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Calculation of fission observables through event-by-event simulation
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The increased interest in more exclusive fission observables has demanded more detailed models. We present
here a new computational model, FREYA, that aims to meet this need by producing large samples of complete
fission events from which any observable of interest can then be extracted consistently, including arbitrary
correlations. The various model assumptions are described and the potential utility of the model is illustrated by
means of several novel correlation observables.
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I. INTRODUCTION

Nuclear fission presents an interesting and challenging
physics problem that is still, about 70 years after its discovery,
relatively poorly understood. Although much of the key
physics involved is understood qualitatively, a quantitative
description is still not in sight, despite vigorous efforts by
many researchers.

Because of its inherent complexity, fission provides an
important testing ground for both static and dynamical nuclear
theories. Furthermore, fission is also important to society at
large because of its many practical applications, including
energy production and counterproliferation, topics of current
urgency.

Whereas the more traditional treatments of fission (see
Ref. [1] and references therein) have sought to describe
only fairly integral fission properties, such as the average
energy release and the average differential neutron yield,
many modern applications require more exclusive quantities,
such as fluctuations in certain observables (e.g., the neutron
multiplicity) and correlations between between different ob-
servables (e.g., neutrons and photons). There is thus a need for
developing models that include the treatment of fluctuations
and correlations.

A potentially powerful approach toward meeting this
challenge is to develop simulation models that can generate
samples of complete fission events, because a subsequent
event-by-event analysis could then provide any specific cor-
relation observable of interest. Furthermore, due to the more
detailed quantities that they can address, such models can
provide valauble guidance to experimentalists with regard to
which observables are most crucial for further progress in the
understanding of fission.

Relatively recently, Lemaire et al. [2] presented a Monte
Carlo simulation of the statistical decay of fission fragments
from spontaneous fission of 252Cf and thermal fission of 235U
by sequential neutron emission. That work demonstrated how
fission event simulations, in conjunction with experimental
data on fission neutrons and physics models of fission and
neutron emission, can be used to predict the neutron spectrum
and to validate and improve the underlying physics models.

We have developed a conceptually similar calculational
framework within which large samples of complete fission

events can be generated, starting from a fissionable nucleus at a
specified excitation energy. The associated computational code
is denoted FREYA (fission reaction event yield algorithm). We
present here the model in its most basic form that, though quite
simplistic in many regards, is already capable of producing
interesting results, as we shall illustrate. Furthermore, FREYA
was employed in a recent study of sequential neutron emission
following neutron-induced fission of 240Pu [3].

In its present early form, FREYA ignores the possibility of
neutron emission from the nucleus prior to its fission (nth
chance fission), and its applications are therefore limited to
lower energies, such as thermal fission.

In Secs. II and III we describe how a single fission event
is being simulated in the pilot version of FREYA. By repeating
the procedure a large number of times, we may generate an
entire sample of final fission events, each one consisting of
two (slightly excited) residual product nuclei and the various
emitted neutron and photons, each one with its associated
momentum. In the development of the numerical code, special
care has been taken to design the various algorithms for fast
execution. As a result, FREYA runs fairly fast, thus making it
practical to generate sufficiently large event samples to permit
detailed correlation analyzes. In Sec. IV we discuss a number
of illustrative results.

II. FISSION

When the possibility of prefission radiation is ignored, the
first physics issues concern how the mass and charge of the
initial compound nucleus is partitioned among the two fission
fragments and how the available energy is divided between
the excitation of the two fragments and their relative kinetic
energy.

A. Fission-fragment mass and charge distributions

In our current understanding of the fission process, the
evolution from the initial compound nucleus to two dis-
tinct fission fragments occurs gradually as a result of a
dissipative multidimensional evolution of the nuclear shape.
However, because no quantitatively reliable theory has yet
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been developed for this process, we employ empirical evidence
as a basis for selecting the mass and charge partition. Thus,
the mass and charge partition of the fissioning nucleus A0Z0 is
determined by first selecting the mass partition from a specified
probability distribution P (Af ) and subsequently selecting the
charge partition from the associated conditional probabibilty
distribution PAf

(Zf ).
In a given event, the mass number Af of one of the fission

fragments is selected randomly from a probability density
P (Af ) for which we employ five-Gaussian fits to the product
mass number distribution [4] shifted upward in mass to ensure
a symmetric distribution of the primary fragments,

P (Af ) =
m=+2∑
m=−2

NmGm(Af ) (1)

where each of the five Gaussians has the form

Gm(Af ) = (
2πσ 2

m

)− 1
2 e−(Af −Af −Dm)2/2σ 2

m . (2)

Contrary to Ref. [4], we are interested in the primary (i.e.,
pre-evaporation) fragment distribution rather than the final
(postevaporation) product distribution and therefore use Af =
1
2A0. The fitted values of the normalizations Nm = N−m;
the displacements Dm = D−m; and the dispersions σm = σ−m

have some dependence on the excitation energy E∗
0 . Because∑

A P (A) = 1 we have N0 + 2N1 + 2N2 = 1.
It should be noted that the normalizations Nm are not

quite correct because the sum over the integer fragment mass
numbers Af does not yield the exact integral of the Gaussian
and the range of the fragment mass numbers Af is finite.
Because neither of these inaccuracies plays a noticeable role,
we shall ignore them in the present preliminary treatment.
We also note that merely back-shifting the average Af but
not reducing the widths σm (to take account of the smearing
due to the neutron evaporation) will lead to a product mass
distribution that is a bit too wide (because the smearing effect
of the neutron evaporation will, in effect, be taken into account
twice). However, this effect is rather small and is ignored in
the present treatment.

For the subsequent selection of the fragment charge number
Zf , we follow Ref. [2] and employ a normal distribution,

PAf
(Zf ) ∝ e−(Zf −Zf )/2σ 2

Z (3)

with the condition that |Zf − Zf | � 5σZ . The centroid is
determined by demand that the fragments have the same
charge-to-mass ratio as the fissioning nucleus, on average,
Zf = Af Z0/A0. We use the values of the dispersion σZ

measured by Reisdorf et al. [5], 0.40 for 236U(n, f ) and 0.50
for 239Pu(n, f ). [There appears to be an error (presumably
typographical) in the expression (2) for P (Z) in Ref. [2]: the
pre-exponential factor should be a square root for P (Z) to be
normalized to unity.]

B. Scission energetics

We obtain the fission energetics by assuming that the two
fission fragments lose contact at a certain scission configura-
tion that we take to be two coaxial spheroidal prefragments

with a specified tip separation d. For the time being, we ignore
the nuclear proximity attraction between the two prefragments
as well as any possible relative motion at the time of scission.
These two effects, which counteract one another, are relatively
small but should ultimately be considered.

We introduce some degree of distortion of the prefragments
relative to their ground-state shapes, due to their mutual
Coulomb repulsion. This is done primarily to ensure that the
resulting fragment excitations (and hence the neutron multi-
plicities) roughly resemble those observed. Thus, generally,
the deformation of the fragment at scission, εsc, is larger than
that of the ground state, εgs. The associated distortion energy is
calculated by using the small-deformation approximation [6],
δV = 8

45 [E0
S − 1

2E0
C](ε2

sc − ε2
gs), which suffices at this early

stage of the development. (Here we use the macroscopic
expressions for the surface energy E0

S and the Coulomb energy
E0

C for the spherical shape, as described in Appendix A.) The
distortion moves the prefragment centers apart, for any fixed
tip separation d, and thus lowers the mutual Coulomb repulsion
V C

ij .
It follows that there are two contributions to the total

excitation of each prefragment,

E∗
i = δVi + Qi, (4)

namely the distortion energy δVi and the statistical excitaiton
(heat) Qi .

The Coulomb repulsion between the two deformed prefrag-
ments is calculated by means of the formula derived in Ref. [7]
for two coaxial, uniformly charged spheroids,

V C
ij = e2 ZiZj

ci + cj + d
F (xi, xj ). (5)

The factor F is unity for two spheres and larger if one or
both fragments are prolate. It depends on the dimension-
less deformation measures xi given by x2

i = (c2
i − b2

i )/R2
i ,

where ci = Ri[1 + 1
3ε]/[1 − 2

3ε]2/3 is the major axis and
bi = Ri[1 − 2

3ε]/[1 + 1
3ε]1/3 is the minor axis, while Ri is

the average radius of the fragment.
Once the fragments have lost contact, they are accelerated

by their mutual Coulomb repulsion and their shapes relax
to their equilibrium forms. The scission distortion energies
are converted into additional statistical excitations of the
respective fragments. We assume that these processes have
been completed before the de-excitation processes begin.

With the (significant) simplifications described above, we
have the following simple energy relations for any particular
fission channel, A0Z0 → ALZL + AHZH ,

M∗
0 = M

gs
0 + E∗

0 = M
gs
L + E∗

L + M
gs
H + E∗

H + V C
LH

= M∗
L + M∗

H + KLH . (6)

Here M
gs
i is the ground-state mass of the nucleus Ai Zi, i =

0, L,H , and E∗
i is its excitation, so M∗

i = M
gs
i + E∗

i is its
total mass. [The ground-state masses are taken from the
compilation by Audi et al. [8], supplemented by calculated
masses by Möller et al. [9] where no data are available.]
Furthermore, V C

LH is the Coulomb repulsion between the two
light and heavy fragments at scission. This energy is, by
fiat, fully converted into relative kinetic energy of the two
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receding fission fragments, KLH . Thus, in addition to ignoring
any possible postscission dissipation, we also disregard any
angular-momentum effects. While these effects are expected
to be small, it might be of interest to include them at a later time.
The Q value associated with the particular fission channel is
given by

Q0→LH = M
gs
0 + E∗

0 − M
gs
L − M

gs
H = KLH + E∗

L + E∗
H .

(7)

C. Thermal fluctuations

Once the scission configuration is known, its average
total internal (statistical) excitation energy, Q, can be readily
obtained,

Q ≡ QL + QH = M
gs
0 + E∗

0 − Msc
L − Msc

H − V C
LH , (8)

where Msc
i = M

gs
i + δVi is the mass of the distorted pre-

fragment of the scission configuration. We assume that this
internal energy Q is partitioned statistically between the two
prefragments, as would be the case when the two are in mutual
thermal equilibrium. Thus, on the average, the total excitation
energy is divided in proportion to the respective heat capacities.
These in turn are characterized by the Fermi-gas level-density
parameters ai that are approximately proportional to the
fragment masses Ai ; we use the values calculated in Ref. [10]
(see Appendix B). [We note that those calculations were
made for nuclei in their ground-state shapes, whereas the
scission prefragments are distorted and may thus have different
effective level-density parameters.] The mean excitation in a
nucleus is assumed to be Qi = aiT

2
i , so the heat capacity is

∂Qi/∂Ti = 2aiTi ∝ ai . Because the two prefragments in the
scission configuration have a common temperature, TLH =
[Q/(aL + aH )]1/2 = [Qi/ai]1/2, we use Qi = aiT

2
LH .

The fluctuations in the statistical excitation Qi are given by
the associated thermal variances, σ 2

i = 2QiTLH . The fluctua-
tions δQi are therefore sampled from normal distributions with
variances σ 2

i . The prefragment excitations in a given event are
then Qi = Qi + δQi .

As a result of the fluctuations in the statistical excitation
energies of the individual prefragments, Qi , the combined sta-
tistical excitation energy, Q = QL + QH , will also fluctuate.
This fluctuation in turn implies a compensating fluctuation
in the total fragment kinetic energy, so that KLH = KLH +
δKLH where

KLH = V C
LH , δKLH = −δQL − δQH . (9)

We note that the resulting thermal distribution of heat in
each prefragment is approximately Gaussian,

Pi(Qi) ≈ (
2πσ 2

i

)− 1
2 e−(Qi−Qi )

2/2σ 2
i . (10)

Consequently, the distribution of the combined amount of
heat in both fragments, Q = QL + QH , is also approximately
Gaussian and the associated variance is the sum of the
individual variances, σ 2

Q = σ 2
L + σ 2

H . Energy conservation
implies that the distribution of the total kinetic energy KLH is
a Gaussian with the same width, σK = σQ, as was assumed in
Ref. [2].

It is physically reasonable that the partioning of the
total energy between kinetic energy and internal excitation
fluctuates because the evolution of the fissioning system from
saddle to scission is a dissipative process. The associated
conversion of the collective energy to heat is the result of many
elementary stochastic processes. The fluctuation-dissipation
theorem then relates the average energy loss (the dissipation)
to the associated fluctuation. Energy conservation demands
that the fluctuations in the kinetic energy are exactly the
opposite of those in the internal excitation. These, in turn, are
given by the above thermal expressions insofar as statistical
equilibrium is maintained during the shape evolution from
saddle to scission. [We ignore the possibility that the scission
configuration itself might also fluctuate from one event to
another for a given fission channel.]

Once the relative kinetic energy KLH has been obtained
as described above, the magnitude of the relative momentum,
pLH , of the fully accelerated fragments is then determined.
Because the kinetic energy is relatively small (KLH ≈
200 MeV, while M∗

0 > 200 GeV), we may safely assume
that KLH � M∗

i and use nonrelativistic kinematics, p2
LH =

2µLH KLH , where the reduced fragment mass is µLH =
M∗

LM∗
H/(M∗

L + M∗
H ) with M∗

i = Msc
i + Qi = M

gs
i + δVi +

Qi being the total mass of the excited prefragment. Ignoring
any angular momentum effects, we select the fission direction
V̂ randomly. The fragment momenta are then PL = pLH V̂
and PH = −pLH V̂ , in the frame of the fissioning nucleus.

III. POSTFISSION RADIATION

As mentioned above, we assume that the two excited
fragments do not begin to de-excite until after they have been
fully accelerated by their mutual Coulomb replusion and their
shapes have reverted to their equilibrium form, which we take
to be those of their ground states. [In principle, the equilibrium
shape of a nucleus depends on its excitation because both shell
effects and surface tension are temperature dependent, but we
have ignored this relatively minor complication at this time.]
Furthermore, we ignore the possibility of charged-particle
emission from the fission fragments.

Each of the fully relaxed and accelerated fission fragments
typically emits one or more neutrons as well as a (larger)
number of photons. We assume that neutron evaporation
has been completed (i.e., no further neutron emission is
energetically possible) before photon emission sets in. This
simplifying assumption obviates the need for knowing the
ratio of the widths, �γ (E∗

i )/�n(E∗
i ).

A. Statistical evaporation of neutrons

We treat postfission neutron radiation by iterating a simple
treatment of single neutron evaporation until no further neutron
emission is energetically possible.

Statistical neutron evaporation is but one example of a
general two-body decay. In the present case, the initial body is
an excited nucleus with a total mass equal to its ground-state
mass plus its excitation energy, M∗

i = M
gs
i + E∗

i . The Q

value for neutron emission is then Qn = M∗
i − M

gs
f − mn,
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where M
gs
f is the ground-state mass of the daughter nucleus

and mn is the mass of the (unexcitable) ejectile (the neutron).
The Q value equals the maximum possible excitation energy
of the daughter nucleus, which is achieved for vanishing final
relative kinetic energy, Qn = Emax

f , which would be obtained
if the emitted neutron had no kinetic energy. It is related
to the associated maximum daughter temperature T max

f by
af (T max

f )2 = Emax
f , where af is the level-density parameter

of the daughter nucleus (see Appendix B).

1. Spectral profile

Once the Q value is known, it is straightforward to sample
the kinetic energy of an evaporated neutron, assuming that it
is isotropic in the rest frame of the emitting nucleus. We first
note that the kinetic energy of the neutron has the form εn =
p2

n/2mn while vn ∝ √
εn (nonrelativistically) so that d3 pn ∝√

εndεn for isotropic emission. The differential distribution is
then [11,12]

d3ν

d3 pn
d3 pn ∝ √

εn e−εn/T max
f

√
εndεn d


= εn e−εn/T max
f dεn d
 (11)

in the rest frame of the emitting nucleus. The form√
εn exp(−εn/T ) can be understood as the product of the

thermal occupancy of the neutron, ∝ exp(−εn/T ), and its
normal speed vn ∝ √

εn that introduces a bias in favor of those
neutrons that are moving perpendicular to the nuclear surface.

The kinetic energy of the evaporated neutron, εn, is sampled
by means of a specific fast algorithm that is described in
Appendix C. We note that the form of the energy spectrum
implies that the evaporated neutron has a mean (relative)
kinetic energy of 〈εn〉 = 2T max

f and an associated variance
of 2(T max

f )2. These expressions apply to the particular stage of
the evaporation chain. Generally, the first neutron evaporated
from the fragment will tend to have a higher energy than the
second one and so on.

2. Kinematics

Although relativistic effects are very small, we wish to
take them into account to ensure exact conservation of energy
and momentum, which is convenient for code verification
purposes. We therefore take the above sample value ε to
represent the total kinetic energy in the rest frame of the mother
nucleus, i.e., it is the kinetic energy of the emitted neutron
plus the recoil energy of the residual daughter nucleus. The
excitation energy in the daughter nucleus is then given by

E∗
f = Qn − εn. (12)

Because the relativistic mass of the daughter nucleus is
M∗

f = M
gs
f + E∗

f , it is possible to calculate the momenta of
the emitted neutron and the excited daughter as follows.

Generally, if a particle of mass M decays into two particles
of masses m1 and m2, those two particles are emitted back-
to-back in the rest frame of the initial particle, with their
momenta having equal magnitudes. Denoting this common

momentum magnitude by p, application of elementary energy
conservation yields

M = E1 + E2 = [
m2

1 + p2
]1/2 + [

m2
2 + p2

]1/2
(13)

from which the magnitude p can be readily obtained,

4M2p2 = [
M2 − (m1 + m2)2

][
M2 − (m1 − m2)2

]
. (14)

The individual energies, Ei = [p2 + m2
i ]1/2, may then be

obtained subsequently. We employ the above formula with
M = M∗

i , m1 = mn, and m2 = M∗
f = M

gs
f + Qn − εn.

Assuming that the emission is isotropic (which follows from
the neglect of angular-momentum effects), we may readily
sample the direction of relative motion (ϑ, ϕ). The momentum
of the ejectile is then

pn = (p cosϕ sinϑ, p sinϕ sinϑ, p cosϑ), (15)

while the recoil momentum of the residue is the opposite,
Pf = − pn. These momenta are in the two-body center-of-
mass frame, the frame of the mother nucleus, which would
generally be moving. We therefore need to boost these
momenta to the overall reference frame (see Appendix D).

The emission procedure described above may be repeated
until no further neutron emission is energetically possible.
That happens when E∗

f < Sn, where Sn is the neutron
separation energy for the daughter nucleus, Sn = M(AZ) −
M(A−1Z) − mn.

B. Statistical emission of photons

Although, at this initial stage, our main focus is on neutron
evaporation, we wish to also include an approximate treatment
of photon emission. For this purpose we disregard nuclear
structure effects and treat the postevaporation photon cascade
in a manner that is similar to the neutron emission described
above. Clearly, this part can be refined by taking account of the
specific level structure in the fission fragments. Because the
photon is massless, we introduce an energy cutoff (see below).

Furthermore, the vanishing photon mass causes it to be
ultrarelativistic with pγ c = εγ and vγ = c. Consequently,

d3Nγ

d3 pγ

d3 pγ ∝ ε2
γ e−εγ /Tf dεγ d
 (16)

as was also used in Ref. [13]. For the first photon to be
emitted, Tf is the temperature in the nucleus right after the
last neutron was evaporated, af T 2

f = E∗
f , and generally it is

the temperature before the next photon is emitted.
The photon energy εγ is sampled by a fast algorithm (see

Appendix C) and the nuclear excitation energy is reduced cor-
respondingly, (E∗

f )′ = E∗
f − εγ . The spectral shape (16) yields

an average photon energy of 〈εγ 〉 = 3Tf and an associated
variance of 3T 2

f for a fixed value of Tf . Because, in principle,
the continuous form of the spectrum leads to an infinite
number of ever softer photons, we keep track of only those
with an energy above a specified threshold, εmin

γ = 200 keV.
For photons above that threshold, the emission direction is
sampled uniformly over 4π and a Lorentz boost is performed
to express the emitted photon and the nuclear residue in the
overall reference frame.
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This procedure is iterated until the nuclear excitation energy
falls below the specified minimum value εmin

γ .

IV. ILLUSTRATIVE RESULTS

Here, we wish to illustrate the utility of single-event
models like FREYA by presenting a number of correlation
observables that could not be addressed with earlier codes that
have tended to focus on more inclusive quantities. Obviously,
the present preliminary version of FREYA involves a number
of simplifying approximations and, consequently, the results
cannot be expected to be numerically accurate. Certainly, for
the most common observables, such as average multiplicities
and spectra, the most reliable results can undoubtedly be
obtained from the well-tuned codes that have long been
available. We expect that event simulation codes will, in due
course, achieve a similar level of accuracy. Meanwhile, they
may serve as useful supplements with which is will be possible
to address more detailed observables on an approximate level.

While the main purpose here is to illustrate the kind
of novel information that can be accessed with FREYA, we
wish to first show a number of more familiar observables.
Throughout we consider fission induced by thermal neutrons
on 235U and 239Pu. Fission induced by higher-energy neutrons
is not considered, because the possibility of prefission neutron
emission (and the associated nth chance fission) has not yet
been included.

A. Fission fragments

The most basic observable is perhaps the product mass
distribution P (Ap) that, by design, matches the fits to the
observed data and thus need not be displayed.

We therefore start by considering the kinetic energies of the
fission fragments. Figure 1 shows the combined kinetic energy
of both fragments, Ktot, as a function of the mass number of
the heavy fragment, AH , while Fig. 2 shows the kinetic energy
of a single fragment as a function of its mass number Af .
These results exhibit the general observed features, though the
detailed behavior is not yet expected to be accurate.

The figures show the mean values of the kinetic energies
as well as the associated dispersions. A quick comparison
of the two figures suggests that the variance of the total
kinetic energy is generally larger than the sum of the vari-
ances of the individual kinetic energies. This striking feature
is an elementary consequence of momentum conservation.
Because the two fragments emerge with opposite momenta,
the fluctuations in their kinetic energies are closely correlated.
As a result, the sum of the variances of the two individual
fragment energies, KL and KH , is significantly smaller than the
variance in the combined fragment energy KLH = KL + KH ,
namely σ 2(KL) + σ 2(KH ) = [1 − 2ALAH/A2

0] σ 2(KLH ). In
particular, for a symmetric split, AL =AH , we have σ (Ki) =
1
2σ (KLH ) hence σ (KLH )2 = 2[(σ (KL)2 + σ (KH )2].

While the total excitation of the emerging fragments is
related to their total kinetic energy by energy conservation,
its partition is less straightforward, depending both on the
relative heat capacities (i.e., level densities) and the scission
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FIG. 1. (Color online) The mean total kinetic energy, K tot, of
the two fission fragments, and the associated dispersion (bars),
as a function of the mass number of the heavy fragment, AH ,
for 0.53 MeV n on 235U (bottom) and 239Pu (top). The data from
Nishio [14] (with a few representative dispersions), Tsuchiya [15],
and Wagemans [16] are shown. The dispersions reflect the width of the
kinetic energy distribution and are not (experimental or theoretical)
uncertainties.

fluctuations. Figure 3 shows the mean fragment excitation
E

∗
f together with the associated dispersion, as a function

of the fragment mass number Af . In the present model,
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FIG. 2. (Color online) The mean kinetic energy of a single
fragment and the associated dispersion (bars) as a function of its
mass number Af , for 0.53 MeV n on 235U (bottom) and 239Pu (top).
Pu data from Nishio [14] and Tsuchiya [15] are shown.
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the division of the available energy between kinetic and
excitation is sensitive to the degree of distortion of the scission
prefragments, a property that in turn depends on the shell
structure of the specific nuclides.
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FIG. 5. (Color online) Multiplicity distributions for neutrons
emitted by the light (top), the heavy (middle), or either (bottom)
fragment resulting from thermal-neutron induced fission of 235U
(circles, blue) and 239Pu (squares, red).

B. Neutron multiplicities

The fission fragment excitation energies E∗(Af ) (see
Fig. 3) largely determine the multiplicities of evaporated
neutrons ν(Af ). This correspondance is clearly seen in
Fig. 4, which shows the mean neutron multiplicity ν(Af ) and
the associated dispersion σν(Af ). We note that the observed
sawtooth shape is roughly reproduced, though the detailed
behavior is not completely satisfactory.

The overall neutron multiplicity distribution P (ν) is shown
in Fig. 5. This figure also shows the separate multiplicity
distributions P (νL) and P (νH ) for the number of neutrons νL

and νH that were emitted by the light or the heavy fragment,
respectively, a quantity that is difficult to obtain experi-
mentally. The associated average multiplicities are shown in
Table I (νL ≡ 〈νL〉, etc.).

We note that the light fragment tends to emit more than
its “fair share” of neutrons, a reflection of the fact that the
excitation energy is not divided solely in proportion to mass.
Furthermore, as the correlation coefficient CLH shows, there
is a slight anticorrelation between νL and νH . This feature
is presumably a result of the anticorrelation between the
excitations of the two partner fragments caused by the thermal
fluctuations of the heat partition at scission.

Finally, Fig. 6 shows how the average total fragment kinetic
energy of the fission products and their excitation depend on

TABLE I. The mean number of neutrons emitted from either
the light fragment, νL, the heavy fragment, νH , or either fragment,
ν = νL + νH , in fission events induced by thermal neutrons on
235U and 239Pu. Also shown is the correlation coefficient CLH ≡
σ (νL, νH )/[σ (νL)σ (νH )].

νL νH ν CLH

n + 239Pu 1.53 1.43 2.96 −0.19
n + 235U 1.23 1.23 2.47 −0.12
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FIG. 6. (Color online) The mean total kinetic of energy the fission
products together with the associated dispersions (bars), as a function
of the neutron multiplicity in the event, for 0.53 MeV n on 235U
(bottom) and 239Pu (top).

the number of evaporated neutrons ν. The decreasing character
of the curves is easily understood because larger neutron
multiplicities tend to arise from higher fragment excitations,
which occurs in events with lower kinetic energies.

C. Neutron energies

We now turn to the kinetic energies of the evaporated
neutrons. Figure 7 shows the fragment-mass dependence of
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FIG. 7. (Color online) The mean neutron energy εn (curves)
together with its dispersion (bars) as a function of fragment mass
Af for 0.53 MeV n on 235U (bottom) and 239Pu (top).

TABLE II. The mean kinetic energy εn (MeV) of the neutrons
evaporated from the light fragment (L), the heavy fragment (H ), or
from either one (L + H ), as a function of the respective multiplicity
νL, νH , or ν, in fission events induced by thermal neutrons on 235U
(bottom) and 239Pu (top).

ν All 1 2 3 4 5 6 7

L 2.30 2.38 2.30 2.19 2.02
Pu H 1.64 1.70 1.64 1.58 1.50 1.34 1.17

L + H 1.98 2.10 2.09 2.01 1.93 1.82 1.74 1.68

L 2.18 2.22 2.17 2.05 1.85
U H 1.50 1.56 1.46 1.39 1.24

L + H 1.84 1.85 1.88 1.84 1.79 1.73 1.67 1.55

the mean kinetic energy with respect to the frame of the
emitting nucleus together with the associated dispersion of
the kinetic-energy distribution.

The neutron spectra depend somewhat on the number of
neutrons emitted. This is summarized in Table II, which shows
the mean kinetic energy of neutrons emitted from the light
fragment, the heavy fragment, or from either one as a function
of the respective neutron multiplicities νL, νH , and ν = νL +
νH .

The mean energies, as seen in the laboratory, as well as
the associated dispersions, are displayed in Fig. 8 for the
three neutron categories. In each case, there is an overall
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FIG. 8. (Color online) The mean kinetic energy and the associated
dispersions of all the neutrons emitted in fission events with a specified
total neutron multiplicity ν, induced by thermal neutrons on 239Pu
and 235U (solid curve, black dots), as well as the mean kinetic energy
and the associated dispersions of all the neutrons emitted from the
light fragment as a function of the corresponding multiplicity νL

(dashed curve, green squares) and the mean kinetic energy and the
associated dispersions of all the neutrons emitted from the heavy
fragment as a function of the corresponding multiplicity νH (dashed
curve, red diamonds).
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FIG. 9. (Color online) The spectral shape of neutrons evaporated
from the light (top), the heavy (middle), or either (bottom) fragment
for specified values of the respective multiplicity νL, νH , or ν, in
fission induced by thermal neutrons on 235U.

relatively modest decrease of the average neutron energy (and
a corresponding narrowing of the distribution) as the neutron
multiplicity is increased. This feature would be expected
since the available energy must be shared among more
neutrons.

The full multiplicity-gated spectral shapes are shown in
Figs. 9 (for U) and 10 (for Pu). It is apparent that the spectra
become progressively softer at higher multiplicities. This type
of information is not provided by the standard models and is
therefore novel.

D. Neutron-neutron angular correlations

The event-by-event calculation makes it straightforward ex-
tract the angular correlation between two evaporated neutrons,
an observable that has long been of experimental interest (see,
for example, Refs. [20–22] and references therein) but that
cannot be addressed with the standard models of fission.
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FIG. 10. (Color online) Similar to Fig. 9 but for n + 239Pu.
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FIG. 11. (Color online) The angular correlation between two
evaporated neutrons for 0.53 MeV n on 235U and 239Pu, considering
only neutrons with a kinetic energy above 1 MeV.

Figure 11 shows this quantity for the neutrons resulting
from fission induced by thermal neutrons on 235U and 239Pu.
The analysis shown included only neutrons with kinetic energy
above a threshold of 1 MeV. The results look qualitatively sim-
ilar for other threshold energies, with the angular modulation
growing somewhat more pronounced as the threshold is raised
(while the counting statistics is correspondingly reduced).

We see that the neutrons tend to be either forward or
backward correlated. The backward correlation appears to be
somewhat favored, as would be expected from the relatively
small but negative value of the multiplicity correlation coeffi-
cient CLH shown in Table I.

E. Neutron-photon correlations

The final illustration is relevant for the correlation between
the neutron and photon multiplicities. Figure 12 shows
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FIG. 12. (Color online) The mean total excitation energy of the
two fission products, together with the associated dispersions (bars),
as a function of the neutron multiplicity in the event, for 0.53 MeV n
on 235U (bottom) and 239Pu (top).
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TABLE III. The mean neutron multiplicity ν = 〈ν〉 and the
associated dispersion σν , the mean photon multiplicity µ = 〈µ〉 and
the associated dispersion σµ, and the neutron-photon multiplicity
covariance σνµ ≡ 〈νµ〉 − νµ together with the corresponding cor-
relation coefficient Cnγ = σνµ/[σνσµ], for photons with transition
energies above 200 keV.

ν σν µ σµ σνµ Cnγ

n + 239Pu 2.97 1.03 5.67 2.49 −0.84 −0.33
n + 235U 2.49 0.96 5.40 2.40 −0.79 −0.34

the combined excitation left in the two product nuclei as
a function of the total number of evaporated neutrons.
When more neutrons are emitted the residual product nuclei
are less excited. This feature appears to be reasonable
because a larger-than-average number of neutrons is likely to
have used up a larger-than-average portion of the total available
excitation energy, thus leaving a less-than-average amount of
residual excitation.

Because the average number of photons emitted from a
given product increases monotonically with excitation, the
results in Fig. 12 provide a qualitative indication of the
correlation between the number of neutrons evaporated and
the number of photons emitted during the further de-excitation
of the product nuclei. Our simulations thus suggest that the two
multiplicities are anticorrelated: the more neutrons the fewer
photons.

This qualitative expectation is borne out by Table III,
which summarizes the result of including the actual photon
multiplicity µ into the analysis. The covariance between ν

and µ is indeed negative and the corresponding correlation
coefficient is about minus one-third, suggesting a fairly
significant degree of anticorrelation.

V. CONCLUDING REMARKS

Over the past few years, experimental capabilities have
improved dramatically while the practical applications of fis-
sion have broadened significantly. As a consequence, there has
been an growing need for calculations of increasingly complex
observables that are beyond the scope of the traditional models
employed in the field.

To meet this need, we have developed a new calculational
framework, FREYA, which can generate large samples of
individual fission events. From those it is then possible to
extract any specific correlation observable of interest, without
the need for further approximation. In developing FREYA, we
have sought to make the numerics sufficiently fast to facilitate
use of the code as a practical calculational tool. (Thus, on a
MacBook laptop computer, it takes about 12 s to generate one
million events.)

Our early emphasis has been on creating a working code that
can produce samples of reasonably realistic fission events and
form a convenient basis for gradual refinements. (Its simple
modular structure should facilitate such further developments.)

Consequently, the present version is still rather rough and
cannot compete for quantative accuracy with established
models without suitable ad hoc parameter adjustments (see
Ref. [3]). Even so, the model has already proven to be capable
of making interesting predictions for correlations of interest
in variety of contexts and we foresee an increased number of
applications.
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APPENDIX A: LIQUID-DROP MODEL

For simplicity, we use here the liquid-drop model [23]
for the macroscopic part of the nuclear binding energy.
Accordingly, the surface and Coulomb energy of a spherical
nucleus are given by

E0
S(AZ) = a2A

2/3

[
1 − κ

(
N − Z

2A

)2
]

(A1)

E0
C(AZ) = c3

Z2

A1/3
(A2)

with the Lysekil parameter values: a2 = 17.9439 MeV, κ =
1.7826, c3 = 3

5e2/r0 = 0.7053 MeV [24].
The distortion energies of the prefragments at scission are

based on the shape dependence of the surface and Coulomb
energies of macroscopic prolate nuclei [6]

ES(ε) = E0
CBS(ε) ≈ E0

S

[
1 + 8

45ε2
]

(A3)

EC(ε) = E0
CBS(ε) ≈ E0

C

[
1 − 4

45ε2]. (A4)

APPENDIX B: LEVEL DENSITIES

The relationship between the nuclear excitation energy
E∗ and the nuclear temperature T is generally somewhat
complicated. For the time being, we simply use the familiar
approximation T = √

ε∗/a, where ε∗ = E∗ − δEdef is the
statistical part of the excitation energy (the “heat”). For a given
nucleus (Zi,Ai) the level-density parameter ai is taken from
Ref. [25],

ai(E
∗) = Ai

e0

[
1 + δWi

Ui

(1 − e−γUi )

]
, Ui ≡ E∗ − �i (B1)

with e0 = 7.25 MeV and γ = 0.05. Here ãi = Ai/e0 is
the asymptotic level-density parameter whose parameter e0
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depends slightly on the specific value used for the damping
coefficient γ . The shell correction energies {δWi} and the
pairing energies {�i} are those calculated by Koura et al.
[10] for nuclei with 20 � Zi � 92. We note that ai(E∗ ≈
�) ≈ ãi{1 + δiγ [1 − 1

2 (E∗ − �i)]} is regular. Furthermore,
ai(E∗ = 0) ≈ ãi[1 + γ δWi] when γUi � 1, which is most
often the case. Finally, as E∗ is increased we have ai(E∗) →
ãi[1 + δWi/E

∗] → ãi ≡ Ai/e0.

APPENDIX C: SPECTRAL SAMPLING

It is possible to devise a fast algorithm for sampling the
spectral distribution (11) for the evaporated neutron, dN/dε ∝
ε e−ε/T . It is based on the observation that the function xe−x is
a (normalized) Poisson distribution of order 2. Hence it can be
expressed as the convolution of two (normalized) exponentials
(each of which is a Poisson distribution of order 1), P2 =
P1 ∗ P1 with P1(x) ≡ e−x ,

xe−x =
∫ ∞

0
dx1

∫ ∞

0
dx2δ(x1 + x2 − x) e−x1 e−x2 . (C1)

This is a special case of the general feature of Poisson
distributions, Pn+m = Pn ∗ Pm.

We may therefore obtain a sampled value of the kinetic
energy ε as the sum of two energies, ε1 and ε2, that have each
been sampled from a usual exponential distribution ∝ e−εi/T .
Because the sampling from an exponential distribution p(x) =
e−x is readily accomplished by sampling a random number η

that is uniformly distributed on the interval (0, 1] and then
taking the negative of its logarithm, x = − ln η, the relative
neutron kinetic energy is

εn = ε1 + ε2 = −[ln η1 + ln η2]T max
f , ηi ∈ (0, 1] (C2)

where the two numbers ηi have been sampled from (0, 1].
Because both mean values and variances are additive under
convolution and each exponential distribution yields 〈εi〉 = T

and σ 2(εi) = T 2, the resulting relative kinetic energy εn has the
mean value 〈εn〉 = 2T max

f and the variance σ 2(εn) = 2(T max
f )2,

for a fixed value of T max
f .

The energy spectrum of the postevaporation photons can be
sampled rapidly in an analogous manner, Because the corre-
sponding spectral shape, dN/dε ∝ ε2e−ε/Tf , is (proportional
to) a Poisson distribution of order 3, so

εγ = −[ln η1 + ln η2 + ln η3]Tf , ηi ∈ (0, 1]. (C3)

It also follows that the mean value is 〈εγ 〉 = 3Tf and the
variance is σ 2(εγ ) = 3T 2

f , for a fixed value of Tf .

APPENDIX D: LORENTZ BOOST

We describe here the Lorentz boost required to express the
motion of an ejectile and the corresponding daughter nucleus
in the adopted reference frame.

The boost velocity is that of the mother nucleus, V i =
P i/Ei , where P i is the momentum of the mother nucleus
and Ei is its total energy, E2

i = (M∗
i )2 + P 2

i . To perform the
Lorentz boost, we first note that the component of the ejectile
momentum parallel to the boost velocity is p

‖
n = pn · v̂, where

v̂ ≡ V i/Vi is the unit vector in the direction of V i . The
component transverse to V i is then p⊥

n = pn − p
‖
n v̂ and this

component is unaffected by the boost, p̃⊥
n = p⊥

n . The parallel
component of the ejectile momentum and its energy transform
as follows,

p̃‖
n = γ (p‖

n + EnVi), Ẽn = γ (En + pn · V i), (D1)

where γ 2 = 1/(1 − V 2
i ) and E2

n = m2
n + p2. Thus the boosted

ejectile momentum is

p̃n =
[
γEn + γ − 1

V 2
i

pn · V i

]
V i + pn (D2)

while the boosted value of the recoil momentum is obtained
by reversing the direction of p,

P̃f =
[
γEf − γ − 1

V 2
i

pn · V i

]
V i − pn (D3)

with Ef being the total energy of the daughter, E2
f =

(M∗
f )2 + p2.
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