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Collapse of the random-phase approximation: Examples and counter-examples from the shell model
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The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases
by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking
state to a symmetry-conserving state (also referred to as a “phase transition” in the literature). The order of the
transition is important when one applies the random-phase approximation (RPA) to the of the Hartree-Fock wave
function: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become
large and lead to unphysical results. The latter is known as “collapse” of the RPA. While the difference between
first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time
nontrivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model,
where we can compare to exact numerical results.

DOI: 10.1103/PhysRevC.80.024320 PACS number(s): 21.60.Cs, 21.60.Jz

I. INTRODUCTION

An important class of approximations in many-body theory
are the mean-field approximations, which reduce the many-
body problem to an effective one-body problem, and their
generalizations [1]. In this article we consider the Hartree-Fock
approximation, a variational approach that approximates the
ground-state wave function by a single Slater determinant
(antisymmeterized product of single-particle wave functions),
and the random-phase approximation (RPA), which builds
small amplitude correlations on top of the Hartree-Fock state
and which itself can be derived as the small-amplitude limit of
the time-dependent Hartree-Fock approximation.

Because the Hartree-Fock (HF) state ignores correlations,
it can break exact symmetries, such as translational and rota-
tional invariance. A related approximation, the Hartree-Fock-
Bogoliubov (HFB) approximation, built on quasiparticles,
also breaks conservation of the number of particles. Despite
this breaking of symmetries, HF, HFB, and the RPA and
quasiparticle RPA are widely and successfully used to describe
low-energy nuclear structure.

If one dials the parameters of the Hamiltonian, it is possible
for the ground-state HF or HFB wave function to change
from a symmetry-preserving state to one that breaks an exact
symmetry. For example, as one changes the single-particle
energies as one attempts to fit data, the HF state may go
between spherical and deformed states, and the HFB state
may between normal (number-conserving) and superfluid
(number-nonconserving) states.

A long time ago Thouless pointed out [2,3] that, as
the mean-field state is driven between symmetry-conserving
(SC) and symmetry-nonconserving (SNC) states, there are
two possible kinds of state transitions (often referred to as
“phase transitions” in the literature, even for finite systems).
For second-order transitions the fluctuations in RPA become
unphysically large, leading to the so-called collapse of the
RPA. A frequently cited example is the collapse of RPA in

the Lipkin-Meshkov-Glick model [4]. Significant effort in
the literature has been devoted to collapse in the RPA and
QRPA and possible solutions. All but forgotten are first-order
transitions for which RPA does not collapse.

In this article we use a nontrivial realization of the HF
and RPA in the interacting shell model, where we can
compare to exact numerical calculations and demonstrate both
first- and second-order transitions. As predicted by Thouless,
second-order transitions and collapse are driven by odd-parity
operators or modes, while first-order transitions are driven
by even-parity operators or modes. In this article we do not
propose any new solutions to the collapse of RPA at or near
second-order transitions; instead, this work illustrates that the
world of RPA and state transitions is more complicated than
the standard narrative.

II. HARTREE-FOCK AND RPA CALCULATIONS IN THE
INTERACTING SHELL MODEL

We work in the framework of the interacting shell model.
The model space is defined by a truncated set of single-particle
orbits, for example, the 0p1/2-0p3/2 space, usually called the
p shell, or the 1s1/2-0d3/2-0d5/2 space, the sd shell. The
interaction is given by a set of single-particle energies εa

and two-body matrix elements VJT (ab,cd). The interactions
used are not necessarily simple schematic forces but generally
start from carefully computed G-matrix interactions and then
adjusted empirically to reproduce a large number of ground-
state binding energies and excitation energies.

There are a number of computer programs that read in
the model space, generate many-body basis states (Slater
determinants in occupation space), compute the many-body
matrix elements from the single-particle energies and two-
body matrix elements, and diagonalize the Hamiltonian matrix
to get out the eigenenergies and wave functions, from which
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one can compute observables, transitions, and so on. For this
article we used the REDSTICK shell-model code [5].

For Hartree-Fock plus RPA, we have used the SHERPA

(shell-model RPA) code [6] that uses exactly the same input as
REDSTICK. SHERPA places no restriction on the Hartree-Fock
wave function except that it must be purely real; otherwise
it can have any arbitrary deformation contained in the model
space. Thus one can have spherical, axially symmetric defor-
mation, triaxial deformation, and even parity-mixed ground
state.

In previous articles we have used SHERPA to directly test
HF+RPA as an approximation to full shell-model diago-
nalization, looking at correlation energies [7], ground-state
observables [8], electromagnetic transitions [9], and charge-
changing Gamow-Teller transitions [10]. In presenting those
results we were frequently asked about the issue of the collapse
of RPA. Such questions motivated this article.

III. FIRST- AND SECOND-ORDER TRANSITIONS

In this section we revisit Thouless’s arguments [2,3]
regarding the order of the transition. To do this, we need to
remind the reader of at least one way to develop RPA [1],
although we do not give the derivation in full.

Let |�〉 be a Slater determinant, that is, an antisymme-
terized product of single-particle wave functions. In second
quantization, where â

†
a creates a particle in state a, we write

|�〉 =
∏

i

â
†
i |0〉. (1)

We follow the usual convention where i, j denote occupied
states and m, n denote unoccupied states. One then introduces
the general particle-hole operator, Ẑ† = ∑

mi zmi â
†
mâi , (where

the zmi can be complex) and the state

|z〉 = exp(Ẑ)|�〉, (2)

which, by Thouless’s theorem [3] is a Slater determinant not
orthogonal to the starting state. One can compute

E(z) = 〈z|Ĥ |z〉
〈z|z〉 , (3)

which, assuming z small, can be expanded

E(z) = E0 +
∑
mi

h∗
mizmi + hmiz

∗
mi +

∑
mi,nj

Ami,nj zmiz
∗
nj

+ 1

2
Bmi,nj z

∗
miz

∗
nj + 1

2
B∗

mi,nj zmiznj + · · · . (4)

At a local minimum, hmi = 0; this is the Hartree-Fock
condition, and E0 is the Hartree-Fock energy. The quadratic
terms can be treated as a harmonic oscillator: one treats the zmi

as boson operators and using a Bogoliubov transformation put
into diagonal form, using the famous RPA matrix equation:(

A B
−B∗ −A∗

) ( �Xλ

�Yλ

)
= �λ

( �Xλ

�Yλ

)
. (5)

There can be, of course, higher-order corrections in the energy
landscape beyond quadratic, which we will consider shortly.

Suppose one is in a SC state, e.g., a state of good
angular momentum, usually spherical, or parity. Then, solving
Eq. (5) one finds the X, Y modes also have good symmetry.
For example, with our code SHERPA, if the HF state is
spherically symmetric, one gets out RPA modes that have good
angular momentum J , and one sees the appropriate (2J + 1)
degeneracy in the RPA frequencies �λ. (If, however, rotational
symmetry is broken but one has axial symmetry, then one can
have two-fold degeneracies, signaling RPA modes that are
time-reversed of each other, or a single mode, which must
be time-reversal even. In the event of triaxiality, one has no
degeneracies in the RPA spectrum.)

To consider “state transitions,” from SC to SNC, one needs
to look at higher-order terms. Let Ẑλ represent generically
the RPA modes; by expanding about the HF minimum, one
expands the energy landscape by 〈HF |Ẑn

λ |HF 〉. Because we
are at a minimum, n = 1 vanishes. n = 2 yield the curvature
and the RPA frequencies. What about n = 3, 4, . . .?

Now we get to the heart of Thouless’s argument. If the RPA
mode Ẑλ has odd parity, while the HF state has good parity,
then 〈HF |Ẑn

λ |HF 〉 must vanish for all odd n. However, if
Ẑλ has even parity, then 〈HF |Ẑ3

λ|HF 〉 can be nonzero; for
example, it is possible to couple three J = 2 operators to total
angular momentum zero.

Figure 1 illustrates both cases. Figure 1(a) is for modes with
even parity so cubic terms play a role. One can clearly have
coexisting local minima, and so one gets a first-order transition.
Figure 1(b) is for odd-parity modes so the energy landscape
must be symmetric. One tends to get only a second-order
transition.

In our examples below, we see Thouless’s predictions
played out. A system with only even-parity modes has first-
order transitions, while a system with odd-parity modes has a
second-order transition.

What happens in a second-order transition? In that case
the RPA frequencies �λ → 0 and the fluctuations about the
HF state, measured by |Yλ|, become very large, allowed
because the RPA vectors have a nonstandard normalization:

(a) (b)

FIG. 1. Sketches of “phase” transitions in the energy landscape.
(a) A first-order transition. (b) A second-order transition.
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|Xλ|2 − |Yλ|2 = 1. The RPA energy is

ERPA = EHF −
∑
λ>0

h̄�λ|Yλ|2 − 〈P 2〉
2M0

(6)

(see Refs. [1,7] for details), and so as |Yλ|2 becomes large,
the energy dives or collapses. The appearance of unphysical
values is unsurprising because in the derivation one assumes
small amplitudes for X and Y .

In the published literature, discussions regarding the be-
havior of the RPA near a phase transition focus exclusively on
collapse of RPA [1,11], that is, on second-order transitions.
Outside of Thouless [2] there is no discussion of first-order
transitions (indeed, the literature appears to uniformly refer
to phase transitions without quantifying the order of the
transition). Yet, as illustrated below, it is not hard to find
a first-order transition. It is possible that people using RPA
have encountered first-order transitions without realizing it, as
there is no catastrophic collapse to signal the transition. While
clearly second-order transitions are more problematic, we find
it instructive to explore both kinds.

IV. RESULTS

A. Example of a first-order transition: deformation

We begin with two case studies in the sd shell, using
Wildenthal’s universal sd (USD) interaction [12]. The first of
these is 28Si (six valence protons and six valence neutrons). By
increasing the difference � between the 0d5/2 single-particle
energy and the 1s1/2-0d3/2 single-particle energies, we can
force the Hartree-Fock state to go from an oblate deformed
state to a spherical state with the 0d5/2 shell filled. For
convenience � = 0 corresponds to the original Wildenthal
values.

Figure 2 shows the “exact” calculation, which is an inter-
acting shell-model calculation performed in the full 0h̄ω sd

valence space, compared to the lowest Hartree-Fock energy,
and the RPA correlation correction on top of the HF energy.
Because one switches between two degenerate HF states,
the HF energy is continuous, while the HF+RPA energy is
discontinuous, because the curvatures (RPA frequencies) are
different. The right-hand panel illuminates in detail what is
going on. Here we explicitly show the (oblate) deformed and
spherical HF energies and their respective RPA corrections.
One sees there is a significant region of parameter space,
encompassing the original Wildenthal value, where locally
stable deformed and spherical HF solution coexist.

As we drive � further positive or negative, eventually
the deformed or spherical solutions, respectively, become
unstable. In Fig. 2 this is seen as the HF+RPA energy dives
sharply. For further diagnosis, in the upper half of Fig. 3 we
plot the lowest nonzero RPA eigenfrequencies � as a function
of �. (The deformed state also has two zero-frequency modes
corresponding to broken rotational symmetries.) We see that
one eigenfrequency dives to zero, signaling an instability.
As further diagnosis, we give the degeneracy of the RPA
eigenfrequencies; for the spherical HF state, the degeneracy
of the collapsing eigenfrequency is 5, suggesting a quadrupole
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FIG. 2. (Color online) Ground-state energy of 28Si, calculated in
the full interacting shell model (SM, solid lines), Hartree-Fock (HF,
dotted lines), and Hartree-Fock plus random-phase approximation
(HF+RPA, dashed lines). Here � is added to the 1s1/2 and
0d3/2 single-particle energies; � = 0 corresponds to the original
Wildenthal values. The left-hand panel shows only the final result; the
right-hand panel identifies spherical and (oblate) deformed mean-field
phases. Note the significant region of coexistence.

mode. For the oblate deformed state, the RPA eigenmodes
either come in time-reversed pairs (degeneracy = 2) or are
already time-reversal-even (degeneracy = 1).

Note: We cannot follow the RPA frequency all the way
to zero, due to numerical instabilities, although the trend is
clear. Though we do not plot it, we also get a corresponding
eigenvalue of the the stability matrix diving to zero.

As the RPA frequency dives to zero, the corresponding mag-
nitude of the hole-particle amplitude, |Yλ|2 = ∑

mi |Ymi,λ|2,
increases dramatically. This we plot in the lower half of Fig. 3.
As discussed in a previous section, it is this increase in |Y |
that causes the correlation energy to take on unphysically
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FIG. 3. (Color online) For 28Si. (Upper panel) Low-lying RPA
frequencies � for spherical (dashed) and deformed (solid) HF states.
(Lower panel) |Yλ|2 corresponding to the RPA frequencies in the
upper panel. In both cases the degeneracy is given in parentheses; for
the spherical case the degeneracy = 2J + 1 where J is the angular
momentum of the RPA mode.
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FIG. 4. (Color online) Similar to
Fig. 2 but for 32S; here � is the change
in the 0d3/2 energy.

large values. Although we do not show it, we have also
computed the expectation value for various operators, such
as the Q · Q operator; while the HF contribution is stable, the
RPA correlation correction [8] also shows unphysically large
values.

We also considered 32S, that is, eight valence protons
and eight valence neutrons, and drove the 0d3/2 single-
particle energy up and down. This case was very interesting
because we could get, by adjusting �, spherical, prolate,
and triaxial solutions. Figure 4 shows the shell-model (SM),
Hartree-Fock, and HF+RPA energies for the ground state,
while Fig. 5 shows the RPA frequencies and |Yλ|2. While a
J = 2 (degeneracy = 5) eigenfrequency is falling, a J = 4
(degeneracy = 9) mode actually falls below it, suggesting
that ultimately it is a hexadecupole mode becomes unstable
first. The prolate state has both degenerate (time-reversed
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FIG. 5. (Color online) Similar to Fig. 3 but for 32S; here � is the
change in the 0d3/2 energy.

pairs) and nondegenerate states; the triaxial state, which
has broken all possible symmetries, has no degenerate RPA
modes.

We reiterate: The key idea here is that the coexistence
of locally stable phases leads to a first-order transition. The
stable phases coexist easily because the parity-conserving
mode—here quadrupole—means one can have cubic as
well as quartic terms in the energy landscape. When we
have an odd-parity mode, as illustrated in the next session,
cubic terms are suppressed and one gets a second-order
transition.

B. Example of a second-order transition: parity-mixing

Second-order transitions lead to collapse of RPA. The
classic example is the Lipkin model, which in its original
form has a conserved parity (the Lipkin model is a two-level
system, and the original Lipkin interaction could only promote
or demote two particles at a time, thus providing an parity-like
symmetry: either an even or an odd number of particles in the
upper level); the transition of the HF state in the Lipkin model
was from an exact parity state, with all particles in the lower
level, to a mixed parity state.

For our examples of second-order transitions, we consider
a case involving shells of opposite parity. We fix the 0s shell to
be a closed core and have as the valence space 0p3/2, 0p1/2, and
0d5/2, 1s1/2. We look at 12C, with four valence protons and four
valence neutrons, without any truncations on the many-body
space. (The only reason we leave out the 0d3/2 orbit is to
make full shell-model calculations tractable; SHERPA can easily
handle the full p-sd space, but the HF+RPA results look very
similar to what we present here. We also have looked at 16O
and 20Ne in similar spaces and get similar results.) We use
the Cohen-Kurath (CK) matrix elements in the 0p shell [13],
the USD interaction [12] in the 0d5/2-1s1/2 space, and the
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FIG. 6. (Color online) Ground-state energy of 12C in the
0p1/2-0p1/2-0d5/2-1s1/2 space, calculated in the full interacting shell
model (SM) (solid line), Hartree-Fock (HF) (dotted line), and Hartree-
Fock plus random-phase approximation (RPA) (dashed line). Here �

is added to the 1s1/2 and 0d5/2 single-particle energies; � = 0 puts the
negative-parity states in the SM at approximately the correct location.
We show where the HF states and corresponding HF+RPA states have
either exact parity (and also spherical symmetry) or mixed parity (and
break rotational invariance as well).

Millener-Kurath (MK) p-sd cross-shell matrix elements [14].
Within the p and sd spaces we use the original spacing of
the single-particle energies for the CK and USD interactions,
respectively, but then shift the sd single-particle energies up
or down relative to the p-shell single particle energies by an
amount �; we define � = 0 where we get the first 3− state
at approximately 6.1 MeV above the ground state. The rest
of the spectrum, in particular the first excited 0+ state, is not
very good, but the idea is to have a nontrivial model, not an
exact reproduction of the spectrum. (As a side note, this model
space is not translationally invariant, and so we do not get
zero-frequency modes from broken translational invariance.)

Figure 6 compares the exact SM ground-state energy
with HF and HF+RPA. Here the HF+RPA energy dives, or
“collapses” at the transition point. A more detailed look is in
Fig. 7, which plots the RPA frequencies.

In Fig. 7 we also show the RPA eigenfrequencies and the
magnitude of |Yλ|. The exact-parity HF states are oblate so the
RPA frequencies come in degenerate pairs from time-reversal
symmetry. The mixed-parity HF states are triaxial, breaking
time-reversal degeneracy.
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FIG. 7. For 12C. (Upper panel) low-lying RPA frequencies �

for exact-parity and parity-mixing HF states. (Lower panel) |Yλ|2
corresponding to the RPA frequencies in the upper panel. In both cases
the degeneracy is given in parentheses; the exact-parity HF states are
oblate, allowing for time-reversed pairs, but for parity-mixing the HF
state becomes triaxial, breaking the time-reversal degeneracy.

V. CONCLUSIONS

We have applied Hartree-Fock plus the random-phase
approximation in the framework of the interacting shell model,
with complicated, realistic forces. By changing the single-
particle energies we could drive the Hartree-Fock solution
between symmetry conserving and symmetry nonconserving
states. In accordance with Thouless’s original, and oft-
forgotten, analysis, first-order transitions are associated with
even-parity modes, such as the quadrupole mode, and do not
display, at the transition point, the infamous collapse of RPA.
Instead, one obtains the collapse of RPA only in second-order
transitions, associated with odd-parity modes. The latter are of
course more serious, but it is useful to keep in mind that not
all state or phase transitions automatically lead to the collapse
of RPA.
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