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Polarization transfer measurements for 12C( �p,�n)12N(g.s., 1+) at 296 MeV and
nuclear correlation effects
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Differential cross sections and complete sets of polarization observables are presented for the Gamow-Teller
12C( �p,�n)12N(g.s., 1+) reaction at a bombarding energy of 296 MeV with momentum transfers q of 0.1 to
2.2 fm−1. The polarization transfer observables are used to deduce the spin-longitudinal cross section, IDq , and
spin-transverse cross sections, IDp and IDn. The data are compared with calculations based on the distorted-
wave impulse approximation (DWIA) using shell-model wave functions. Significant differences between the
experimental and theoretical results are observed for all three spin-dependent IDi at momentum transfers of
q >∼ 0.5 fm−1, suggesting the existence of nuclear correlations beyond the shell model. We also performed DWIA
calculations employing random-phase approximation (RPA) response functions and found that the observed
discrepancy is partly resolved by the pionic and ρ-mesonic correlation effects.
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I. INTRODUCTION

Nuclear spin-isospin correlations produce various inter-
esting phenomena in nuclei depending on the momentum
transfer q [1]. At small momentum transfers, q � 0 fm−1,
the spin-isospin particle-hole interaction is strongly repulsive,
which leads to such collective excitations in nuclei as the
Gamow-Teller (GT) giant resonance. The quenching of the
total strength of the GT transitions from its sum rule value has
prompted theoretical studies of possible mechanisms, ranging
from conventional configuration mixing to admixture of the
�-hole (�-h) states. Recent experimental studies of 90Zr(p,n)
and (n,p) reactions [2,3] have revealed that the coupling to
2-particle–2-hole (2p-2h) excitations is the major source of
quenching of the GT strengths, while �-h coupling plays a
minor role.

At fairly large momentum transfers, q >∼ 1 fm−1, the spin-
transverse interaction induced by one ρ-meson exchange re-
mains repulsive, while the spin-longitudinal interaction driven
by one pion exchange becomes attractive. This attraction of the
spin-longitudinal interaction produces pion condensation and
its precursor phenomena. Pion condensation [4] is expected to
occur in neutron stars (NSs) such as 3C58 [5] and accelerate
their cooling [6]. It is predicted that pion condensation does
not occur in normal nuclei. However, precursor phenomena
may be observed in normal nuclei if they are near the
critical point of the phase transition. As possible evidence
of a precursor, enhancements of the M1 cross section in
proton inelastic scattering [7,8] and of the ratio RL/RT ,
the spin-longitudinal (pionic) response function RL to the
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spin-transverse (ρ-mesonic) response function RT , in the
quasielastic scattering (QES) region [9,10] were proposed
at a momentum transfer of about q � 1.7 fm−1. Motivated
by these predictions, many experiments involving the M1
transition and QES have been carried out. These include
the measurement of the 12C(p,p′)12C∗(1+, T = 1) scattering
at incident energies of about 120 to 800 MeV [11–14],
and the experimental extraction of RL/RT using complete
sets of polarization transfer observables in ( �p, �p′) scattering
[15–19] and ( �p,�n) reactions [20–24] on various targets at
intermediate energies. However, these experimental data did
not show the theoretically expected enhancements. Recent
analysis of QES data shows pionic enhancement in the spin-
longitudinal cross section representing RL, which suggests
that the lack of enhancement in the value of RL/RT is due to
the ρ-mesonic component [25]. The measurement of the pure
pionic excitation of 16O(p,p′)16O∗(0−, T = 1) scattering at
Tp = 295 MeV also supports such an enhancement [26].

The analyses of QES and pure pionic excitation data suggest
that one needs to reconsider the interpretation of the M1 data.
The pionic effect in the M1 cross section might be masked by
the contribution from the ρ-mesonic component because the
M1 state is a mixture of spin-longitudinal and spin-transverse
states. In addition, proton inelastic scattering, including the
M1 transition, mix isoscalar and isovector contributions. With
respect to this issue, the GT 12C(p,n)12N(g.s., 1+) reaction,
which is the isobaric analog of the M112C(p,p′)12C∗(1+, T =
1) scattering, has an advantage because the (p,n) reaction
exclusively depends on the isovector contribution. Thus, it is
interesting to study nuclear correlation effects in this reaction
by separating the cross section into pionic and ρ-mesonic
components, using a complete set of polarization observables.
However, no complete polarization transfer measurements for
the GT reaction have been reported until now.
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FIG. 1. A schematic layout of the NTOF facility (not to scale). The coordinate systems for incident protons and outgoing neutrons are also
shown. S (sideways), N (normal), and L (longitudinal) form a right-handed system for incident protons and S ′, N ′, L′ for outgoing neutrons.

In this article, we present differential cross sections
and complete sets of polarization observables for the
12C( �p,�n)12N(g.s., 1+) reaction measured at Tp = 296 MeV
over a range of q = 0.1 to 2.2 fm−1. This incident energy is
ideal for studying GT transitions because the spin excitations
are dominant in the (p,n) reaction near 300 MeV [27]. In
addition, distortion effects are minimal around 300 MeV [1],
thereby enabling one to extract reliable nuclear structure
information such as nuclear correlation effects.

The differential cross section and a complete set of
polarization transfer observables are used to separate the
cross section into nonspin (ID0), spin-longitudinal (IDq), and
two spin-transverse (IDp and IDn) polarized cross sections.
The spin-dependent polarized cross sections, IDq, IDp, and
IDn, are compared with distorted-wave impulse approxima-
tion (DWIA) calculations using random-phase approximation
(RPA) response functions to assess the nuclear correlation
effects quantitatively. The theoretical calculations give good
descriptions of all of the spin-dependent polarized cross
sections. These results demonstrate the existence of pionic
and ρ-mesonic correlations inside nuclei.

II. EXPERIMENTAL METHODS

The experiment was performed using the neutron time-
of-flight (NTOF) facility [28] and the neutron detec-
tor/polarimeter NPOL3 [29] at the Research Center for Nuclear
Physics (RCNP) at Osaka University. Detailed descriptions
of the NTOF facility and the NPOL3 system can be found
in Refs. [28–35]. Only the details relevant to the present
experiment are described here. Schematic layouts of the NTOF
facility and the NPOL3 system are presented in Figs. 1 and
2, respectively. In Fig. 1, the coordinate systems for incident
protons and outgoing neutrons are also shown.

A. Polarized proton beam

The high-intensity polarized ion source (HIPIS) [36] at
RCNP was used to provide the proton beam. The direction
of the beam polarization was reversed every 5 s to minimize
geometrical false asymmetries that might be present in the
experimental apparatus. The polarized proton beam from
HIPIS was accelerated up to Tp = 53 and 296 MeV by the
azimuthally varying field (AVF) [37] and ring [38] cyclotrons,
respectively. The radio frequency (rf) of the AVF cyclotron was
15.42 MHz, corresponding to a beam pulse period of 64.86 ns.
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FIG. 2. (Color online) A schematic view of the neutron detec-
tor/polarimeter NPOL3. In the detector mode, HD1 and HD2 act as
neutron detectors. In the polarimetry mode, HD1 and HD2 are the
analyzer planes while NC is the catcher plane. Thin plastic scintillator
planes are used to veto (CPV) or identify (CPD) charged particles.

024319-2



POLARIZATION TRANSFER MEASUREMENTS FOR 12C . . . PHYSICAL REVIEW C 80, 024319 (2009)

In the cross section and analyzing power measurement, one
of every five beam pulses was selected prior to injection
into the ring cyclotron, yielding a pulse period of 324.3 ns.
This pulse selection reduced the wrap-around events of slow
neutrons from preceding beam pulses. In the measurement of
the polarization transfer observables, the pulse selection was
not performed, so as to achieve reasonable statistical accuracy.
Note that the contribution from the wrap-around events was
negligibly small (<∼1%) because of the kinematical selection at
the NPOL3 system (see Sec. III C). The single-turn extraction
was maintained during these measurements to preserve the
beam polarization.

Two superconducting solenoid magnets (SOL1 and SOL2)
located in the injection line from the AVF to ring cyclotrons
were used to precess the proton spin. Each magnet can rotate
the direction of the polarization vector from the normal N̂ into
the sideways Ŝ directions. These two magnets are separated by
a bending angle of 45◦, and thus the spin precession angle in
this bending magnet is about 85.2◦ for Tp = 53 MeV protons.
Therefore, proton beams are obtained with longitudinal (L̂)
and sideways (Ŝ) polarizations at the exit of SOL2 by using
the SOL1 and SOL2 magnets, respectively.

The beam polarization was continuously monitored by two
sets of beam-line polarimeters (BLP1 and BLP2) [28,30] after
the ring cyclotron. Each polarimeter consists of four conjugate-
angle pairs of plastic scintillation detectors and determines the
beam polarization via 1H( �p,p)1H scattering in the normal (N̂ )
and sideways (Ŝ) directions. A self-supporting CH2 target with
a thickness of 1.1 mg/cm2 was used as the hydrogen target,
and the elastically scattered and recoil protons were detected in
coincidence with a conjugate-angle pair of plastic scintillators.
BLP1 and BLP2 are separated by a bending angle of 98◦, and
thus the spin precession angle in the bending magnet is about
231.1◦ for Tp = 296 MeV protons. Therefore, all components
(pS, pN, pL) of the beam polarization can be simultaneously
determined using BLP1 and BLP2. The typical magnitude of
the beam polarization was about 0.70.

B. Target and NTOF facility

The NTOF facility [28], as illustrated in Fig. 1, consists of a
beam swinger magnet, a neutron spin rotation (NSR) magnet,
and a 100-m time-of-flight (TOF) tunnel. The proton beam
bombarded a self-supporting natC (98.9% 12C) target with a
thickness of 89 mg/cm2 in the beam swinger magnet. The
target energy loss was estimated to be about 270 keV by using
the stopping power of carbon for 296 MeV protons. Neutrons
from the target entered the TOF tunnel and were detected using
NPOL3 at the end of its flight path. Protons downstream of
the target were swept up by the beam swinger magnet and
stopped by a graphite beam stop (Faraday cup) from which the
integrated beam current was measured. Typical beam currents
were 50 and 500 nA for the cross section and polarization
transfer measurements, respectively. The reaction angle was
changed by repositioning the target along the beam trajectory
inside the beam swinger magnet.

The NSR magnet was positioned at the entrance of the
TOF tunnel. This magnet was used to precess the neutron

polarization from the longitudinal L̂′ to the normal N̂ ′ direc-
tions, enabling the measurement of the longitudinal component
of the neutron polarization with NPOL3 as the normal
component. This magnet was also used for the measurement
of the induced polarization P [23]. In this case, the neutron
polarization was precessed in the N ′-L′ plane by about 120◦,
depending on the neutron kinetic energy.

C. Neutron detector/polarimeter NPOL3

The NPOL3 system [29], illustrated in Fig. 2, consists of
three planes of scintillation detectors. Each of the first two
planes (HD1 and HD2) consists of 10 sets of one-dimensional
position-sensitive plastic scintillation counters (hodoscopes)
with a size of 100 × 10 × 5 cm3, covering an area of
100 × 100 cm2. The last plane (NC) is a two-dimensional
position-sensitive liquid scintillation counter with a size of
100 × 100 × 10 cm3. Both HD1 and HD2 served as neutron
detectors and neutron polarization analyzers for the cross
section and polarization transfer measurements, respectively,
and NC acted as a catcher for the particles scattered by HD1 or
HD2 in the polarization transfer measurements. Thin plastic
scintillator planes (CPV and CPD) in front of HD1 and NC
were used to veto and identify charged particles, respectively.

The neutron energy was determined by the TOF to a given
hodoscope with respect to the rf signal of the AVF cyclotron.
A peak from 12C(p,n)12N(g.s.) provided a time reference for
the absolute timing calibration. The overall energy resolution
in full width at half maximum (FWHM) was about 500 keV,
mainly due to the target energy loss and the beam pulse width
with contributions of about 270 and 350 keV, respectively.

III. DATA REDUCTION

A. Polarization observables

A complete set of polarization observables, Ay, P ,
and Dij (i = S ′, N ′, L′; j = S,N,L), for a parity-conserving
reaction relates the outgoing neutron polarization p′ =
(p′

S ′ , p
′
N ′ , p

′
L′) to the incident proton polarization p =

(pS, pN, pL) according to⎛
⎜⎝

p′
S ′

p′
N ′

p′
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(1)

The directions of the coordinate system (sideways S, normal
N , and longitudinal L) are defined in terms of the incident
proton momentum klab and the outgoing neutron momentum
k′

lab in the laboratory frame as L̂ = k̂lab, L̂′ = k̂′
lab, N̂ =

N̂ ′ = (k̂lab × k̂′
lab)/|k̂lab × k̂′

lab|, Ŝ = N̂ × L̂, and Ŝ′ = N̂ ′ ×
L̂′.
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The analyzing power Ay , the induced polarization P , and
the polarization transfer observable DNN were measured for
a normally (N̂ ) polarized proton beam. The other polariza-
tion transfer observables, DS ′S,DL′S,DS ′L, and DL′L, were
obtained from measurements with two kinds of proton beams
polarized in the horizontal plane. Note that the polarization
axes of these beams were almost orthogonal to each other.
Therefore, the efficiency of measuring Dij is almost the same
as that for pure sideways (Ŝ) and longitudinal (L̂) polarized
proton beams [23].

B. Neutron detection efficiency

The differential cross section (dσ/d�)lab in the laboratory
frame is related to the observed neutron yield Nn as

(
dσ

d�

)
lab

= Nn

Npρ��εTflive
, (2)

where Np is the number of incident protons, ρ is the target
density, �� and ε are the solid angle and intrinsic neutron
detection efficiency of NPOL3 (HD1 and HD2), respectively,
T is the neutron transmission factor along the flight path in the
air, and flive is the live time ratio.

The product εT was determined by measuring the neutron
yield from the 0◦ 7Li(p,n)7Be(g.s. + 0.43 MeV) reaction
that has a constant center of mass (c.m.) cross section of
(dσ/d�)c.m. = 27.0 ± 0.8 mb/sr at an incident energy range of
Tp = 80–795 MeV [39]. A self-supporting 7Li (99.97%) target
with a thickness of 54 mg/cm2 was used. The εT value was
0.051 ± 0.003 where the uncertainty comes mainly from the
uncertainties in the cross section for the 0◦ 7Li(p,n)7Be(g.s. +
0.43 MeV) reaction (3%) and in the thickness of the 7Li target
(3%). We note that the transmission factor T has been assumed
to be independent of reaction angle because the dependence
of the flight length on reaction angle is very small (<∼1%).

C. Effective analyzing power

The neutron polarization was analyzed using �n + p and
quasielastic �n + C scattering in analyzer HD1 or HD2, and
the recoiled protons were detected with catcher NC. These
events were kinematically resolved from background events
such as wrap-around and the target γ rays by using time and
position information from the analyzer and catcher planes.
Both the normal N ′ and sideways S ′ components of the neutron
polarization were measured simultaneously, with an azimuthal
distribution of �n + p and quasielastic �n + C events.

The effective analyzing power Ay;eff of NPOL3 was mea-
sured using polarized neutrons from the GT 12C( �p,�n)12N(g.s.)
reaction at θlab = 0◦. Two kinds of polarized protons hav-
ing normal (pN ) and longitudinal (pL) polarizations were
used. The corresponding neutron polarizations are p′

N =
pNDNN (0◦) and p′

L = pLDLL(0◦) where DNN (0◦) and
DLL(0◦) represent the polarization transfer observables at
θlab = 0◦. Then the asymmetries, εN and εL, measured by

NPOL3 are

εN = p′
NAy;eff = pNDNN (0◦)Ay;eff,

εL = p′
LAy;eff = pLDLL(0◦)Ay;eff .

(3)

As described in Sec. II B, the asymmetry εL was measured as
the normal component using the NSR magnet. Because the
polarization transfer observables Dii(0◦) for the GT transition
satisfy [40]

2DNN (0◦) + DLL(0◦) = −1, (4)

Ay;eff can be expressed as

Ay;eff = −
(

2
εN

pN

+ εL

pL

)
(5)

using Eqs. (3) and (4). Thus, one obtains the Ay;eff value
without knowing ahead of time the Dii(0◦) values. The re-
sulting Ay;eff is 0.191 ± 0.016 where the uncertainty includes
the statistical (�6%) and systematic (�2%) uncertainties.
The systematic uncertainty is estimated by considering the
uncertainty of the beam polarization [30].

D. Peak fitting

Figure 3 shows typical excitation energy spectra
of 12C(p,n)12N at four-momentum transfers of q =
0.14, 0.7, 1.2, and 1.7 fm−1. The GT 1+ state at Ex =
0 MeV (ground state of 12N) gives rise to a prominent peak
at small momentum transfers. At large momentum transfers,
however, its peak is small and not fully resolved from a large
peak consisting of excited states with Jπ = 2+ and 2− at
Ex = 0.96 and 1.19 MeV, respectively. Therefore, peak fitting
was performed to extract the yield of the GT 1+ state. The
spectra were fitted at Ex < 1.5 MeV where the excited states
at Ex = 0.96 and 1.19 MeV were treated as a single peak
because the present energy resolution could not resolve them.
The continuum background from wrap-around and 13C(p,n)
events was considered to be a linear function of Ex . The dashed
curves in Fig. 3 show the fitting results for the individual peaks,
while the solid curves show the sum of these contributions
including the background indicated as the straight dotted lines.
The peak fittings at all momentum transfers sufficed to extract
the GT 1+ yield.

IV. RESULTS AND ANALYSIS

A. Cross section and polarization observables

Figure 4 shows the cross section for the
12C(p,n)12N(g.s., 1+) reaction at Tp = 296 MeV as a
function of the momentum transfer q. The corresponding
reaction angle θc.m. is also shown on the top of the figure.
The momentum transfer resolution is about 0.04 fm−1 that
is mainly due to the finite solid angle of the detector. As
seen in Fig. 3, the GT state is not clearly resolved from the
neighboring states, and thus there is a correlation between
the yields of these two components in the peak fitting. By
considering the uncertainties of the GT yields due to this
correlation, we have estimated the systematic uncertainties.
The shaded boxes show the uncertainties, including statistical
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FIG. 3. (Color online) Excitation en-
ergy spectra for 12C(p,n)12N at Tp =
296 MeV and q = 0.14, 0.7, 1.2, and
1.7 fm−1. The dashed curves are fits to
the individual peaks. The solid curves
indicate the sum of the peak contributions
including the background plotted as the
straight dotted lines.

FIG. 4. (Color online) Measured cross sections for
12C(p,n)12N(g.s., 1+) at Tp = 296 MeV (filled circles) as a
function of momentum transfer. The corresponding reaction
angle θc.m. is also shown on the top of the figure. The open
circles are data at Tp = 295 MeV [41]. The open triangles are
12C(p,p′)12C∗(1+, T = 1) data at Tp = 295 MeV [42], multiplied by
a factor of 2 as described in the text. The solid curve shows DWIA
calculations using a shell-model wave function.

and systematic uncertainties. The statistical and systematic
uncertainties at large-momentum transfers of q � 1.6 fm−1

are about 2% and 4%, respectively. A 6% uncertainty due
to the cross-section normalization (see Sec. III B) is not
included. The open circles and open triangles, respectively,
are data for the same reaction [41] and the analogous
12C(p,p′)12C∗(1+, T = 1) scattering [42] at Tp = 295 MeV.
The 12C(p,p′) data have been multiplied by a factor of 2
because of the difference in the isospin Clebsch-Gordan (CG)
coefficients between 12C(p,n) and 12C(p,p′). Our data are
consistent with the previous data within the statistical and
systematic uncertainties.

In Fig. 5, a complete set of polarization observables,
Dij , Ay , and P , are presented for the 12C( �p,�n)12N(g.s., 1+)
reaction at Tp = 296 MeV as a function of momentum transfer.
In the top right panel, the Ay and P data are shown as filled
and open circles, respectively, and the P data are offset by a
momentum transfer of 0.05 fm−1 for clarity. The error bars
represent statistical uncertainties only, while the shaded and
open boxes include the systematic uncertainties. The statistical
and systematic uncertainties in Dij for large-momentum
transfers of q >∼ 1.0 fm−1 are about 0.19–0.24 and 0.21–0.26,
respectively, which are satisfactory for discussing nuclear
correlation effects in this momentum transfer range.

B. DWIA calculations with shell-model wave function

We performed microscopic DWIA calculations using the
computer code DW81 [43], which treats the knock-on exchange
amplitude exactly. Distorted waves were generated using a
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FIG. 5. (Color online) Measured polarization transfer observ-
ables Dij , analyzing power Ay , and induced polarization P for
12C(p,n)12N(g.s., 1+) at Tp = 296 MeV. The induced polarization
data P are offset by a momentum transfer of 0.05 fm−1 so that
the analyzing power Ay and induced polarization P data can be
distinguished. The solid and dashed curves are the results of DWIA
calculations with a shell-model wave function.

global optical model potential (OMP) optimized for 12C in
the proton energy range of Tp = 20–1040 MeV [44,45],
with the Coulomb term turned off for the exit channel. The
nucleon-nucleon (NN ) t-matrix parameterized by Franey and
Love (FL) [27] at 325 MeV was used as the interaction between
the incident and struck nucleons. The one-body density
matrix elements (OBDMEs) were obtained from shell-model
calculations using the computer code OXBASH [46]. These
calculations were performed in the 0h̄ω p-shell model space
using the Cohen-Kurath wave functions (CKWFs) [47] based
on the (6–16) 2BME interaction. The transition form factor
was normalized to reproduce the observed β decay f t value
of 13178s [48] that corresponds to a GT strength B(GT)
of 0.873 [49]. The radial part of the single-particle wave
functions was generated by a Woods-Saxon (WS) potential
with r0 = 1.27 fm, a0 = 0.67 fm [50] and a spin-orbit potential
depth of Vso = 6.5 MeV [51]. The depths of the WS potential
were adjusted to reproduce the separation energies for the
0p3/2 orbits.

The solid curves in Figs. 4 and 5 show the results of
the calculations. The normalization factor for the transition

form factor is N = 0.94. These calculations reproduce the
experimental data reasonably well at small momentum trans-
fers of q <∼ 0.5 fm−1 but show poor agreement with the
data at q >∼ 0.5 fm−1. In particular, the calculations shift the
momentum transfer dependence of the cross section to larger
momentum transfers and underestimate the cross section at
q � 1.6 fm−1. To investigate the reason for this discrepancy,
we next separated the cross section into polarized cross
sections using the polarization observables.

C. Polarized cross sections

The cross section I [(dσ/d�)c.m. in Fig. 4] can be separated
into four polarized cross sections IDi as

I = ID0 + IDq + IDn + IDp, (6)

where Di are the center-of-mass polarization observables
introduced by Bleszynski et al. [52]. The center-of-mass
coordinate system (q,n,p) is defined as q̂ = (k′ − k)/(|k′ −
k|), n̂ = (k × k′)/(|k × k′|), and p̂ = q̂ × n̂, where k and k′
are the momenta of the incident and outgoing nucleons in the
center-of-mass frame, respectively. The Di values are related
to Dij in the laboratory frame according to [53]

D0 = 1
4 [1 + DNN + (DS ′S + DL′L) cos α1

+ (DL′S − DS ′L) sin α1],

Dn = 1
4 [1 + DNN − (DS ′S + DL′L) cos α1

− (DL′S − DS ′L) sin α1], (7)

Dq = 1
4 [1 − DNN + (DS ′S − DL′L) cos α2

− (DL′S + DS ′L) sin α2],

Dp = 1
4 [1 − DNN − (DS ′S − DL′L) cos α2

+ (DL′S + DS ′L) sin α2],

where α1 ≡ θlab + � and α2 ≡ 2θp − θlab − �. Here θp is
the angle between k̂ and p̂, and � is the relativistic spin
rotation angle defined in Ref. [53]. For a plane-wave impulse
approximation with eikonal approximation, the polarized cross
sections IDi can be expressed as [53]

ID0 = 4KND

(|A|2R0 + |C|2Rn

)
,

IDn = 4KND

(|B|2Rn + |C|2R0
)
,

IDq = 4KND

(|E|2Rq + |D|2Rp

)
,

IDp = 4KND

(|F |2Rp + |D|2Rq

)
,

(8)

where K is a kinematical factor, ND is a distortion factor,
A–F are the components of the NN t-matrix, and Ri are
the response functions. Figure 6 shows the squared t-matrix
components corresponding to each IDi . These components
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FIG. 6. (Color online) Squared t-matrix components calculated
from the FL t-matrix at 325 MeV.

are derived from the FL t-matrix at 325 MeV. The effect
of the relativistic spin rotation is so small that the D term
can be neglected. Thus, polarized cross sections IDq and
IDp represent spin-longitudinal (Rq) and spin-transverse (Rp)
components exclusively. At forward angles, where the spin-
orbit component |C|2 is very small, polarized cross sections
ID0 and IDn represent nonspin (R0) and spin-transverse (Rn)
components, respectively.

Figure 7 shows four polarized cross sections IDi as a
function of momentum transfer. The meaning of the error
bars and shaded boxes is the same as those in Figs. 4 and
5. Although the present GT transition does not have a nonspin
response function R0, the nonspin polarized cross section
ID0 has a nonzero value due to the spin-orbit component
|C|2 in Eq. (8). Because ID0 is small, we will discuss only
the spin-dependent polarized cross sections IDq, IDp, and
IDn. The oscillatory pattern for the spin-longitudinal cross
section IDq is different from those for the spin-transverse cross
sections, IDp and IDn. As seen in Fig. 6, these patterns reflect
the momentum transfer dependences of the corresponding
NN t-matrix components. Compared with the spin-transverse
t-matrix components |B|2 and |F |2, the spin-longitudinal
component |E|2 has the first minimum at lower momentum
transfer of q � 0.7 fm−1. This is because the real part of E

crosses zero near this momentum transfer due to the smallness
of the pion mass. Thus the corresponding spin-longitudinal
IDq shows the first minimum at q � 0.6 fm−1. Therefore,
the data verify suitable separation in the spin-longitudinal and
spin-transverse modes based on the reaction mechanism of
Ref. [53].

The solid curves in Fig. 7 present the DWIA results with
a shell-model wave function where the input parameters

FIG. 7. (Color online) Measured polarized cross sections for
12C(p,n)12N(g.s., 1+) at Tp = 296 MeV. The solid curves are the
results of DWIA calculations using the shell-model wave function.

are same as those described in Sec. IV B. The calculations
underestimate all three spin-dependent IDi at q � 1.6 fm−1,
and the discrepancy in the momentum transfer dependence is
evident in the spin-transverse IDp and IDn. Thus, in Fig. 8, the
sensitivity of the DWIA calculations for three spin-dependent
IDi was investigated for changes in the parameters. Note that
the solid curves are the same as those in Fig. 7. First, the OMP
dependence of the calculations was examined by using other
OMPs; three global OMPs (EDAD Fit 1–3) parameterized for
12C–208Pb in the proton energy range of Tp = 20–1040 MeV
[44,45] and the OMP obtained from proton elastic-scattering
data on 12C at Tp = 318 MeV whose parameters are listed
in Table I [54]. The radial dependences of these OMPs for
the incident channel are shown in Fig. 9, and the DWIA
results are shown in Fig. 8(a) by the bands. The OMP
dependence of the spin-longitudinal IDq is small, whereas

TABLE I. The optical model parameters obtained from
proton elastic-scattering data on 12C at Tp = 318 MeV [54]. The
potential is defined by U (r) = VC(r) + VRfR(r) + iVIfI (r)+
[h̄/(mπc)]2(1/r)[VRSO(d/dr)fRSO(r)+iVISO(d/dr)fISO(r)](σ × L),
where VC is the Coulomb potential for a uniformly charged sphere
and fi(r) = [1 + exp{(r − riA

1/3)/ai}]−1.

Potential Vi (MeV) ri (fm) ai (fm)

Real central (i = R) −5.005 1.272 0.411
Imaginary cetral (i = I) −22.55 1.083 0.474
Real spin-orbit (i = RSO) −1.77 0.910 0.867
Imaginary spin-orbit (i = ISO) 2.71 0.909 0.467
Coulomb (i = C) 1.24
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FIG. 8. (Color online) Parameter dependence of the calculations
for the spin-dependent polarized cross sections IDq (left panels), IDp

(middle panels), and IDn (right panels). The solid curves are the same
as those in Fig. 7. The bands and dashed curves present DWIA results
with other parameters: (a) four different OMP parameters (bands) and
neutron global OMPs for the exit channel (dashed curves); (b) two
different CKWFs (bands) and a pure 0p1/20p−1

3/2 configuration (dashed
curves); and (c) the HO potential (dashed curves).

those of the spin-transverse IDp and IDn are significantly
larger near the cross-section minimum at q � 1.4 fm−1. We
also performed DWIA calculations using the neutron global
OMPs for 12C–238U in the neutron energy range of Tn = 20–
1000 MeV [55] for the exit channel, and the results are
plotted as the dashed curves in Fig. 8(a). The use of the

FIG. 9. (Color online) The radial dependences of the OMPs for
the incident channel used in the DWIA calculations. The solid curves
and the bands show the global OMPs optimized for 12C (EDAI) and
12C–208Pb (EDAI FIt 1–3) in the proton energy range of Tp = 20–
1040 MeV, respectively [44,45]. The dashed curves represent the
OMP obtained from proton elastic-scattering data on 12C at Tp =
318 MeV [54].

neutron global OMPs gives larger values near the cross-
section minimum at q >∼ 1.4 fm−1 in the spin-transverse mode.
However, neither the discrepancy in the angular distribution
nor the underestimation in the cross section at large momentum
transfers can be explained by the OMP uncertainties.

Second, the proton-particle and neutron-hole configuration
dependences were investigated. The bands in Fig. 8(b) are
DWIA results with other CKWFs based on the (8–16) 2BME
and (8–16) POT interactions [47]. We also performed DWIA
calculations for a pure 0p1/20p−1

3/2 transition from the Hartree-
Fock (HF) state of 12C (the state fully occupying the 0s1/2 and
0p3/2 orbits), and the results are shown as the dashed curves.
Table II summarizes the OBDMEs and B(GT) together with
the corresponding normalization factors N for the transition
form factors. The configuration dependence is small for all
three IDi , and thus the discrepancy between the experimental
and theoretical results is not resolved by considering the
configuration dependence.

Finally, we investigated the dependence on the radial
wave function. The dashed curves in Fig. 8(c) are DWIA
results using a harmonic oscillator (HO) potential with a size
parameter of b = 1.53 fm−1. This parameter was obtained
from an analysis of the electron scattering on 12C to the

TABLE II. One-body density matrix elements and Gamow-Teller strengths for the 12C(p,n)12N(g.s., 1+)
reaction used in the DWIA calculations. The normalization factors for the transition form factors are also listed.

Shell-model wave function OBDME B(GT) N

0p1/20p−1
1/2 0p1/20p−1

3/2 0p3/20p−1
1/2 0p3/20p−1

3/2

(6–16)2BME 0.0859 0.6672 0.3228 0.0925 0.929 0.94
(8–16)2BME 0.0733 0.6915 0.3262 0.0822 0.992 0.88
(8–16)POT 0.0582 0.6902 0.3393 0.0763 0.921 0.95
Pure 0p1/20p−1

3/2 0.0 1.0 0.0 0.0 5.228 0.17
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FIG. 10. (Color online) Same as in Fig. 8 but for the diagonal
polarization transfer observables: DNN (left panels), DS′S (middle
panels), and DL′L (right panels).

stretched 4−, T = 1 state at Ex = 19.55 MeV [56] with the
center-of-mass correction taken into account [57]. The results
are almost the same as those for the WS potential. Thus the
discrepancy between the experimental and theoretical results
could not be explained by the radial wave function dependence.

Figure 10 represents the parameter dependence for the
orthogonal components of the polarization transfer observ-
ables, DNN (left panels), DS ′S (middle panels), and DL′L
(right panels). Based on the calculations in Figs. 8 and 10,
the experimental data at large momentum transfers cannot be
reproduced within the framework of the DWIA employing
shell-model wave functions. Therefore, in the following
section, nuclear correlation effects beyond the shell model
are investigated.

V. DISCUSSION

In this section, the experimental spin-dependent polarized
cross sections are compared with the DWIA calculations using
RPA response functions to investigate the nuclear correlation
effects beyond the shell model.

A. DWIA+RPA calculations

We performed DWIA+RPA calculations using the com-
puter code CRDW [58]. The formalism of the calculations is
discussed in Refs. [51,58]. The spin-isospin response functions
were calculated in a continuum RPA including the � degrees
of freedom. We further utilized a ring approximation [58]
and used the π + ρ + g′ model interaction for the effective

interaction, which is expressed as [1]

Veff(q, ω) = VL(q, ω) + VT (q, ω), (9)

where VL and VT are the spin-longitudinal and spin-transverse
effective interactions, respectively. They are determined by
the pion and ρ-meson exchange interactions and the Landau-
Migdal (LM) interaction specified by the LM parameters,
g′

NN, g′
N�, and g′

��, as

VL(q, ω)

= f 2
πNN

m2
π

[
g′

NN + q2

ω2 − q2 − m2
π

2
πNN (q, ω)

]

× (σ 1 · q̂)(σ 2 · q̂)(τ 1 · τ 2) + fπNNfπN�

m2
π

×
[
g′

N� + q2

ω2 − q2 − m2
π

πNN (q, ω)πN�(q, ω)

]

× [{(σ 1 · q̂)(S2 · q̂)(τ 1 · T 2) + (1 ↔ 2)} + h.c.]

+ f 2
πN�

m2
π

[
g′

�� + q2

ω2 − q2 − m2
π

2
πN�(q, ω)

]

× [{(S1 · q̂)(S†
2 · q̂)(T 1 · T †

2)

+ (S1 · q̂)(S2 · q̂)(T 1 · T 2)} + h.c.], (10)

and

VT (q, ω)

= f 2
πNN

m2
π

[
g′

NN + Cρ

q2

ω2 − q2 − m2
ρ

2
ρNN (q, ω)

]

× (σ 1 × q̂)(σ 2 × q̂)(τ 1 · τ 2) + fπNNfπN�

m2
π

×
[
g′

N� + Cρ

q2

ω2 − q2 − m2
ρ

ρNN (q, ω)ρN�(q, ω)

]

× [{(σ 1 × q̂)(S2 × q̂)(τ 1 · T 2) + (1 ↔ 2)} + h.c.]

+ f 2
πN�

m2
π

[
g′

�� + Cρ

q2

ω2 − q2 − m2
ρ

2
ρN�(q, ω)

]

× [{(S1 × q̂)(S†
2 × q̂)(T 1 · T †

2)

+ (S1 × q̂)(S2 × q̂)(T 1 · T 2)} + h.c.], (11)

where mπ and mρ are the pion and ρ-meson masses, σ and τ

are the spin and isospin operators of the nucleon N , and S and
T are the spin and isospin transition operators from N to �.
The coupling constants and meson parameters for the pion and
ρ-meson exchange interactions from a Bonn potential were
used, which treats � explicitly [59]. The LM interaction
effectively represents the short-range correlations and the
exchange terms in the RPA, and the LM parameters have been
estimated to be g′

NN = 0.65 ± 0.15 and g′
N� = 0.35 ± 0.15

[60] by using the peak position of the GT giant resonance
and the GT quenching factor at q = 0 fm−1 [2,3], as well
as the isovector spin-longitudinal polarized cross section in
the QES process at q � 1.7 fm−1 [25]. We fixed g′

�� = 0.5
[61] because the g′

�� dependence in the results is weak.
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FIG. 11. (Color online) Comparison between calculations using
the computer codes CRDW and DW81 for the cross section I

and polarized cross sections, IDq, IDp , and IDn. The solid and
dashed curves represent DWIA calculations using CRDW and DW81,
respectively. The normalization factor N of 0.17 is common for both
calculations.

The response functions are normalized to reproduce the
experimental B(GT).

The ground state of 12C was assumed to be a HF state.
However, as seen in Table II, the ground-state correlation
that is included in the shell-model calculations plays an
important role in reproducing the experimental B(GT) value
of 0.873. To include the shell-model (configuration-mixing)
effects effectively, we used much smaller normalization factors
N than those of the shell-model calculations, namely N = 0.28
and N = 0.17 in the calculations with and without RPA
correlations, respectively.

The nonlocality of the nuclear mean field was treated using
the local effective mass approximation [1] in the form

m∗(r) = mN − fWS(r)

fWS(0)
[mN − m∗(0)], (12)

where mN is the nucleon mass and fWS(r) is a WS radial form.
Here we adapted the standard value of m∗(0) = 0.7mN [62,63].

We used the same OMPs and single-particle wave functions
as described in Sec. IV B. The NN t-matrix parameterized by
Franey and Love at 325 MeV was used, and the exchange terms
were approximated by contact terms following the prescription
by Love and Franey [64].

In Fig. 11, the consistency between theoretical results using
the computer codes CRDW and DW81 is checked. The solid
curves are the CRDW results with a free response function
employing m∗(0) = mN , whereas the dashed curves are the
DW81 results with the corresponding wave function as for the
dashed curves in Fig. 8(b). The normalization factor N of
0.17 is common, and both calculations for the unpolarized

FIG. 12. (Color online) Comparison between experimental and
theoretical results of polarized cross sections IDq, IDp , and IDn

for 12C(p,n)12N(g.s., 1+) at Tp = 296 MeV. The dotted and dashed
curves present the DWIA results with a free response function
using m∗(0) = mN and m∗(0) = 0.7mN , respectively, and N =
0.17. The solid curves denote DWIA results for an RPA response
function with (g′

NN, g′
N�, g′

��) = (0.65, 0.35, 0.50), m∗(0) = 0.7mN

and N = 0.28. The bands are the g′
NN and g′

N� dependences of the
DWIA results with g′

NN = 0.65 ± 0.15 and g′
N� = 0.35 ± 0.15.

cross section I are in good agreement with each other. The
theoretical results for IDi show good consistency except near
the cross-section minimum at q � 1.4 fm−1. Therefore, in the
next subsection, the experimental data are compared with the
DWIA calculations using CRDW to investigate nuclear structure
effects that could not be included in the preceding calculations,
such as RPA correlations.

B. Comparison with DWIA+RPA calculations

First, the nonlocality of the nuclear mean field was
investigated. The dotted and dashed curves in Fig. 12 show the
DWIA results with a free response function using m∗(0) = mN

and m∗(0) = 0.7mN , respectively, and N = 0.17. The angular
distributions of all three spin-dependent IDi curves shift to
lower-momentum transfer due to the nonlocality of the nuclear
mean field, so that the agreement with the data is improved.
This shift arises because the transition form factor moves
outward due to the Perey effect [65]. However, there remains a
discrepancy between the experimental and theoretical results
at around q � 1.6 fm−1.

Next we considered the nuclear correlation effects in
the RPA. The solid curves in Fig. 12 show the results
of DWIA+RPA calculations using g′

NN = 0.65, g′
N� = 0.35,

and m∗(0) = 0.7mN with N = 0.28. The bands represent
the g′

NN and g′
N� dependences with g′

NN = 0.65 ± 0.15
and g′

N� = 0.35 ± 0.15. In the continuum RPA, the GT
state couples to particle-unbound 1+ states, which shifts the
response function in coordinate space to larger r values. Thus
the angular distributions further shift to lower momentum
transfer. Furthermore, the RPA correlation enhances all three
IDi at large momentum transfers of q � 1.6 fm−1, improving
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FIG. 13. (Color online) DWIA predictions for
12C(p,n)12N(g.s., 1+) at Tp = 296 MeV. The dashed and solid
curves are the DWIA results with the RPA response functions
using the LM parameters with and without the dipole form factors,
respectively.

the agreement with the data. In the analysis of QES, the spin-
transverse IDp and IDn are quenched due to the repulsion
of the spin-transverse interaction VT [23,25]. However, in
the analysis shown in Fig. 12, the transition form factors
are normalized to reproduce B(GT). This means that the
quenching due to the repulsive LM interaction is effectively
included through the normalization factor N [32]. Therefore,
in Fig. 12, the attractive ρ-meson exchange effects are seen as
an enhancement of IDp and IDn at q � 1.6 fm−1. Also note
that the modification of the momentum transfer dependences
(due to the shape change of the response functions in r space
that is not included through the normalization) is important for
the magnitude of IDi .

In some theoretical studies [10,66,67], the LM parame-
ters are taken to have the momentum- and energy-transfer
dependence. We investigated this effect on IDi by using the
effective interaction Veff by Alberico et al. [10], in which
the LM parameters have the momentum- and energy-transfer
dependence with the dipole form factors. The DWIA+RPA
results with this effective interaction are shown in Fig. 13.
The dashed and solid curves correspond to the calculations
with and without the dipole form factors, respectively. We
note that the coupling constants and meson parameters are
slightly different from those in Ref. [59], and thus the results
without the dipole form factors are also slightly different from
those shown in Fig. 12. For the spin-longitudinal mode, the use
of the dipole form factors enhances IDq at large momentum
transfers of q � 1.6 fm−1, which is due to the more attractive
spin-longitudinal interaction VL. However, the effect is small,
and the same results can be achieved by using smaller and
reasonable LM parameters of g′

NN � 0.55 and g′
N� � 0.30.

For the spin-transverse mode, the form factor effects are very
small in both IDp and IDn because of the insensitivity to the
spin-transverse interaction VT [1].

Figure 14 compares the experimental and theoretical
results for the cross section and orthogonal components of
the polarization transfer observables, DNN,DS ′S , and DL′L.

FIG. 14. (Color online) Same as in Fig. 12 but for the cross section
and diagonal polarization transfer observables, DNN, DS′S , and DL′L.

These quantities are better reproduced by considering RPA
correlations together with the nonlocality of the nuclear mean
field, particularly for the momentum transfer dependences.
From the analyses in Figs. 12 and 14, we conclude that our
data support the existence of pionic and ρ-mesonic correlations
in nuclei at large momentum transfers.

VI. FINAL REMARKS

The DWIA calculations including RPA correlations repro-
duce the experimental data for the spin-longitudinal cross sec-
tion IDq and give improved descriptions of the spin-transverse
cross sections, IDp and IDn. However, the experimental
values of IDp and IDn remain larger than the calculated
values at momentum transfers of q � 1.6 fm−1 by factors
of about 1.4 and 2.0, respectively. The magnitudes of the
observed enhancements are significantly different for IDp

and IDn. Because the spin-transverse response is common
for IDp and IDn, medium modifications of the effective NN

interaction are considered as a possible reason for the observed
enhancements. Such modifications have been discussed using
data for the stretched state excitations in Refs. [31,68,69],
where it is reported that the experimental values of IDn at large
momentum transfers are increased in magnitude by a factor of
about 1.5, indicating an enhancement in the corresponding
NN scattering amplitude B. Thus, a larger value of B might
be responsible for the enhancement in the experimental values
of IDn from Eq. (8). However, because no modification
of the NN amplitude F is observed in the stretched state
excitations, the enhancement in IDp cannot be explained by
modifications of the NN interaction. We note that medium
modifications of the effective NN interaction have been also
discussed in the relativistic framework [70]. If one takes into
account the increase in B, the enhancement of IDn is reduced
to 1.3, which is almost same as that of IDp. Consequently
the experimental values of IDp and IDn may be enhanced
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by a common mechanism, such as higher order (e.g., 2p-2h)
configuration mixing [71,72]. Thus more comprehensive and
detailed theoretical analyses are needed including effects of
higher-order configuration mixing and medium modifications
of the effective NN interaction.

VII. SUMMARY AND CONCLUSION

We have measured differential cross sections and complete
sets of polarization observables for the 12C( �p,�n)12N(g.s.,1+)
reaction at Tp = 296 MeV with momentum transfers of
q = 0.1 to 2.2 fm−1 to investigate nuclear correlation effects
inside the nuclei. The experimental polarized cross sections
IDi have been compared with DWIA calculations employing
shell-model wave functions. For all three spin-dependent IDi ,
a significant difference in the momentum-transfer dependence
and an enhancement around q � 1.6 fm−1 were observed
when compared to calculations. The use of a local effective
mass of m∗(0) = 0.7mN improves the agreement with the

data but still underestimates the cross section at around
q � 1.6 fm−1. These underestimations for all three spin-
dependent IDi are partly resolved by DWIA calculations
employing an RPA response function with g′

NN = 0.65,

g′
N� = 0.35, and m∗(0) = 0.7mN , supporting the existence of

pionic and ρ-mesonic correlations in the nuclei. This finding
is the first indication for observing pionic and ρ-mesonic
correlation effects separately. To understand the nuclear corre-
lation effects quantitatively, theoretical analyses are required
that include effects of higher-order configuration mixing and
medium modifications in the effective NN interaction.
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