

(A30)

where

B1 = βτα
H2 + βτν

H1, B2 = ( 7
3βτα

+ βτν

)
βτν

,

B3 = B2
1 − βτα

βτv
H1H2,

B4 = [2(β2
τα

H2 + β2
τv

H1
)+ βτα

βτv
(H1 + H2) (A31)

+ 2βτα
B1 + 4β2

τα
βτv

k2
α

]
βτv

,

B5 = ( 23
5 β2

τα
+ 3βτα

βτv
+ β2

τv

)
β2

τv
.

According to Eqs. (3.44) and (A6), f4 can be expressed as

f4 = 2
⇀

kαν · ⇀

qp. (A32)

Let β be the include angle between
⇀

kαν and
⇀

qp, (θ0, ϕ0 = 0) be
the solid angle between

⇀

kαν and
⇀

kp, and (θp, ϕp) be the solid

angle between
⇀

qp and
⇀

kp, then

cos β = cos θ0 cos θp + sin θ0 sin θp cos ϕp. (A33)

Then I4(τα, τv) can be expressed as

I4(τα, τv) = 2
∫

kανd
⇀

kv

∫
qp cos βq2

pdqpd cos θpdϕp

×δ

(
βτα

k2
α + βτv

k2
v − (βτα

+ βτv

) (1

4
k2
p + q2

p

)

− (βτα
− βτv

)
kpqp cos θp

)

= 2

βτα
− βτv

∫
kαv

kp

d
⇀

kv

×
∫

q2
pdqp

∫
d cos θp

∫
cos βdϕp

× δ

(
βτα

k2
α + βτv

k2
v − (βτα

+ βτv

) (
1
4k2

p + q2
p

)
(
βτα

− βτv

)
kpqp

− cos θp

)
. (A34)

Since

cos θ0 =
⇀

kαv · ⇀

kp

kαvkp

= k2
α − k2

v

kαvkp

(A35)

from Eq. (A33) it can be obtained that∫ 2π

0
cos βdϕp = 2π cos θ0 cos θp = 2π

k2
α − k2

v

kαvkp

cos θp.

(A36)

Then I4(τα, τv) can be expressed as

I4(τα, τv) = 4π(
βτα

− βτv

)2
∫ (

k2
α − k2

v

) 1

k3
p

X4d
⇀

kv, (A37)

where

X4 =
∫ Q2

Q1

qp

[
βτα

k2
α + βτv

k2
v − (βτα

+ βτv

)(1

4
k2
P + q2

p

)]
dqp.

(A38)

Q1 and Q2 are given in Eqs. (A15) and (A17). The X4 can be
expressed as

X4 = 1

8βτα

(
βτα

− βτv

)2(
k2
v − B0

)(
B6 + B7k

2
v

)
, (A39)

where

B6 = (k2
τα

− k2
τv

)+ 1

2βτα

(
βτα

− βτv

)
B0,

(A40)

B7 = − 1

2βτα

(
βτα

− βτv

)
.

Then the integral of I4(τα, τv) can be expressed as

I4(τα, τv) = 2π2

βτα
kα

∫
k2
v

(
k2
v − B0

)(
B6 + B7k

2
v

)
dkv. (A41)

024604-16



ISOSPIN DEPENDENT NUCLEON-NUCLEUS OPTICAL . . . PHYSICAL REVIEW C 80, 024604 (2009)

And according to Eq. (A26), it can be obtained that

I4(τα, τv)

= 2π2

105βτα
kα

{[
15B7k

4
τv

+ 21(B6 − B0B7)k2
τv

− 35B0B6
]
k3
τv

+ 2
(
7B6 + 3B0B7

)
B

5/2
0 �(B0)

}
. (A42)

It can be obtained similarly that

I5(τα, τv) = π2

315βτα
kα

{[
35B10k

6
τv

+ 45(B9 − B0B10)k4
τv

+ 63(B8 − B0B9)k2
τv

− 105B0B8
]
k3
τv

+ 2
(
21B8 + 9B0B9 + 5B2

0B10
)
B

5/2
0 �(B0)

}
,

I6(τα, τv) = 2π2

945βτα
kα

{[
35B13k

6
τv

+ 45(B12 − B0B13)k4
τv

+ 63(B11 − B0B12)k2
τv

− 105B0B11
]
k3
τv

+ 2
(
21B11 + 9B0B12 + 5B2

0B13
)
B

5/2
0 �(B0)

}
,

I7(τα, τv) = I ′
3(τα, τv) − I6(τα, τv), (A43)

where

B8 = F1B6 − F0B
2
0 , B9 = F2B6 + F1B7 + 2F0B0,

B10 = F2B7 − F0, F0 = 1

6β2
τα

(
β2

τα
− β2

τv

)
,

F1 = 1

βτα
βτv

[(
βτα

+ βτv

)
βτα

k2
α

− (βτα
− βτv

)(
βτα

k2
τα

− βτv
k2
τv

)]
,

F2 = 4 + S, S = 1

βτα

(
βτα

+ βτv

)
,

B11 = 3B2
6 + 1

4
S2B2

0 ,

B12 = 4F1 − 4k2
α + 6B6B7 − 1

2
S2B0, (A44)

B13 = 3B2
7 + 4S + 1

4
S2 + 4

5
,

I ′
3(τα, τv) = 2π2

945βτα
kα

{[
35B16k

6
τv

+ 45(B15 − B0B16)k4
τv

+ 63(B14 − B0B15)k2
τv

− 105B0B14
]
k3
τv

+ 2
(
21B14 + 9B0B15 + 5B2

0B16
)
B

5/2
0 �(B0)

}
,

B14 = 3
(
F1 − k2

α

)
k2
α, B15 = 5F1 + (3S − 2)k2

α,

B16 = 5S − 7

5
.

APPENDIX B: INTEGRALS OF FIVE MOMENTUM
VECTORS FOR ASYMMETRIC NUCLEAR MATTER

The integral

IB(τα, τv, τζ ) ≡ IB(τατvτζ τατvτζ ) =
∫

d
⇀

kvd
⇀

kζ d
⇀

kλd
⇀

kµd
⇀

kξ

× δ(
⇀

kα + ⇀

kv + ⇀

kζ − ⇀

kλ − ⇀

kµ − ⇀

kξ )

× δ(εα + εv + εζ − ελ − εµ − εξ ) (B1)

expressed in Eq. (3.45) is reduced in this appendix.

According to Eqs. (A1) and (A2) and the conservation of
charge it can be seen that

εα + εv + εζ − ελ − εµ − εξ

= βτα
k2
α + βτv

k2
v + βτζ

k2
ζ − βτα

k2
λ − βτv

k2
µ − βτζ

k2
ξ . (B2)

Let
⇀

kp = ⇀

kµ + ⇀

kξ ,
⇀

qp = 1
2 (

⇀

kµ − ⇀

kξ ),
(B3)

⇀

kh = ⇀

kv + ⇀

kζ ,
⇀

qh = 1
2 (

⇀

kv − ⇀

kζ ).

It is easy to proved that d
⇀

kpd
⇀

qp = d
⇀

kµd
⇀

kξ , d
⇀

khd
⇀

qh = d
⇀

kvd
⇀

kζ ,
and it can be seen that

⇀

kµ = 1
2

⇀

kp + ⇀

qp,
⇀

kξ = 1
2

⇀

kp − ⇀

qp, (B4)
⇀

kv = 1
2

⇀

kh + ⇀

qh,
⇀

kζ = 1
2

⇀

kh − ⇀

qh, (B5)

k2
µ + k2

ξ = 1
2k2

p + 2q2
p, k2

v + k2
ζ = 1

2k2
h + 2q2

h, (B6)

βτv
k2
µ + βτζ

k2
ξ = β+

(
1
4k2

p + q2
p

)+ β−(
⇀

kp · ⇀

qp), (B7)

βτv
k2
v + βτζ

k2
ζ = β+

(
1
4k2

h + q2
h

)+ β−(
⇀

kh · ⇀

qh), (B8)

where

β± = βτv
± βτζ

. (B9)

Using the conservation of momentum expressed by the first
δ function in Eq. (B1), the integral of IB(τα, τv, τζ ) can be
reduced to

IB(τα, τv, τζ ) =
∫

d
⇀

khd
⇀

qhd
⇀

kpd
⇀

qpδ
(
βτα

k2
α + β+

(
1
4k2

h + q2
h

)
+β−khqh cos αh − β+

(
1
4k2

p + q2
p

)
−β−kpqp cos αp − βτα

(
⇀

kα + ⇀

kh − ⇀

kp)2
)
,

(B10)

where αh is the included angle of
⇀

kh and
⇀

qh, αp is the included

angle of
⇀

kp and
⇀

qp.
Since kµ � kτv

and kξ � kτζ
, from Eq. (B4) it can be obtained

that (
1

2

⇀

kp + ⇀

qp

)2

= 1

4
k2
p + q2

p + kpqp cos αp � k2
τν

,

FIG. 24. The kinematic transformation for hole.
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FIG. 25. The kinematic transformation for particle.

(
1

2

⇀

kp − ⇀

qp

)2

= 1

4
k2
p + q2

p − kpqp cos αp � k2
τζ

,

−
1
4k2

p + q2
p − k2

τv

kpqp

� cos αp

�
1
4k2

p + q2
p − k2

τζ

kpqp

. (B11)

And since kv � kτv
and kζ � kτζ

, from Eq. (B5) it can be
obtained that(

1

2

⇀

kh + ⇀

qh

)2

= 1

4
k2
h + q2

h + khqh cos αh � k2
τv
,

(
1

2

⇀

kh − ⇀

qh

)2

= 1

4
k2
h + q2

h − khqh cos αh � k2
τζ

,

−
k2
τζ

− 1
4k2

h − q2
h

khqh

� cos αh

�
k2
τv

− 1
4k2

h − q2
h

khqh

. (B12)

In the case of τζ = τv the integral of IB(τα, τv, τv) in (B10)
can be rewritten as

IB(τα,τv,τv) =
∫

d
⇀

khd
⇀

qhd
⇀

kpd
⇀

qpδ

(
βτα

k2
α + 2βτα

(
1

4
k2
h + q2

h

)

− 2βτv

(
1

4
k2
p + q2

p

)
− βτα

(
⇀

kα + ⇀

kh − ⇀

kp)2

)
.

(B13)

As the δ function in Eq. (B13) is not dependent on cos αp and
cos αh, we have∫

d
⇀

qp = 2π

∫
q2

pdqp

∫
d cos αp

≡ 4π

∫
q2

pfp(kp, qp)dqp, (B14)

where

fp(kp, qp) = 1

2

∫
d cos αp. (B15)

According to Eqs. (B11) and (B15) it can be obtained that

fp(kp, qp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
1

4
k2
p + q2

p � k2
τv

1

∣∣∣∣12kp − qp

∣∣∣∣ � kτv

1
4k2

p + q2
p − k2

τv

kpqp

in other case

. (B16)

Similarly∫
d

⇀

qh = 2π

∫
q2

hdqh

∫
d cos αh ≡ 4π

∫
q2

hfh(kh,qh)dqh,

(B17)

where

fh(kh, qh) = 1

2

∫
d cos αh. (B18)

According to Eqs. (B12) and (B18) it can be obtained that

fh(kh, qh) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
1

4
k2
h + q2

h � k2
τv

1
1

2
kh + qh � kτv

k2
τv

− 1
4k2

h − q2
h

khqh

in other case

. (B19)

(
⇀

kα + ⇀

kh) is chosen as the pole axis for the integration variable
⇀

kp, the included angle is θp, and
⇀

kα is chosen as the pole axis

for the integration variable
⇀

kh, the included angle is θh, and
then IB(τα, τv, τv) can be expressed as

IB(τα, τv, τv)

= 64π4
∫

q2
hdqh

∫
k2
hfh(kh, qh)dkh

∫
d cos θh

×
∫

q2
pdqp

∫
k2
pfp(kp, qp)dkp

∫
d cos θp

× δ

(
βτα

k2
α + 2βτν

(
1

4
k2
h + q2

h

)
− 2βτv

(
1

4
k2
p + q2

p

)

−βτα
(

⇀

kα + ⇀

kh − ⇀

kp)2

)
. (B20)

Let

⇀

t = ⇀

kα + ⇀

kh, sh =
√

k2
h

4
+ q2

h (B21)

and θt be the included angle between
⇀

kα and
⇀

t (shown as
Fig. 24). It can be gotten from Eq. (B21) that

kh =
√

k2
α + t2 − 2kαt cos θt , (B22)

cos θh = t cos θt − kα√
k2
α + t2 − 2kαt cos θt

, (B23)

qh =
√

s2
h − 1

4

(
k2
α + t2 − 2kαt cos θt

)
, (B24)
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and the corresponding Jacobian is

Jh = ∂(kh, cos θh, qh)

∂(t, cos θt , sh)
= t2sh

k2
hqh

. (B25)

Let

⇀

u = ⇀

kp − ⇀

t , sp =
√

k2
p

4
+ q2

p (B26)

and θu be the included angle between
⇀

u and
⇀

t (shown as
Fig. 25). It can be gotten from Eq. (B26) that

kp =
√

t2 + u2 + 2tu cos θu, (B27)

cos θp = u cos θu + t√
t2 + u2 + 2tu cos θu

, (B28)

qp =
√

s2
p − 1

4
(t2 + u2 + 2tu cos θu), (B29)

and the corresponding Jacobian is

Jp = ∂(kp, cos θp, qp)

∂(t, cos θu, sp)
= u2sp

k2
pqp

. (B30)

According to Eq. (B19), it is required that sh � kτν
, and let

f1 =

⎧⎪⎪⎨
⎪⎪⎩

qh

1

2
kh + qh � kτv

1

kh

(
k2
τv

− s2
h

) 1

2
kh + qh > kτv

. (B31)

According to Eq. (B16), it is required that sp > kτν
, and let

f2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qp qp >
kp

2
+ kτv

1

kp

(
s2
p − k2

τv

) kp

2
− kτv

� qp �
kp

2
+ kτv

qp qp <
kp

2
− kτv

. (B32)

It is easy to prove that

⇀

u = −⇀

kλ. (B33)

So u > kτα
. Using Eqs. (B21), (B25), (B26), (B30), (B31), and

(B32), Eq. (B20) can be expressed as

IB(τα, τv, τv) = 64π4
∫ kτv

shdsh

∫
t2dt

∫
f1d cos θt

×
∫

kτv

spdsp

∫
kτα

u2du

∫
f2d cos θu

× δ
(
βτα

k2
α + 2βτv

s2
h − 2βτv

s2
p − βτα

u2
)
.

(B34)

Let

z = 2kαt cos θt , t d cos θt = dz

2kα

, (B35)

w = 2tu cos θu, tu d cos θu = dw

2
. (B36)

Since ∫
spdsp = 1

4βτv

∫
d
(
2βτv

s2
p

)
, (B37)

Eq. (B34) can be expressed as

IB(τα, τv, τv) = 4π4

βτv
kα

∫ kτv

shdsh

∫
dt

×
∫

f1dz

∫
kτα

udu

∫
f2dw (B38)

and sp can be expressed as

sp =
[

βτα

2βτv

(
k2
α − u2

)+ s2
h

]1/2

. (B39)

It is also easy to get that

kh =
√

k2
α + t2 − z, (B40)

qh =
√

s2
h − 1

4

(
k2
α + t2 − z

)
, (B41)

kp =
√

t2 + u2 + w, (B42)

qp =
√

s2
p − 1

4
(t2 + u2 + w). (B43)

Thus the variables kh, qh, kp, qp, and sp in Eqs. (B31) and
(B32) are given in Eqs. (B39)–(B43).

The range of each integral variable in Eq. (B38) is studied
in the following. According to Eqs. (B36) and (B43) w need
to satisfy

−2tu � w � 2tu (B44)

and

w � 4s2
p − t2 − u2. (B45)

According to Eqs. (B39) and (B45) it can be obtained that

w �
2βτα

βτv

k2
α + 4s2

h − t2 − 2βτα
+ βτv

βτv

u2. (B46)

From Eqs. (B44) and (B46) one can see that the upper limit
of w should be given by Eq. (B46) as u is very large and by
Eq. (B44) as u is very little. The connection point between
them is the following solution of u when the above two upper
limits are equal:

v = βτv

2βτα
+ βτv

{
−t +

[
t2 + 2βτα

+ βτv

βτv

×
(

2βτα

βτv

k2
α + 4s2

h − t2

)]1/2
}

. (B47)

Then the upper limit of w can be obtained

N =
⎧⎨
⎩

2βτα

βτv

k2
α + 4s2

h − t2 − 2βτα
+ βτv

βτv

u2 u > v

2tu u � v

(B48)

and the lower limit of w is −2tu.
According to Eq. (B33),

u2 � k2
τα

(B49)

and from Eqs. (B26) and (B3) it can be obtained that

s2
p � k2

τv
. (B50)
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Then according to Eq. (B39)

u2 � k2
α − 2βτv

βτα

(
k2
τv

− s2
h

) ≡ B2
0 . (B51)

From Eqs. (B44) and (B45) it can be obtained that

4s2
p − t2 − u2 � − 2tu. (B52)

Then according to Eq. (B39) one obtains

2βτα
+ βτv

βτv

u2 − 2tu − 2βτα

βτv

k2
α − 4s2

h + t2 � 0. (B53)

When Eq. (B53) is an equality the two solutions of u are

B± = βτv

2βτα
+ βτv

{
t ±
[
t2 + 2βτα

+ βτv

βτv

×
(

2βτα

βτv

k2
α + 4s2

h − t2

)]1/2
}

. (B54)

Therefore B− � u � B+. So from Eqs. (B49), (B51), (B53) the
upper limit M1 and lower limit M2 of u can be obtained:

M1 = min(B0, B+), M2 = max(kτα
, B−). (B55)

From Eq. (B35) it can be obtained that

−2kαt � z � 2kαt. (B56)

According to Eq. (B41) the variable z satisfies

z � k2
α + t2 − 4s2

h. (B57)

From Eqs. (B56) and (B57) it can be obtained that the upper
limit of z is 2kαt , the lower limit of z is

Z =
{

k2
α + t2 − 4s2

h t > 2sh − kα

−2kαt t � 2sh − kα

. (B58)

From Eqs. (B56) and (B57) it can be also obtained that

t2 − 2kαt + k2
α − 4s2

h � 0. (B59)

Thus the upper limit T1 and lower limit T2 of t can be obtained

T1 = kα + 2sh, (B60)

T2 =
{

kα − 2sh 2sh < kα

0 2sh � kα

. (B61)

From Eqs. (B49) and (B51) it can be obtained that

k2
τα

� k2
α − 2βτv

βτα

(
k2
τv

− s2
h

)
. (B62)

Thus the lower limit of sh can be obtained

H =

⎧⎪⎪⎨
⎪⎪⎩

[
k2
τv

− βτα

2βτv

(
k2
α − k2

τα

)]1/2

k2
α < k2

τα
+ 2βτv

βτα

k2
τv

0 k2
α � k2

τα
+ 2βτv

βτα

k2
τv

.

(B63)

Finally Eq. (B38) can be written as

IB(τα, τν, τv) = 4π4

βτν
kα

∫ kτv

H

shdsh

∫ T1

T2

dt

∫ 2kαt

Z

f1dz

×
∫ M1

M2

udu

∫ N

−2tu

f2dw. (B64)

In the case of τζ �= τν , the δ function in the integral
IB(τα, τν, τζ ) given by Eq. (B10) is dependent on cos αp and
cos αh and independent on ϕp and ϕh. We have∫

d
⇀

qp = 2π

∫
q2

pdqp

∫
d cos αp,

(B65)∫
d

⇀

qh = 2π

∫
q2

hdqh

∫
d cos αh.

With the similar way the reduced formula of the integral
IB(τα, τν, τζ ) in the case of τζ �= τν can be obtained as follows:

IB(τα, τν, τζ ) = 4π4

β−kα

∫ H1

H2

shdsh

∫ T1

T2

dt

×
∫ 2kαt

Z

qhdz

∫ D1

D2

d cos αh

∫ P1

P2

spdsp

×
∫ M1

M2

udu

∫ N

−2tu

dw

kp

�(A1 − S)�(S − A2),

(B66)

where

S = 1

β−kpqp

(
βτα

k2
α + β+s2

h

+β−khqh cos αh − β+s2
p − βτα

u2
)
, (B67)

A1 = min(1, Aτζ
), A2 = max(−1,−Aτv

), (B68)

Aτv
=

1
4k2

p + q2
p − k2

τv

kpqp

, Aτζ
=

1
4k2

p + q2
p − k2

τζ

kpqp

, (B69)

N =
{

4s2
p − t2 − u2 u > 2sp − t

2tu u � 2sp − t
, (B70)

M1 = B+, M2 = max(kτα
, B−), B± = t ± 2sp, (B71)

P 2
1 = 1

2

(
k2
µ,max + k2

ξ,max

)
(B72)

P2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
1

β+

[
βτv

k2
τv

+βτζ
k2
τζ

− 1

2
β−
(
k2
µ,max + k2

ξ,max

)]}1/2

for βτv
k2
τv

+ βτζ
k2
τζ

>
1

2
β−
(
k2
µ,max + k2

ξ,max

)
,

0 for βτv
k2
τv

+ βτζ
k2
τζ

�
1

2
β−
(
k2
µ,max + k2

ξ,max

)
(B73)

k2
µ,max = 1

βτv

[
βτα

(
k2
α − k2

τα

)+ βτv
k2
τv

]
,

(B74)
k2
ξ,max = 1

βτζ

[
βτα

(
k2
α − k2

τα

)+ βτζ
k2
τζ

]
,

D1 = min(1,Dτν
), D2 = max(−1,−Dτζ

), (B75)
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Dτν
= k2

τv
− 1

4k2
h − q2

h

khqh

, Dτζ
=

k2
τζ

− 1
4k2

h − q2
h

khqh

, (B76) H 2
1 = 1

2

(
k2
τv

+ k2
τζ

)
, (B77)

H2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1

β+

[
βτv

k2
τv

+ βτζ
k2
τζ

− βτα

(
k2
α − k2

τα

)− 1
2β−
(
k2
τv

+ k2
τζ

)]}1/2

for βτv
k2
τv

+ βτζ
k2
τζ

> βτα

(
k2
α − k2

τα

)+ 1
2β−
(
k2
τv

+ k2
τζ

)
0 for βτv

k2
τv

+ βτζ
k2
τζ

� βτα

(
k2
α − k2

τα

)+ 1
2β−
(
k2
τv

+ k2
τζ

) . (B78)

The variables β+, β−, kh, qh, kp, qp, Z, T1, T2 in Eq. (B66)
are given in Eqs. (B9), (B40)–(B43), (B58), (B60),

(B61), respectively. �(x) is the step function given by
Eq. (A28).
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