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Radiative processes lead to important corrections to (e, e′p) experiments. While radiative corrections can be
calculated exactly in QED and to a good accuracy also including hadronic corrections, these corrections cannot be
included into data analyses to arbitrary orders exactly. Nevertheless consideration of multiphoton bremsstrahlung
above the low-energy cutoff is important for many (e, e′p) experiments. To date, higher-order bremsstrahlung
effects concerning electron scattering experiments have been implemented approximately by employing the
soft-photon approximation (SPA). In this paper we propose a novel approach to multiphoton emission which
partially removes the SPA from (e, e′p) experiments. In this combined approach one hard photon is treated exactly;
and additional (softer) bremsstrahlung photons are taken into account resorting to the soft-photon approximation.
This partial removal of the soft-photon approximation is shown to be relevant for the missing-energy distribution
for several kinematic settings at MAMI and TJNAF energies.
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I. INTRODUCTION

Coincidence electron scattering experiments are an impor-
tant tool for probing both nuclear structure and the structure
of the nucleons. A(e, e′p)(A − 1) experiments (A being the
atomic number) are, e.g., used to study the independent particle
shell model and spectral functions and, in connection with
that, occupation numbers and correlations. And the (e, e′p)
reaction has also been employed to study the structure of, e.g.,
the proton electric form factor in the so-called Rosenbluth
technique, apparently differing from polarization transfer
measurements [1].

Results from electron scattering experiments are subject to
radiative corrections, i.e., QED amplitudes going beyond the
leading-order Born term (see Fig. 1). These corrections are of
relative order α, but since they come with large logarithmic
corrections they can contribute significantly to the cross
section. Vertex correction, vacuum polarization, self-energy
diagrams, and the two-photon exchange (TPE) are referred to
as internal radiative corrections. And the four bremsstrahlung
diagrams constitute the external radiative corrections and
are the main focus of this paper. By introducing a small
parameter associated with the photon energy resolution of
the detectors, E0, one can split up the cross section into
a ‘nonradiative part’ including vertex corrections, vacuum
polarization, self-energy contributions, TPE, and the emission
of soft bremsstrahlung photons with energies below E0;
and into a ‘radiative part’, accounting for the emission of
bremsstrahlung photons with energies above the low-energy
cutoff E0 [2]. The individual contributions from the internal
and external radiative correction diagrams are divergent. It has
first been shown by Schwinger [3] that by introducing the
low-energy cutoff these divergences cancel.

The emission of bremsstrahlung alters the particle momenta
and energies seen by the detectors and has to be corrected for in

data analyses. Mo and Tsai first discussed this feature of elec-
tron scattering experiments [2,4], considering single-photon
bremsstrahlung exactly, aside from an approximation in the
calculation of the TPE contribution. Multiphoton emission is
only included for soft photons with energies smaller than E0.
A comprehensive review on radiative corrections can be found
in Ref. [5].

In order to obtain the desired experimental accuracy
radiative corrections cannot be limited to the second or-
der amplitudes. One has to take into account higher-order
bremsstrahlung processes (multiphoton emission) above the
low-energy cutoff [6–8] which is straightforward in soft-
photon approximation (SPA). In SPA, multiphoton emission
translates to a simple exponentiation of the bremsstrahlung
contribution because of a factorization of the bremsstrahlung
cross section [6–8]. A bremsstrahlung photon of energy ω0 has
no effect on the electron-proton scattering in the limit where
ω0 → 0. In this limit bremsstrahlung amplitudes factorize
into the first-order Born amplitude times the amplitude for
emitting a soft photon. The factorization also holds for
multiphoton emission, if each emitted photon has vanishing
energy. Summing over all orders of soft-photon emission
then leads to exponentiation which also gives the cross
section the correct asymptotic behavior as the parameter
E0 → 0 [3,5,9]. Strictly speaking the SPA is only valid in
the limit where all bremsstrahlung photon energies go to
zero. In data analyses the approximation is applied however
to emission of bremsstrahlung photons with finite energies
[10]. The question arises up to which upper bound for the
maximum bremsstrahlung photon energy the SPA is a good
approximation.

While single-photon corrections to electron scattering
experiments have been calculated exactly, including hadronic
loops to a good accuracy [2,4,8] and including the proton
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FIG. 1. Feynman diagrams beyond the leading order. The Feyn-
man diagrams M(1)

Born and M(2)
Born constitute the Born approximation.

MTPE contains the two-photon exchange (TPE) diagrams. Together,
the vacuum polarization, the vertex corrections, and the self-energy
diagrams contained in M(2)

Born, and the two diagrams from MTPE

are referred to as internal radiative corrections. Mbrems contains the
external radiative corrections.

structure [11], multiphoton data analyses are usually per-
formed in SPA. It allows both for straightforward inclu-
sion of higher-order bremsstrahlung and for straightforward
Monte Carlo generation of the bremsstrahlung photon angular
distribution [10]. The purpose of this paper is to improve
the multiphoton radiative correction treatment for (e, e′p)
experiments at MAMI and TJNAF energies by partially
removing the SPA from multiphoton radiative corrections.

As the dominant contribution to bremsstrahlung in (e, e′p)
experiments comes from electron bremsstrahlung, we will
initially omit bremsstrahlung originating from the proton. In
Sec. IV we will then include proton bremsstrahlung with
recourse to SPA, showing that proton bremsstrahlung is only
a minor correction to the full radiative corrections.

The two TPE diagrams (see Fig. 1) go beyond the Born
approximation and have received a lot of attention recently
in H(e, e′p) experiments studying the proton electric form
factor [1,12,13]. Here we do not consider them further.

II. MULTIPHOTON SPA CROSS SECTION

The emission of a single photon by, e.g., the scattered
electron (denoted here as “ef”) is

Mef = ie3ū(k′)γ αεα

[
iγ ν(k′ + ω)ν + m

(k′ + ω)2 − m2

]
γ µu(k)

× 1

q2
Ū (p′)�µ(q2)U (p) , (1)

where k and k′ are the four-momenta of the incident and the
scattered electron; and p and p′ are the four-momenta of the
incident and final proton. The electron and proton spinors are
denoted by u and U , respectively. The momentum transfer to

the proton is defined by

q ≡ k − k′ − ω . (2)

Here ω = ω0(1,�γ ) denotes the four-momentum of the
bremsstrahlung photon and ε from Eq. (1) is its helicity. The
vertex

�µ(q2) ≡ F1(q2)γµ + iκF2(q2)

4M
σµνq

ν (3)

contains the electromagnetic structure of the target nucleus.
M and m are the proton and electron masses, respectively.
In the limit where the photon energy ω0 vanishes the SPA
can be applied and the single-photon emission amplitude (1)
simplifies yielding [14,15]

Mef ∼ eM(1)
Born

(−k · ε

k · ω

)
. (4)

Here the first-order Born amplitude is given by

M(1)
Born = ie2ū(k′)γ µu(k)

1

q2
Ū (p′)�µU (p) . (5)

The factorization of the SPA amplitude (4) also applies to the
other three bremsstrahlung diagrams contained in Mbrems =
Mei + Mef + Mpi + Mpf , the first letters of the subscripts
referring to the particle emitting the bremsstrahlung photon (e
for electron, p for proton), the second one indicating whether
the photon was emitted before (i) or after (f ) the scattering
(see Fig. 1).

Summing and averaging over the spins and performing
the QED traces, we obtain the factorized single-photon cross
section as

d5σ

d�ed�γ dω0
= dσ

(1)
Born

d�e

Ael(�γ )

ω0
, (6)

where dσ (1)

d�e
is the elastic first-order electron-proton scattering

Born cross section and

Ael(�γ ) ≡ −α(ω0)2

4π2

(
k′

k′ · ω
− k

k · ω
+ p

p · ω
− p′

p′ · ω

)2

(7)

is the SPA angular distributions of the bremsstrahlung photon
[8]. The subscript ‘el’ indicates that the four-momenta are
evaluated according to elastic kinematics.

This distribution (7) exhibits peaks as a function of the
photon angles �γ in the directions of the incident electron,
the scattered electron, and the recoiling proton. Observing that
most of the bremsstrahlung is emitted along the k-direction
and the k′-direction, Schiff introduced the so-called peaking
approximation for inclusive (e, e′) experiments in 1952 [16]
which was extended to exclusive (e, e′p) experiments [8,17,
18], approximating the angular distribution (7) by

Ael(�γ ) ∼ λeδ(�γ − �e) + λe′δ(�γ − �e′ )

+ λp′δ(�γ − �p′ ) , (8)

and can be found, e.g., in Ref. [8]. The functions λe, λe′ , and λp′

can be obtained by integrating the k-, k′-, and p′-contribution
to the angular distribution (7). The peaking approximation can
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be removed from (e, e′p) data analyses, as has been shown in
Ref. [10].

Now we consider the SPA cross section for multiphoton
bremsstrahlung with total photon energy below the low-energy
cutoff E0 together with the emission of n photons with energies
above the cutoff, which is given as [8]

dσ (n,E0)

d�edω0
1d�γ1 · · · dω0

nd�γn

= dσ (1)

d�e

exp[−δsoft(E0)]

× (1 − δhard)

× 1

n!

Ael(�γ1 )

ω0
1

· · · Ael(�γn
)

ω0
n

× θ
(
ω0

1 − E0
) · · · θ(

ω0
n − E0

)
.

(9)

As mentioned above the exponential function accounts for
multiphoton emission below the cut-off energy E0 to all
orders. δsoft(E0) contains the bremsstrahlung contributions (see
Mbrems in Fig. 1). And δhard comprises contributions from
the vertex corrections, vacuum polarization, and self-energy
diagrams. The full definitions for these two terms can be found
in Ref. [8]. The integration techniques necessary to derive
Eq. (9) are given, e.g., in Ref. [19].

We sum the cross section (9) over all n photons and
we integrate over the photon energies up to an upper limit
Etot, which is a parameter associated with the cuts applied
to the data. We also introduce an acceptance function χn

A.
This acceptance function allows to get not only the total, but
also the differential cross section, or ones where the detection
of some of the particles is only in some kinematical range,
by selections different functions for χn

A. We obtain then the
photon-integrated cross section [10] as

dσ

d�e

[χA] = dσ (1)

d�e

exp[−δsoft(E0)](1 − δhard)

×
∞∑

n=0

1

n!

[
λ log

(
Etot

E0

)]n

×

 n∏

i=1

∫ Etot

E0

dω0
i d�γ

λω0
i log

(
Etot
E0

)χn
A


 . (10)

Here χn
A is a function of the electron and photon kinematic

variables (for photons with energies larger than E0), χn
A =

χn
A(�e, ω

0
1,�1, . . . , ω

0
n,�n), which is the probability for an

event to be seen in dσ
d�e

[χA] [10]. In Eq. (10) Etot is chosen
such that all bremsstrahlung photons with nonvanishing χn

A are
included in the integration, and λ is the integral of A(�γ ) over
the angular distribution, see Eq. (7),

λ ≡
∫

d�γ Ael(�γ ) . (11)

The cross section (10) is independent of the cutoff E0 in the
limit where E0 becomes small (see, e.g., Ref. [8]).

Because the bremsstrahlung photons are usually not mea-
sured in electron scattering experiments1 they need to be
integrated out. This can efficiently be done by a Monte Carlo
integration. This is the basis of a Monte Carlo event generator,
where individual ‘events,’ i.e., values for all kinematical
variables, are generated together with a weight, such that their
distribution corresponds to the differential cross section. Once
the radiative corrections have been simulated the experimental
data can be corrected for the radiative effects.

The cross section (10) is therefore written in terms of a
probability density function for the variables �γi and ωi and
is then used to generate bremsstrahlung events with certain
photon energies, multiplicities, and angular distributions in a
Monte Carlo event generator [10]. The Monte Carlo algorithm
assigns a weight to each event. By summing over these weights
for each observable needed and choosing the χn

A as bins in these
observables we get the differential cross sections shown later.

The Monte Carlo routine we introduce in this paper
generates multiple photons according to the cross section (10).
The photon multiplicities n follow a Poisson distribution
and the bremsstrahlung energies are essentially distributed
according to 1/ω0

i [10]. The bremsstrahlung photon angles
are generated according to the elastic angular distribution
Ael(�i

γ ) from Eq. (7), using the elastic (e, e′p) kinematics for
the electron and proton momenta, by a rejection algorithm.
The index i indicates that each individual photon from a
multiphoton event follows the angular distribution (7).

The SPA simplifies multiphoton bremsstrahlung calcula-
tions considerably by the factorization of the cross section.
(e, e′p) data analysis procedures additionally adjust the
kinematics of the (e, e′p) reaction. The form factors are
evaluated at an adjusted value of q2 [8,17,18], following
a suggestion by Borie and Drechsel [20,21], rendering the
treatment of radiative corrections more systematic. We refer
to this extended version of the SPA as the ‘modified SPA’, or
mSPA, which accounts for the bremsstrahlung photons’ effect
on the electron-proton scattering process approximately via a
modification of the kinematics only.

III. MULTIPHOTON BREMSSTRAHLUNG EVENT
GENERATION BEYOND SPA

One way to extend the SPA for single-photon
bremsstrahlung is to calculate the cross section not in elastic
kinematics but in the real 1γ -kinematic settings: Given the
photon’s four-momentum and the beam energy and fixing, e.g.,
the electron scattering angles, one calculates the remaining
kinematic quantities. The cross section is then calculated using
the new 1γ -kinematic variables, additionally inserting the
correct value of q2 with one photon emitted into the form
factors.

Data analyses cannot include an exact multiphoton QED
treatment, since the exact multiphoton amplitudes cannot
be included into the calculations to arbitrarily high orders.

1Because of the essential 1/ω0 energy dependance most
bremsstrahlung photons emitted have very small energies such that
they cannot be measured.
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FIG. 2. The 1γ matrix element M1γ = Mei + Mef squared.

Therefore we suggest a new combined approach: we generate
multiphoton bremsstrahlung according to the SPA distribution.
We choose one hard photon from each scattering event
which we treat exactly by calculating the exact QED 1γ

matrix element for electron bremsstrahlung (see Fig. 2) from
M1γ = Mei + Mef . We then treat the remaining photons as
soft photons (with energies still larger than the low-energy
cutoff E0), employing the SPA.

There are several possibilities to choose the hard photon.
We have implemented and compared the following four:

(i) The photon with the largest energy ω0 is chosen
as the hard photon. This method addresses the question
of the validity of the SPA. In this approach the choice for
the hard photon depends on the choice of the reference
frame, in contrast to the other approaches described here.

(ii) Calculating the momentum transfer squared, q2
1γ = k −

k′ − ω, for each photon of the multiphoton event we
choose the photon yielding a value of q2

1γ which deviates
most from the elastic value, q2

el.
(iii) Calculating the momentum transfer squared in multi-

photon kinematics, q2
tot (where qtot = k − k′ − ∑

i ωi),
the photon is chosen which leads to a value of q2

1γ which
is closest to q2

tot. This method and method 2 focus on
both the kinematic aspects of bremsstrahlung emission
and on the appropriate calculation of the form factors.

(iv) Choose the ‘hard’ photon randomly. This approach was
tested in order to demonstrate the influence of the hard
photons on the result.

These approaches have been implemented by reweighting
our SPA Monte Carlo generator described above, by the ratio
of the matrix element of the improved approach and the SPA
matrix element.

To make the notation less cluttered, we absorb the photon
energy dependence into the angular distribution A(�i

γ ),

a(ωi) ≡ A(�i)

ω0
i

. (12)

In SPA the 1γ -bremsstrahlung matrix element squared for the
hard photon (see Fig. 2) then reads

∣∣MSPA
1γ

∣∣2 ≈ ∣∣M(1)
Born

∣∣2
ael(ω) . (13)

In order to distinguish mSPA calculations (where the kinematic
setting are adjusted in order to account for the bremsstrahlung
photon’s effect on the hard scattering process) from the elastic
calculation of the same amplitude we add the subscripts
‘mSPA’ and ‘el’, respectively, to the angular distribution (12)
in the remainder of this paper.

Considering single-photon bremsstrahlung first, we assign
to each bremsstrahlung event generated by the Monte Carlo
algorithm a weight which is then used in the binning in order
to obtain differential and total cross section. First we define
the ‘exact 1γ weight’ by

wex
1γ ≡ |M1γ |2∣∣M(1)

Born

∣∣2
ael(ω)

. (14)

This weight divides out the approximate SPA matrix element
and replaces it by the exact matrix element for single-photon
radiation. In contrast to the exact weight (14), the mSPA weight
measures the influence of the mSPA,

wmSPA
1γ ≡

∣∣M(1)mSPA
Born

∣∣2
amSPA(ω)∣∣M(1)

Born

∣∣2
ael(ω)

, (15)

where M(1)mSPA
Born is the first-order Born amplitude M(1)

Born
evaluated in mSPA kinematics. As the exact weight (14)
the mSPA weight (15) reweights the event, but now for the
case of the SPA matrix elements in modified kinematics
replacing q = k − k′ by q̃ = k − k′ − ω. So the first-order
Born amplitude M(1)mSPA

Born as well as the photon distribution
amSPA(ω) in the numerator are evaluated in 1γ -kinematics (or
mSPA kinematics which is the same in this case).

This approach can be extended to multiphoton
bremsstrahlung. Assuming that the n bremsstrahlung photons
have been ordered such that the nth photon is the hard photon,
we define the “combined nγ ” weight as

wcomb
nγ ≡ |M1γ (ωhard)|2amSPA(ω1) · · · amSPA(ωn−1)∣∣M(1)

Born

∣∣2
ael(ωhard)ael(ω1) · · · ael(ωn−1)

, (16)

where amSPA is the angular photon distribution in modified
SPA; and we define the modified weight as

wmSPA
nγ ≡

∣∣M(1)mSPA
Born

∣∣2

∣∣M(1)
Born

∣∣2

× amSPA(ωhard)amSPA(ω1) · · · amSPA(ωn−1)

ael(ωhard)ael(ω1) · · · ael(ωn−1)
, (17)

where M(1)mSPA
Born is the first-order Born amplitude evaluated in

mSPA.
The Monte Carlo routine introduced here generates multi-

photon events in SPA. Each scattering event is assigned two
weights (16) and (17) using the four methods for selecting
the hard photon, described at the beginning of this section. In
order to check the combined approach against data (where
available) and against SPA simulations, we embedded the
combined Monte Carlo routine into SIMC, a Monte Carlo
simulation for electron scattering experiments from TJNAF
[17]. This data analysis code uses a version of the mSPA
which does not choose a hard photon from a given multiphoton
bremsstrahlung event, but treats all photons in SPA. In addition
it uses the peaking approximation [16,17]. Thus we were able
to compare the error associated with the use of the SPA with
other sources of errors.

In order to additionally include the effect of proton
bremsstrahlung in the combined approach, we inserted it,
assuming the mSPA is a good approximation for proton
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bremsstrahlung, the overall effect of proton bremsstrahlung
being small anyway. The first-order electron bremsstrahlung
is still calculated exactly. This was achieved by modifying the
weight (16) into

wcomb
nγ ≡ [|M1γ (ωhard)|2 + ∣∣M(1)

Born

∣∣2
arest(ωhard)

]

× amSPA(ω1) · · · amSPA(ωn−1)∣∣M(1)
Born

∣∣2
ael(ωhard)ael(ω1) · · · ael(ωn−1)

, (18)

where arest(ωhard) is the angular distribution (7) without the
electron-electron terms. [In addition (7) has been divided by
ω0

hard.] We generated the photon angular distribution using this
approach, comparing it to the combined calculation without
the proton (16).

IV. RESULTS

To test the combined calculation we simulated the missing-
energy distributions and the photon angular distributions at
several kinematic settings. 107 events per run were generated
in order to get good statistics for the different yields. The results
turned out to be indistinguishable under approaches 1, 2, and 3
for choosing the hard photon (see previous section). Only the
random choice of the hard photon (approach 4) deviated from
the other methods. The results presented in this section are
therefore based on approach 1, which is simple to implement
and to use.

Figures 3 and 4 show multiphoton missing-energy distri-
butions, once calculated in mSPA (17), once calculated using
the combined approach (16) for two kinematic settings. We
see that the mSPA calculations overestimate the radiative
tails. While the deviations between the two calculations are
of the order of a few percent for missing energies below
Em = 100 MeV, the deviations become considerably larger
toward the far ends of the radiative tails.

0 100 200 300 400 500
missing energy [MeV]

10

10

10

yi
el

d

0 250 500

0%

20%

40%

(2) (1)

Q2 =2.0GeV2

FIG. 3. (Color online) Missing energy distribution for multi-
photon bremsstrahlung. The solid curve (1) (green) was obtained
using the modified SPA weight (17). The dotted curve (2) (red)
represents the combined approach using weight (16). The inset graph
shows the deviation between the two curves in percent, normalized to
the combined result. At Em = 100 MeV the modified SPA calculation
overestimates the radiative tail by 3.9%, at Em = 500 MeV the
deviation is 29%. The momentum transfer is Q2 = 2.0 GeV2.

0 100 200 300 400 500
missing energy [MeV]

10
−3

10
−2

10
−1

yi
el

d

0 250 500

0%

10%

20%

(2)
(1)

Q =8.0GeV
2 2

FIG. 4. (Color online) Missing-energy distribution for multipho-
ton bremsstrahlung. The attribution of the curves is as above in Fig. 3.
At Em = 100 MeV the modified SPA calculation overestimates the
radiative tail by 3.0%, at Em = 500 MeV the deviation is 17%. The
momentum transfer is Q2 = 8.0 GeV2.

Since we want to evaluate the importance of the SPA in
multiphoton radiative corrections it is important to compare
the effect of the improved radiative corrections to other sources
of errors, present in (e, e′p) experiments. On top of radiative
corrections, (e, e′p) experiments are, e.g., corrected for finite
detector resolution, for particle decays, and for multiple
scattering [17,18].

The simulations shown in Figs. 5 and 6 take into account
radiative corrections, detector resolution, particle decays, and
multiple scattering. They indicate that the combined approach
has an impact on the missing-energy distribution which is
not dominated by the other corrections. The radiative tails
calculated following the combined approach are stronger than
the radiative tails obtained with the standard SIMC radiative
correction procedure for all kinematic settings considered.

1

10

10 2

10 3

10 4

0 0.2 0.4 0.6
missing energy [GeV]

yi
el

d

(1)

(2)

FIG. 5. (Color online) Missing-energy distribution for multipho-
ton bremsstrahlung simulated with SIMC. The solid curve (1) (black)
represents the standard SIMC modified SPA radiative corrections. The
dotted curve (2) (red) shows the Em distribution obtained by inserting
our combined radiative correction approach into SIMC. The latter one
has more strength in the radiative tail. The total yield differs by 2.3%.
The momentum transfer is Q2 = 2.0 GeV2, as in Fig. 3.
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FIG. 6. (Color online) Missing-energy distribution for multipho-
ton bremsstrahlung simulated with SIMC. The attribution of the curves
is the same as in Fig. 5. The total yield differs by 1.4%. The
momentum transfer is Q2 = 8.0 GeV2, as in Fig. 4.

As a second observable we considered the angular distribu-
tion of the bremsstrahlung photons. As for the missing-energy
distributions we first looked at radiative corrections only.
Then we additionally took into account other corrections. The
photon angular distributions are shown in Figs. 7 and 8. For
all kinematic settings the mSPA calculations overestimate the
angular distribution in the vicinity of the incident electron, that
is, at small angles. As for the missing energy the question is
whether this deviation can be seen in the data, or whether other
sources of errors dominate the photon angular distribution. In
order to determine the impact of the combined approach on
the photon angular distribution we resort again to SIMC, as in
the case of the missing-energy distribution.

Using standard SIMC for comparison implies that the peak-
ing approximation is employed [17]. It is clear that the photon
angular distribution, generated in SIMC’s standard radiative
correction approach differs from the combined approach even
more than the mSPA from the combined calculation shown in
Figs. 7 and 8 (see also Ref. [10]). The peaking approximation

0 10 20 30 40 50
photon angle [degrees]

0.00

0.05

0.10

yi
el

d

(2)
(1)

FIG. 7. (Color online) Angular bremsstrahlung photon distribu-
tion. The solid curve (1) (green) represents the modified SPA, the
dotted curve (2) (red) shows the combined approach. The SPA
distribution deviates from the combined calculation especially in the
vicinity of the incident electron, around 0◦. The kinematic settings
are as in Fig. 3.

0 20 40 60
photon angle [degrees]

0.00

0.05

0.10
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yi
el

d
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FIG. 8. (Color online) Angular bremsstrahlung photon distribu-
tion. The attribution of the curves is as in Fig. 7. The SPA distribution
deviates from the combined calculation especially in the vicinity of
the incident electron, around 0◦. The kinematic settings are as in
Fig. 4.

and thus the standard SIMC analysis code is known not to
describe the experimental angular distribution accurately in
between the two radiation peaks coming from the incident
and the scattered electron [10]. Nevertheless, looking at the
photon angular distributions both with the standard SIMC

code and with the modified version of SIMC, containing
our combined simulation, gives us the opportunity to rate
the impact of our approach compared to the standard SIMC

radiative correction procedure. Where available, we compared
the different approaches to data.

Figures 9 and 10 show the photon angular distributions as
generated by SIMC in comparison to our combined approach.
The largest deviations between the two appear in the middle
between the peaks due to e and e′ bremsstrahlung. This is in

FIG. 9. (Color online) Angular bremsstrahlung photon distribu-
tion generated with SIMC. The solid curve (1) (black) represents the
standard SIMC modified SPA calculation. The dotted curve (2) (red)
shows the angular distribution simulated with the combined approach.
The largest difference between the standard SIMC treatment and the
data occurs in the middle between the e and e′ directions and in the
height of the two peaks. This is due to the peaking approximation
which is used by the standard SIMC code; it overestimates the peaks.
The comparison with experimental data can be found in Fig. 11. The
kinematics are the same as in Figs. 3 and 7.
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FIG. 10. (Color online) Angular bremsstrahlung photon distribu-
tion generated with SIMC. The attribution of the curves is the same as
in Fig. 9 but there was no data available for these kinematic settings.
They are the same as in Figs. 4 and 8.

contrast to Figs. 7 and 8 where deviations occur at small angles.
This indicates that the small deviations between SPA and
combined approach seen at small angles (see Figs. 7 and 8) are
washed out by other effects. The photon angular distribution
is not affected by the SPA and by the combined approach. The
dominant approximation is the peaking approximation here.

Figure 11 shows experimental data for the photon angu-
lar distribution reconstructed from the H(e, e′p) scattering
(TJNAF experiment E97-006, [22,23]) and verifies this con-
clusion. This measurement at Q2 = 2.0 GeV2 shows that both
the mSPA calculation and the combined approach describe the
data well.

As can be seen in Fig. 12, including mSPA proton
bremsstrahlung does not change the photon angular distri-

FIG. 11. (Color online) Angular bremsstrahlung photon distri-
bution for H(e, e′p) scattering generated with SIMC and compared
to data. The bump on the right hand side at the proton direction is
an artefact due to protons punching through the spectrometers. The
dash-dotted curve (1) (green) and the (2) (red) curve show standard
SIMC photon distributions, both using different versions of the peaking
approximation. The dotted curve (3) (black) represents the data. The
solid line (4) (magenta) is the new combined approach implemented
into SIMC. Additionally there is a blue line (5) from Ref. [10] showing
a full angular SPA simulation. The kinematics are the same as in
Figs. 3 and 7. The combined approach (4) fits the data well.

0 20 40 60
0.000

0.025

0.050

0.075

0.100

photon angle [degrees]

yi
el

d

(1)

(2)

FIG. 12. (Color online) Photon angular distribution with (1)
(solid curve, red) and without (2) (dotted curve, black) SPA proton
bremsstrahlung. The simulation neglecting proton bremsstrahlung
overestimates the electron peaks slightly. In the rest of the photon
angle domain the two curves coincide. The momentum transfer
Q2 = 2.0 GeV2.

bution considerably. Neglecting the proton bremsstrahlung
just leads to a slight overestimation of the peaks due to
electron bremsstrahlung. The missing energy is not changed
at all by including proton bremsstrahlung (see Fig. 13). We
conclude that the proton bremsstrahlung does not influence
the results significantly and therefore mSPA can be used
safely.

We observe that in the case considered here the com-
bined approach reproduces the experimental photon angular
distribution much better than the standard SIMC simulation
using the peaking approximation. The combined approach
presented in this manuscript and the full angular approach from
Ref. [10] are much closer to each other and to the data than the
standard SIMC simulations, indicating, again, that removal of
the peaking approximation is more important for the photon
angular distribution than the partial removal of the SPA, as
presented here.
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FIG. 13. (Color online) Missing energy with (1) (solid curve, red)
and without (2) (dotted curve, black) SPA proton bremsstrahlung.
The two curves are hardly distinguishable. The momentum transfer
Q2 = 2.0 GeV2.
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V. DISCUSSION AND CONCLUSION

We have shown that it is feasible to improve (e, e′p)
radiative corrections by partially removing the SPA from
multiphoton bremsstrahlung processes. Our results are invari-
ant under three different approaches to choosing the hard
photon whereas a random choice of the hard photon is
neither consistent with the other three approaches nor with
a comparison to data. Treating one photon as a hard photon
improves the kinematic treatment of the (e, e′p) reaction.

We compare the combined approach to multiphoton mSPA
calculations, looking at the missing-energy distribution. The
mSPA overestimates the radiative tail for different kinematic
settings. In order to check whether the combined treatment
has an influence when considering additional experimental
corrections we subsequently inserted our combined calculation
into an existing data analysis code, which in its standard
version is using the peaking approximation and a version of
mSPA, in addition to other corrections [8,17]. We showed that
that our combined approach has an impact on the missing-
energy distribution and that it was not hidden by other sources

of background and other effects like, e.g., detector resolution.
The computational expense of the combined method was
small, at most a factor of 2, compared to a standard data
analysis code.

Similarly, we showed that the photon angular distribution
was overestimated by mSPA especially at small angles, in
the vicinity of the incident electron. Inserting our combined
approach into SIMC we saw large deviations between the
standard SIMC photon angular distribution and our combined
approach. The bulk of this difference was due to the peaking
approximation, as has already been suggested in Ref. [10]. The
photon angular distribution is hardly sensitive to deviations
originating from mSPA.

Our combined approach takes radiative corrections for
(e, e′p) experiments beyond both the peaking approximation
and the soft-photon approximation. And it treats both the
kinematic impact of multiphoton bremsstrahlung and the
evaluation of the form factors at modified momentum transfers
more systematically than previous (e, e′p) radiative correction
procedures. We have also shown that the SPA can safely be
used for proton bremsstrahlung.
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