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Deformation and shape transitions in hot rotating neutron deficient Te isotopes
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Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated
in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical
temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature
and spin to oblate via triaxiality are seen with increasing neutron number and spin.

DOI: 10.1103/PhysRevC.80.024322 PACS number(s): 21.10.Dr, 27.60.+j, 21.60.−n

I. INTRODUCTION

The atomic nucleus undergoes a variety of shape transitions
with increasing temperature and angular momentum. The
study of such shape-phase transition such as phenomena in hot
and rotating nuclei has established itself as a very active field
of research in contemporary nuclear physics. Experimentally,
a heavy-ion induced fusion reaction is one of the most potent
tools to produce a compound nucleus at finite temperature and
high angular momentum. The shape of the excited nuclei is
best studied by analyzing the spectral shape and the angular
anisotropy of the high energy gamma rays emitted from
the decay of the giant dipole resonance (GDR) states [1,2].
Populating the compound nucleus at different initial excitation
energies and carrying out exclusive measurement of the GDR
gamma rays [3] from selected regions of temperature and
angular momentum in the phase space, help us understand the
shape evolution and phase transitions in hot-rotating nuclei.

On the theoretical front, various approaches have been used
to study the shape transitions that can possibly take place
at finite temperature and angular momentum. In general any
theory of hot nuclei starts with a mean field approximation: the
Hartree-Fock method [4] and Hartree-Fock-Bogoliubov theory
[5], the Landau theory of shape transitions [6] developed
by Alhassid and co-workers [7] where a large number of
calculations are done for rare earth elements from cerium
to hafnium [8]. The critical temperature of shape transitions
extracted from these calculations is found to follow a sys-
tematic trend with the neutron number. An interesting finding
in the calculations of the Hartree-Fock-Bogoliubov cranking
formalism [9] by Goodman [10] has been a second critical
temperature of the shape transition and the noncollective
prolate phase of the nucleus bounded by the two spin dependent
critical temperatures in the phase space [11,12]. A fully
microscopic approach within the framework of the static path
approximation (SPA) has also been introduced [13,14] recently
which provides a general framework beyond the ordinary
mean field approximation for studying the real time response
function of a nucleus at a finite temperature.

We use a much simpler yet very effective theoretical formal-
ism [15,16] to evaluate the nuclear shapes and deformations
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and study the structural transitions and their influence on the
decay modes in the ground state and in the excited state
nuclei. This formalism consists of the statistical theory of
hot rotating nuclei [17,18] to treat the excited states of the
nuclei which we blend with the well-known macroscopic-
microscopic approach [19] proposed by Strutinsky [20] for the
ground states of the nucleus in such a way that it reproduces
the ground state shapes and deformations in good agreement
with the available data and explains the structural transitions
taking place and their influence on nucleon evaporation from
the excited nuclei [21,22].

Recent developments in Radioactive Ion Beam facilities
[23–26] have opened up the exciting possibilities to study
nuclei near the drip lines and various experimental [25,27]
and theoretical [28–31] works have revealed a lot of useful
information about the drip-line nuclei [23,32] but the nuclear
structure of drip-line nuclei under the influence of high angular
momentum and temperature still needs attention. It is also
required to calculate the movement of these nuclei on the phase
space, i.e., the so-called shape-phase transitions and compare
them with the experimental findings. The structural transitions
also have influence on decay modes of the nuclei which
we can understand through separation energy changes with
temperature, rotation, and neutron number [15,22], therefore
thorough study of structural transitions is a very important
aspect of nuclear structure physics. Also, such theoretical
calculations of shape transitions provide crucial insight in
the planning of experiments and subsequent analysis of the
shapes and shape fluctuations in hot-rotating nuclei. In this
work, we find out the structural transitions in a host of Te
isotopes from near the proton drip line to the stability valley as
a function of temperature, rotation, and neutron number. We
have calculated shape transitions for 103Te to 124Te scanning
over a large range of temperature and angular momentum that
can be probed by medium energy heavy ion facilities. In a
subsequent paper we will be reporting similar calculations for
very heavy nuclei around A ≈ 200 [33] with a comparison
with available experimental data [34,35].

There are two parts to the present approach:

(i) We suppress temperature and spin degree of freedom
and evaluate ground state deformations and shape as a
function of increasing neutron number for Te isotopes
from A = 103 to 124 using a macroscopic-microscopic
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approach [19] by incorporating Strutinsky’s shell cor-
rection [20] and deformation energy.

(ii) Effects of temperature and rotation on deformations and
shape phase transitions in 105,108,116,122,124Te isotopes
are investigated using the statistical theory of hot ro-
tating nuclei combined with macroscopic-microscopic
approach [15].

II. THEORETICAL FORMALISM

We evaluate the ground state deformations and shapes
within a macroscopic-microscopic approach in which the
macroscopic binding energy BELDM is calculated using the
mass formula of Moller-Nix [19] which is well suited to
calculate binding energies over a wide range of nuclei.
Microscopic effects arising due to a nonuniform distribution of
nucleons are included through the Strutinsky’s shell correction
[20] to energy which is given as

δE =
A∑

i=1

εi − Ẽ, (1)

where the first term is the shell model energy in the ground
state and the second term is the smoothed energy. The
smearing width γ ≈ 1.2h̄ and levels up to N = 11 shells
of the Nilsson model with Seegar parameters [36] are used.
The single particle level schemes are different for protons
and neutrons. The choice of these parameters makes the level
scheme applicable over a wide range of mass numbers A. The
diagonalization of the Hamiltonian is done with cylindrical
basis states [37,38] with the Hill-Wheeler [39] deformation
parameters (β, γ ). The value of the angular deformation
parameter γ ranges from −180◦ (oblate noncollective with
symmetry axis parallel to rotation axis) to −120◦ (prolate
collective with symmetry axis perpendicular to rotation axis)
in steps of 10◦. The axial deformation parameter β ranges from
0 to 0.4 in steps of 0.01.

When the shell correction δE is incorporated with the
macroscopic binding energy of the spherical drop BELDM

along with the deformation energy Edef gives the total cor-
rected binding energy BEcor which is maximized with respect
to deformation parameters (β, γ ) which give the deformation
and shape of the ground state nucleus

BEcor(Z,N, β, γ ) = BELDM(Z,N ) − Edef(Z,N, β, γ )

− δE(Z,N, β, γ ). (2)

The ground state one proton separation energy corrected
for microscopic effects is obtained using the expression which
helps trace the drip-line nuclei:

Scor
p = BEcor(Z,N, β, γ ) − BEcor(Z − 1, N, β, γ ). (3)

The excited and high spin states are treated by using the
statistical theory which involves the determination of the grand
partition function Q(α, β ′, γ ′) of the nuclear system of N

neutrons and Z protons

Q(αZ, αN, β ′, γ ′)

=
∑

exp(−β ′Ei + αZZi + αNNi + γ ′Mi), (4)

where the Lagrangian multipliers α, β ′1, and γ ′1 conserve
the particle number, total energy, and angular momentum of
the system and are fixed by the saddle point equations. The
conservation equations in terms of single-particle eigenvalues
for the protons εZ

i with spin projection mZ
i and neutrons εN

i

with spin projection mN
i [40], at a temperature T (= 1/β ′) are

〈Z〉 =
∑

nZ
i

=
∑[

1 + exp
(−αZ + β ′εi − γ ′mZ

i

)]−1
, (5)

〈N〉 =
∑

nN
i

=
∑[

1 + exp
(−αN + β ′εi − γ ′mN

i

)]−1
, (6)

〈E(M,T )〉 =
∑

nZ
i εZ

i +
∑

nN
i εN

i , (7)

〈M〉 =
∑

nZ
i mZ

i +
∑

nN
i mN

i , (8)

where ni is the occupation probability.
The excitation energy of the system is found by

E∗(M,T ) = E(M,T ) − E(0, 0), (9)

where E(0, 0) is the ground state energy of the nucleus given
by

E(0, 0) =
∑

εZ
i +

∑
εN
i . (10)

As illustrated by Moretto [41], the laboratory-fixed z

axis can be made to coincide with the body-fixed z′ axis
and it is possible to identify and substitute M for the total
angular momentum I . In the quantum-mechanical limit, the
z component M of the total angular momentum M = MN +
MZ → I + 1/2, where I is the total angular momentum.

The rotational energy Erot is calculated using Eq. (7):

Erot(M) = E(M,T ) − E(0, T ). (11)

As T → 0, Erot corresponds to the yrast energy.
The entropy of the system is obtained by

S = −
∑

[nilnni + (1 − ni)ln(1 − ni)]. (12)

To evaluate the deformation and shape of the excited nucleus
we calculate the excitation energy E∗ and entropy S of the hot
rotating nuclear system for fixed T and M as a function of β

and γ and then incorporate them to the ground state energy
corrected for microscopic effects and then minimize the free
energy (F ) with respect to deformation parameters (β, γ ) at
temperature T and angular momentum M

F (Z,N, T ,M, β, γ ) = ELDM(Z,N) + δEshell(β, γ )

+Edef(β, γ ) + E∗(T ,M, β, γ )

− T S(T ,M, β, γ ). (13)

1The Lagrangian multipliers β ′ and γ ′ should not be confused
with the deformation parameters (β, γ ). The primes are put just to
differentiate them from deformation parameters. The notations β ′ and
γ ′ used in the text from Eqs. (4) to (6) are Lagrangian multipliers,
elsewhere in this article, β and γ are used as deformation parameters
only.
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FIG. 1. (a) Equilibrium deformations parameter β vs. mass
number A for 103−124Te in the ground state. (b) Equilibrium γ vs
mass number for 103−124Te nuclei in the ground state.

The free energy minima gives the deformation and shape of
the hot rotating nucleus.

III. RESULTS AND DISCUSSIONS

The ground state deformations calculated for 103−124Te
nuclei are shown in Fig. 1(a). The agreement of our cal-
culations with the available experimental [42] values for
A = 120, 122, 124 is much better than the calculations of
Moller and Nix [29]. Ground state shapes (γ ) and deformations
(β) show an interesting pattern with the neutron number. At
N = 51, the nucleus is close to shell closure as well as the
proton drip line. The deformation is very small near shell
closure nuclei. As N increases from 51 (near closed shell)
to 64 (midshell), the deformation (β) increases from 0.07 to
0.18. Around N = 72 (β = 0.15), the deformation has started
decreasing slowly as it is again approaching the closed shell
at N = 82. Among all the isotopes of Te studied here, the
highest deformation is found in 113,114Te with β = 0.19 and
the least deformed nuclei are proton drip line nuclei 103−105Te
lying near shell closure.

In the ground state, the shape changes with neutron number
and it is more common for nuclear ground state shapes to be
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FIG. 2. Evaluation of the ground state shape and deformation of
103,108Te by the minimization of energy with respect to deformation
parameters β for different γ . The deformation and shape obtained is
mentioned in the figure.

prolate than oblate though it is not true for all the nuclei. In the
case of Te isotopes, we found that with the changing neutron
number N , the nucleus goes through various interesting shape
transitions in the ground state [see Fig. 1(b)]. Unstable nuclei
(N = 51, 52) lying near the drip line have oblate shape (γ =
−180◦) with very small deformation. The shape transition to
triaxial shape at N = 53 (105Te) to nearly prolate (γ = −130◦)
at 106Te and then to prolate (γ = −120◦) at 107Te are seen. β is
constantly increasing with N during all these shape transitions.
The energy minimization giving us the shape and deformation
of 103,108Te in energy vs. β diagrams for different γ ’s is shown
in Fig. 2. These simple curves provide us a very clear picture
of the location of the minima at certain β, γ and also show
the variation of energy at other β, γ . The shape transition
to oblate (γ = −180◦) at N = 65 via triaxial at N = 59–63
takes place with changing N . The shape remains oblate up to
N = 71. At N = 72, the shape again attains triaxial shape with
declining deformation and finally approaches to sphericity at
N = 82.

According to universally known features of the evolution
of equilibrium shapes with temperature and spin, heating
a deformed nonrotating nucleus leads to a shape transition
from deformed to spherical at a certain temperature. At high
temperatures T ≈ 2 MeV, the shell effects melt and the nucleus
resembles a classical liquid drop. The rotation of the hot
nucleus generates an oblate shape rotating noncollectively.
It has been shown by Goodman [43] that nuclei with two
critical temperatures can rotate with a prolate shape about its
symmetry axis. Such a phase exists in a narrow domain bound
by the two spin dependent critical temperatures. Goodman
has also shown that this rather unusual phase does not get
washed out by shape fluctuations. Looking for such exotic
shape-phase transitions has been one of our motivations in
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our current program, in both PES calculations and GDR
experiments [3,33–35]. We have seen such a behavior in our
finite temperature PES calculations [33] for heavier nuclei,
namely Au, Pt, and Hg. One of the authors has also observed

such a behavior in 94Ag in a very recent work [44]. With further
rotation at higher T [45] and higher spin [44], the unexpected
prolate noncollective phase undergoes the expected transition
to oblate noncollective shape phase. However, no such phase
has been seen in our present calculations for the Te isotopes.
It is seen in the nuclei of certain mass regions only. The search
for such rare shape-phase transitions still needs to be explored
in much more detail.

We study deformation changes and shape-phase transitions
as a function of temperature and angular momentum for
105,108,116,122,124Te nuclei. Figures 3(a) and 3(b) show β and γ

vs. temperature T , respectively, for 105,108,116,122,124Te nuclei.
As T increases, β decreases and approaches nearly 0 around
T = 1 MeV in 105,108,124Te nuclei whereas for 116Te it takes
higher T more than 1.5 MeV to reach zero deformation.
Around T = 2 MeV, β = 0 for all Te isotopes studied
here and the equilibrium shape is attaining sphericity. From
Fig. 3(b), we note that the neutron deficient nuclei 105−108Te
are prolate or nearly prolate at low T , suffer a shape transition
to nearly oblate as T rises, and attain sphericity around T �
1 MeV but the neutron rich nucleus 122Te is mostly oblate
or nearly oblate at low T and remains oblate up to T ≈ 1–
1.1 MeV. The nucleus 116Te which is the most deformed
in ground as well as excited states remains deformed with
oblate shape up to T = 1.5 MeV and attains sphericity at
higher T ≈ 1.8 MeV. The stable nucleus 124Te is triaxial at
low T , becomes oblate at T = 0.4 MeV, and remains so up
to T = 0.95 MeV and then attains sphericity. Here we have
plotted γ vs. T only for the deformed shape phase.

Figure 4 shows free energy minimization of the drip-line
nucleus 105Te with β and γ at fixed T = 0.4 MeV and
those M values at which it faces shape transitions. 105Te is
slightly deformed (β = 0.08) in the ground state. When we
incorporate the excitation energy, the initial prolate collective
deformation (β = 0.11) at low T (= 0.4 MeV) [Fig. 4(a)]
changes to oblate noncollective (β = 0.10) with cranking
via triaxial shape at M = 4h̄ [Fig. 4(b)] and then remains
oblate at higher angular momentum. In Fig. 4(c) we note
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that at M = 14h̄, the shape is oblate noncollective but the
triaxial shape with γ = 160◦ is also competing very closely for
minima. However, the increasing angular momentum makes it
reasonably well deformed with β = 0.14 with a well-defined
minima at 34h̄ [Fig. 4(d)]. Increasing the temperature further
up to 1 MeV starts reducing the deformation and drives the
nucleus toward sphericity. The rotation of such a hot nucleus
results in deformation with an oblate noncollective shape at
M = 4h̄ and remains the same at higher M values with larger
β. Here it is to be noted that at low temperature the role of
angular momentum is more prominent in taking the nucleus
through various shape-phase transitions from prolate to triaxial
and then to oblate with angular momentum changing from 0
to 14h̄, whereas at higher T = 1 MeV the shape is spherical
at M = 0 and then the shape changes directly to oblate at
M = 4h̄ and remains so with gradually increasing M .

In the free energy vs. (β, γ ) diagrams, different γ ’s compete
very closely for free energy minima at low T and M , whereas
at large T or M or both, the minima is very prominent for
one value of γ and the corresponding shape is well defined
and also the free energies corresponding to other γ ’s are very
high comparatively. For example, at high oblate noncollective
deformation at high M , the minima is clearly seen [Fig. 4(d)]
whereas prolate collective (γ = −120◦) energies are very
high which means that the probability for having a prolate
collective shape is much less or negligible at those excitations
energies. Similarly in Fig. 5(a), free energies corresponding to
triaxial (γ = −160◦) and oblate (γ = −180◦) shape are very
closely competing for minima whereas at high T = 1.5 MeV
[Fig. 5(c)], the oblate shape minima is seen clearly and the
free energy corresponding to the prolate shape (γ = −120◦)
is very high as compared to those for γ = −180◦ which
indicates that the possibility of the nucleus being prolate at
that excitation is negligible. Figure 5 depicts the drive toward
sphericity with increasing temperature at constant angular
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Now moving toward the scenario for the stable isotope
122Te we find that in the absence of rotation the large ground
state deformation of β = 0.2 reaches near zero value beyond
T = 1 MeV. However, with increasing angular momentum the
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hot nuclear system gets deformed and is oblate with a large
deformation of β = 0.21 at M = 56h̄ even at temperature
T = 1 MeV. At lower temperature T = 0.4 MeV, it has a
very large deformation β = 0.35 at M = 56h̄. The largest
deformation seen in the Te isotopes studied in this work is
β = 0.36 for 122Te at T = 0.4 MeV and M = 60h̄. Figure 6
shows these large deformations attained by the rotating nuclear
systems at high angular momentum value M = 56h̄ in 116,122Te
at low T = 0.4 MeV. With such rotation, these nuclear systems
remain highly deformed even at high temperature T = 1 MeV
(see Fig. 7).

As the nucleus is an ensemble of a finite number of
particles it is expected to experience shape fluctuations. The
deformations of a minimum free energy that we calculate are
the so-called most probable or mean field deformations and
may be different from the average deformation which is why
it is required to calculate the average shape. However, at low
temperatures, shape fluctuations are small and the average
shape is similar to the most probable shape. Fluctuations start
smoothing out the sharp transitions at higher temperatures.
The effect of shape fluctuations and detailed discussions
for these Te isotopes will be presented in a forthcoming
article [33].

IV. CONCLUSION

A systematic study of structural effects with a simple
theoretical formalism has been presented which provided us
with very useful results for ground as well as excited states
of Te isotopes. We have computed ground state shapes and
deformations for Te isotopes from A = 103 to 124 covering a
wide region from near the drip line to the valley of stability. We
have found a systematic pattern in the change in deformation
and shape with increasing neutron number. Proton rich Te
nuclei are less deformed with prolate collective or nearly
prolate shapes than those near the stability valley which are

well deformed with oblate noncollective shape. Incorporating
excitations through statistical theory, the shape transitions for
hot rotating 105,108,116,122,124Te nuclei have been calculated
from T = 0 to 2 MeV and M = 0 to 60h̄. The Te isotopes
are found to have gone through a variety of shape transitions
which are shown through the free energy minimization curves
with respect to deformation parameters β and γ .

The critical temperatures for these Te isotopes at which the
ground state deformation vanishes to zero for zero angular
momentum are calculated. It is found that while increasing
temperature at constant or no angular momentum drives
the system toward spherical shape, the increase in angular
momentum tries to make it more deformed with oblate shape
at constant temperatures. At high angular momentum, the
shape is oblate but the deformation is quite high even at
high temperature. Proton rich nuclei 105,108Te are also well
deformed in an excited high angular momentum state though
they were only slightly deformed in the ground state. These
nuclei go through all shapes from prolate to triaxial to oblate
with varied deformations whereas at high N and M the shape
is oblate noncollective only with large deformation. It will be
interesting to compare these calculations with experimental
predictions obtained from the study of GDR decay gamma
rays from these isotopes. The role of thermal and orientation
fluctuations at finite temperature and spin will try to smoothen
out the equilibrium deformations obtained from our basic
calculations. The effect of fluctuation will be discussed in
a future publication. The calculations for very heavy systems
for A ≈ 200 will also be discussed in a subsequent publication
along with a comparison with experimental data from GDR
decay studies.
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