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Pairing in the framework of the unitary correlation operator method (UCOM):
Hartree-Fock-Bogoliubov calculations
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In this first in a series of articles, we apply effective interactions derived by the unitary correlation operator
method (UCOM) to the description of open-shell nuclei, using a self-consistent Hartree-Fock-Bogoliubov
framework to account for pairing correlations. To disentangle the particle-hole and particle-particle channels
and assess the pairing properties of VUCOM, we consider hybrid calculations using the phenomenological Gogny
D1S interaction to derive the particle-hole mean field. In the main part of this article, we perform calculations of
the tin isotopic chain using VUCOM in both the particle-hole and particle-particle channels. We study the interplay
of both channels and discuss the impact of noncentral and nonlocal terms in realistic interactions as well as the
frequently used restriction of pairing interactions to the 1S0 partial wave. The treatment of the center-of-mass
motion and its effect on theoretical pairing gaps is assessed independently of the used interactions.
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I. INTRODUCTION

Recent years have seen a revival of nuclear structure
physics, motivated by new experimental advances in the use
of radioactive beams in existing and proposed facilities at
GSI/Facility for Antiproton and Ion Research (FAIR), RIKEN,
GANIL, and other laboratories worldwide, as well as new
theoretical approaches to the nuclear many-body problem. The
application of effective field theory (EFT) and renormalization
group (RG) methods has provided systematic approaches to
the construction of effective nuclear interactions that maintain
a stringent link to QCD, either directly on the formal level or
by the reproduction of low-energy observables like NN phase
shifts and deuteron properties. The former have culminated
in the derivation of a consistent set of two- and higher
many-nucleon interactions in the framework of chiral EFT
at next-to-next-to-next-to-leading order (N3LO) [1,2], while
the latter have revealed the universal aspects of realistic NN

interactions by decoupling low- and high-momentum modes
via RG decimations in the case of Vlow-k [3], or unitary
transformations in the similarity renormalization group (SRG)
[4].

While starting from a different premise, i.e., the explicit
treatment of correlations induced by the repulsive core and
the tensor force of realistic NN interactions like Argonne
V18 or CD-Bonn (see Ref. [5] for a review), the unitary
correlation operator method (UCOM) [6,7] shares many
characteristics of the RG-derived low-momentum interactions.
This is particularly true for the SRG approach, where the
dynamical generator of the unitary transformation is related
to the generators of the UCOM transformation [8,9].

In our previous works, correlated interactions derived in
the UCOM framework, referred to as VUCOM in the following,
have proven their merit in a wide range of many-body methods,
from ab initio calculations of light nuclei in the no-core shell
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model [10–12] to Hartree-Fock (HF) and HF-based extensions
like many-body perturbation theory [13,14], RPA [15,16],
and second RPA [17]. Because HF-based approaches do not
account for pairing correlations, they are expected to work
best for closed-shell nuclei. The aim of this first in a series of
articles is the extension of our calculations to open-shell nuclei
by constructing a self-consistent Hartree-Fock-Bogoliubov
(HFB) framework (see, e.g., Ref. [18]).

Initial attempts to solve the HFB equations using (at the
time) “realistic” interactions [19,20] were hampered by the
strong repulsive core of the NN interaction, which leads to
infinities in mean-field methods because Slater determinants
are inherently unable to describe the required correlations.
Brueckner’s G-matrix approach [21] provided a way to
deal with this problem by resumming particle-particle ladder
diagrams, leading to a well-behaved “tamed” interaction,
but remained problematic, e.g., due to the starting-energy
dependence. At the same time, it was observed that a similar
resummation was not required to regularize the NN gap
equation (see, e.g., Refs. [22,23]), and, in modern terms, the
“bare” interaction could be used directly, prompting a disparate
treatment of the particle-hole and particle-particle channels in
self-consistent field calculations in the following decades.

Parallel to these original Hamiltonian-based approaches,
Negele and Vautherin introduced the density matrix expansion
[24] in nuclear physics. While their work was tied to the
Hamiltonian-based approaches by using similar concepts as
in G-matrix methods, it also provided a foundation for
the form of Skyrme-type energy functionals and paved the
way for phenomenological density functional theory (DFT),
which became the standard framework for self-consistent field
methods until today (see, e.g., Ref. [25] for a comprehensive
review). While current phenomenological density functionals
are able to describe nuclear bulk properties like binding
energies and charge radii with high accuracy near the valley of
stability, they often perform inadequately in the description
of spectroscopic observables or exotic nuclei. As a result,
considerable theoretical effort is underway to improve the
phenomenological functionals (see, e.g., Refs. [26,27]) or to
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construct it from first principles by applying EFT methods
[28]. Given the guiding principles of EFTs with respect to
consistency, one then has to ask whether one should actually
demand the treatment of the particle-hole and particle-particle
channels on the same footing—especially because effective
interactions derived in the (S)RG or the UCOM approaches no
longer require resummations in the particle-hole channel.

A strong argument in favor of such consistency was encoun-
tered in phenomenological DFT in recent years. Many-body
methods beyond the mean field, e.g., generator coordinate
approaches, involve configuration mixing of nonorthogonal
Slater determinants and rely on subtle cancellations between
singular terms in the particle-hole and particle-particle channel
(see, e.g., Refs. [29,30]). A Hamiltonian provides an ideal
starting point for these methods, because the use of the
same interaction in both channels automatically guarantees
these cancellations, whereas one has to go to some lengths
to implement a “regularization” scheme in DFT to remove
spurious contributions to the energy and other expectation
values due to the use of separate particle-hole and pairing
functionals [31,32].

For the reasons discussed above, the aim of this article is
the formulation of a fully self-consistent HFB scheme based
on an intrinsic Hamiltonian, using a family of correlated
interactions based on the realistic Argonne V18 interaction
[33] in both interaction channels. After briefly reviewing
the basics of the HFB approach and the unitary correlation
operator method in Sec. II, we discuss certain details of our
implementation in Sec. III. This includes a comparison of the
convergence behavior of VUCOM with the phenomenological
Gogny D1S interaction [34], as well as a detailed discussion
of the center-of-mass treatment. In Sec. IV, we investigate
the properties of VUCOM as a pairing interaction, using the
Gogny force to generate the mean field and thereby disentangle
the particle-hole and particle-particle channels. This section
also includes a comparison with the pairing properties of
SRG-evolved interactions. Section V presents results from
fully self-consistent HFB calculations with VUCOM.

II. FORMALISM

A. Hartree-Fock-Bogoliubov theory

The HFB approach [18] aims for a simultaneous mean-field
description of the particle-hole and particle-particle channels
of the NN interaction by introducing quasiparticle operators
{βk, β

†
k}k∈N via the Bogoliubov transformation

β
†
k =

∑
l

Ulkc
†
l + Vlkcl, (1)

βk =
∑

l

U ∗
lkcl + V ∗

lkc
†
l , (2)

where ck and c
†
k are annihilation and creation operators in the

standard particle space. The Bogoliubov conditions

U †U + V †V = 1, UU † + V ∗V T = 1, (3a)

UT V + V T U = 0, UV † + V ∗UT = 0, (3b)

ensure that the {βk, β
†
k}k∈N satisfy the canonical anticommu-

tation relations. In HFB approximation, the nuclear ground
state |�〉 is defined (up to a unitary transformation) by the
quasiparticle vacuum,

βk|�〉 = 0 . (4)

Taking account of the center-of-mass contribution to the
kinetic energy, we introduce the intrinsic kinetic energy
operator

Tint = 2

A

A∑
i<j

q2
ij

2µ
, µ = mN

2
, (5)

where

qij = 1
2 ( pi − pj ) (6)

is the relative momentum and µ the reduced mass, given in
terms of the nucleon mass mN . Using Tint, the intrinsic many-
body Hamiltonian reads

Hint = Tint + V = T − Tcm + V. (7)

The intrinsic energy of the HFB ground state can then be
expressed in terms of the density matrix

ρkk′ = 〈�| c†k′ck |�〉 = (V ∗V T )kk′ (8)

and the pairing tensor

κkk′ = 〈�| ck′ck |�〉 = (V ∗UT )kk′ (9)

as

E[ρ, κ, κ∗] = 1
2 tr (hρ) − 1

2 tr (�κ∗), (10)

where the Hermitian particle-hole field

hkk′ ≡ ∂E

∂ρk′k
≡

∑
qq ′

(
2

A
t̄ + v̄

)
kq ′k′q

ρqq ′ (11)

and the antisymmetric pairing field

�kk′ ≡ ∂E

∂κ∗
kk′

= 1

2

∑
qq ′

(
2

A
t̄ + v̄

)
kk′qq ′

κqq ′ (12)

have been introduced. t̄ and v̄ denote the antisymmetrized
matrix elements of the intrinsic kinetic energy and the NN

interaction, respectively.
The HFB ground state is obtained by performing a variation

of the energy with respect to ρ and κ , subject to the constraint

trρ = N, (13)

which ensures the conservation of the mean particle number.
Carrying out the variation, one obtains the Hartree-Fock-
Bogoliubov equations

H
(

Uk

Vk

)
≡

(
h − λ �

−�∗ −h∗ + λ

) (
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (14)

where we have introduced the HFB Hamiltonian H. Due to
the use of an intrinsic Hamiltonian, the Lagrange multiplier λ

in Eq. (14) can no longer be identified directly with the Fermi
energy of the system (see Sec. III B). Equation (14) constitutes
an eigenvalue problem that has to be solved self-consistently
due to the dependence of H on ρ and κ .
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B. Spherical symmetry

Assuming spherical symmetry, the Bogoliubov transforma-
tion reduces to the form

β
†
nljm =

∑
n′

U
(lj )
n′n c

†
n′ljm + (−1)j+mV

(lj )
n′n cn′lj−m, (15)

βnljm =
∑
n′

U
(lj )
n′n cn′ljm + (−1)j+mV

(lj )
n′n c

†
n′lj−m, (16)

where n is a radial quantum number and the upper indices (lj )
mark the (diagonal) angular-momentum quantum numbers.
Aside from the explicit phase factor in Eq. (15), the transfor-
mation is independent of the angular-momentum projection
m. Using the matrices U and V from Eq. (15), one can define
the reduced matrices ρ

(lj )
nn′ and κ

(lj )
nn′ ,

ρnljm,n′l′j ′m′ = [V V T ](lj )
nn′ δjj ′δll′δmm′

≡ ρ
(lj )
nn′ δjj ′δll′δmm′ , (17)

κnljm,n′l′j ′m′ = (−1)j−m[V UT ](lj )
nn′ δjj ′δll′δm−m′

≡ (−1)j−mκ
(lj )
nn′ δjj ′δll′δm−m′ , (18)

which are both symmetric and real. The antisymmetry of the
pairing tensor is now contained entirely in the phase factor.
Correspondingly, the reduced fields are defined by

	nljm,n′l′j ′m′ ≡ δjj ′δll′δmm′	
(lj )
nn′ (19)

and

�nljm,n′l′j ′m′ ≡ δjj ′δll′δm,−m′ (−1)j−m�
(lj )
nn′ . (20)

With these definitions, the reduced HFB equations read(
h(lj ) − λ −�(lj )

−�(lj ) −h(lj ) + λ

)(
U

(lj )
k

V
(lj )
k

)
= Ek

(
U

(lj )
k

V
(lj )
k

)
. (21)

C. Canonical basis

The canonical basis is a convenient tool for the discussion
of the HFB problem, because the HFB equations (14) assume
the same form as in the Bardeen-Cooper-Schrieffer (BCS)
case in this representation. It is obtained by diagonalizing
the one-body density matrix (8), whose eigenvalues v2

µ are
interpreted as occupation probabilities of the corresponding
canonical states |µ〉. The accompanying coefficients u2

µ are
defined up to a phase by the condition [cf. Eq. (3)]

u2
µ + v2

µ = 1. (22)

Analogous to the BCS case one can then define generalized
single-particle energies and state-dependent gaps (see, e.g.,
Ref. [35]) via the matrix elements

εµ = hµµ, (23)

�µ = �µµ̄, (24)

as well as the canonical quasiparticle energy

Eµ =
√

(εµ − λ)2 + �2
µ . (25)

Here, |µ̄〉 is the canonical conjugate state of |µ〉 (e.g., the
time-reversed state in systems with time-reversal symmetry).

Eµ is just the diagonal matrix element of the HFB Hamiltonian
in the canonical basis, and therefore generally not identical to
any of the quasiparticle energies obtained by diagonalizing
H. In terms of the newly defined quantities, the canonical
coefficients can be written as

uµ =
√

1

2

(
1 + εµ − λ

Eµ

)
, (26)

vµ = sgn (�µ)

√
1

2

(
1 − εµ − λ

Eµ

)
, (27)

where we have adopted the phase conventions of Ref. [35].

D. Gap definitions

Experimentally, the odd-even staggering of nuclear binding
energies provides a clear signal of pairing correlations in the
finite nucleus. This staggering is analyzed via the ground-state
energy differences of several neighboring nuclei. Recently, it
was argued that the odd-centered three-point formula

�(3)(N ) = − 1
2 [E(N + 1) − 2E(N ) + E(N − 1)] , (28)

provides the clearest measure of pairing correlations along
isotopic (or isotonic) chains, because it is least affected
by particle-hole effects (see, e.g., Ref. [36], which also
discusses further refinements). The best way to compare these
experimental “gaps” to theory would be the application of
Eq. (28) to theoretical ground-state energies. Because the
treatment of odd nuclei in a HFB framework requires further
approximations with respect to the blocking of levels by the
unpaired nucleon, we defer such calculations to the future. We
point out, however, that such calculations are facilitated in a
Hamiltonian-based approach because the interaction is already
completely determined.

While the pairing energy in Eq. (10) provides an obvious
measure of pairing correlations in a theoretical calculation, it
cannot be related directly to the experimental gap (28). Thus,
one usually turns to the canonical basis, where theoretical gaps
that allow some form of comparison can be defined. In analogy
to BCS theory, one can then consider the state-dependent gap
of the canonical state with the lowest quasiparticle energy
(cf. Sec. II C) as a measure of pairing correlations (see, e.g.,
Refs. [37,38]):

� = �µ0 , Eµ0 = min
µ

Eµ. (29)

Various other prescriptions for the gap are used in the literature
as well, in particular

〈�〉 =
∑

µ uµvµ�µ∑
µ uµvµ

, (30)

which corresponds to the average of the pairing energy over the
paired canonical states at the Fermi surface [25]. To interpret
our theoretical results, we will primarily use the canonical
gap (29). In comparison, the averaged gap has only slightly
different values and exhibits somewhat smoother trends. Any
exceptions to this behavior will be addressed explicitly in the
discussion.
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E. Unitary correlation operator method (UCOM)

The unitary correlation operator method is motivated by
physical considerations on the structure and origin of the
dominant many-body correlations. The short-range repulsion
in the central part of the NN interaction drives the interacting
nucleon pair apart. The tensor interaction induces correlations
between the relative distance and the spin of the nucleon pair,
leading to the characteristic mixing between components with
relative orbital angular momentum L and L ± 2 in the S = 1
channel. To imprint these correlations on a many-body state,
we construct a unitary transformation with the generators

gr = 1
2 [qrs(r) + s(r)qr ] (31)

and

g� = ϑ(r)S12(r, q�)

≡ ϑ(r) 3
2 [(σ 1 · q�)(σ 2 · r) + (σ 1 · r)(σ 2 · q�)], (32)

where

qr ≡ 1

2

(
q · r

r
+ r

r
· q

)
, (33)

q� ≡ q − qr

r
r

= 1

2r2
(L × r − r × L) . (34)

The generator gr uses the radial part of the relative momentum
operator q to create a shift in the radial direction, while g�

is constructed from the so-called orbital momentum, i.e., the
angular part of q, and generates shifts perpendicular to r .
The strength and range of the transformation is governed by
the shift function s(r) and the tensor correlation function ϑ(r).
Rather than using the shift function directly, it is more practical
to define the central correlation function R+(r) via the integral
equation ∫ R+(r)

r

dξ

s(ξ )
= 1, (35)

which implies R+(r) ≈ r + s(r) for a weakly r-dependent
s(r).

The unitary transformation is then written as

C ≡ C�Cr ≡ exp

(
−i

∑
j<k

g�,jk

)
exp

(
−i

∑
j<k

gr,jk

)
, (36)

where the sum runs over all nucleon pairs. One can now
proceed to calculate expectation values either by applying
C to the many-body state |�〉 or to a given observable
O, yielding either a correlated state |�̃〉 or a correlated
operator Õ:

〈�̃| O |�̃〉 = 〈�| C†
r C

†
�OC�Cr |�〉 = 〈�| Õ |�〉. (37)

The structure of the transformation (36) implies that Õ is an
A-body operator in Fock space, which can be expressed in
terms of irreducible contributions Õ[n] for a specific particle
number n � A via the cluster expansion

Õ = C†OC = Õ[1] + Õ[2] + · · · + Õ[A] . (38)

If the range of the correlation functions is small compared
to the mean interparticle distance, we can employ the
two-body approximation and omit negligible cluster terms
beyond the second order (for details see Refs. [6,7,10]). For

the construction of the correlated Hamiltonian in two-body
approximation, it is then sufficient to consider the Hamiltonian
in the two-nucleon system,

Hint = Tint + V ≡ q2

2µ
+ V, (39)

where we have already subtracted the center-of-mass kinetic
energy, which is not affected by the correlation procedure.
Applying the correlation operators,

C†
r C

†
�HintC�Cr = Tint + T̃

[2]
int + Ṽ [2] + · · · , (40)

and collecting the two-body contributions from the correlated
kinetic energy and the transformed interaction, we obtain the
effective interaction VUCOM:

VUCOM ≡ T̃
[2]

int + Ṽ [2]. (41)

The evaluation of the matrix elements of VUCOM in a partial-
wave basis is discussed in detail in Ref. [10].

F. SRG-generated VUCOM

In a recent pair of articles [8,9], we have studied the
connection of the UCOM to the SRG approach to the
construction of effective NN interactions [4]. There, the many-
body Hamiltonian H is evolved toward a block-diagonal
structure in momentum space via the flow equation

dHᾱ

dᾱ
= [η(ᾱ),Hᾱ], H0 = H, (42)

where ᾱ denotes the flow parameter and

Hᾱ ≡ U (ᾱ)HU †(ᾱ) ≡ Tint + Vᾱ. (43)

The dynamical generator of the flow is defined by

η(ᾱ) = [Tint,Hᾱ] =
[

q2

2µ
,Hᾱ

]
, (44)

where q is the relative momentum operator. Equation (44)
is appropriate only for an evolution in two-body space, an
assumption corresponding to the two-body approximation
used in the UCOM framework. A generalization to three-
nucleon or many-nucleon forces is straightforward in principle
but too demanding to allow the numerical evolution of realistic
3N Hamiltonians at present.

In Ref. [9], we describe a procedure by which a mapping
between an uncorrelated trial state and the deuteron wave
function of the SRG-evolved Hamiltonian Hᾱ defines a set
of central and tensor correlation functions for use in the
generators (31) and (32). Similar to the SRG-evolved Vᾱ , the
resulting VUCOM is uniquely determined by the parameter ᾱ

and the parent interaction and offers a significantly enhanced
convergence. At the same time, however, the saturation
properties are quite different, because VUCOM does not produce
the same strong overbinding for large nuclear masses as Vᾱ at
the two-body level (see also Ref. [39]).

For practical applications, we optimize the value of ᾱ by
considering no-core shell model calculations of the Tjon-line
in 3H and 4He. For ᾱ = 0.04 fm4, the resulting ground-state
energies of these nuclei are close to the experimental values
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without the inclusion of 3N forces—in other words 3N forces
generated by the UCOM transformation more or less cancel
genuine 3N forces that would need to supplement the parent
NN interaction to obtain the correct ground-state energies.

III. IMPLEMENTATION

A. Basics

Our implementation of the HFB method makes use of
the framework established for Hartree-Fock calculations with
VUCOM [10,13]. The eigensystem (14) or (21) is solved in
a spherical harmonic oscillator (SHO) configuration space,
using a truncation in the oscillator quantum number

e = 2n + l, (45)

where n and l denote the radial oscillator quantum number
and orbital angular momentum, respectively. An original
implementation of the modified Broyden’s method discussed
in Ref. [40] is employed to accelerate the convergence of the
HFB fields (see Ref. [41] for recent applications in nuclear
structure calculations).

Figure 1 illustrates the convergence of our HFB calculations
for the sample nucleus 120Sn, using an SRG-generated VUCOM

with ᾱ = 0.4 as well as the phenomenological Gogny D1S
interaction [34]. The convergence rate is rather similar for
both interactions as the single-particle basis size is increased.
Because the typical energy gain by increasing eMax from 12
to 14 (corresponding to 13 or 15 major oscillator shells,
respectively) is merely 1–2 MeV for the Gogny D1S in-
teraction and even smaller for VUCOM, we adopt the basis

1.6 1.8 2 2.2 2.4
aHO [ fm]

-415

-410

-405

-400

-395

-390

E
[M

eV
]

-1020

-1015

-1010

-1005

-1000

-995

-990

E
[M

eV
]

8
10
12
14

FIG. 1. (Color online) Ground-state energy of 120Sn for various
basis sizes eMax (see inset) and oscillator lengths aHO, using the Gogny
D1S interaction (top) and the SRG-optimized VUCOM with ᾱ = 0.4
(bottom).

with eMax = 12 for the remainder of this work. Using this
truncation, the residual dependence of the ground-state energy
on the oscillator parameter aHO is already quite weak over
a wide range of values—nevertheless, we usually carry out
calculations for a set of aHO’s to explicitly minimize the energy
in this respect as well.

Finally, we note that the converged ground-state energy
obtained with VUCOM is in line with previous Hartree-Fock
results [9,13], providing less than half of the experimental
binding energy. The missing binding energy is due to missing
long-range correlations, which can be recovered by going
beyond the mean-field approximation [13], as well as omitted
3N or higher many-nucleon forces. In contrast, the Gogny
D1S interaction is fit to experimental ground-state energies,
providing the bulk of the 120Sn binding energy already in a
mean-field calculation.

B. Intrinsic kinetic energy

An interesting issue that is rarely considered in the literature
is the effect of the center-of-mass correction (see, however,
the detailed study in Ref. [42]). As indicated in Sec. II A, we
formulate the HFB equations using the intrinsic kinetic energy,
which can be expressed either in terms of two-body operators
or a combination of one- and two-body terms:

Tint = 1

2A

∑
i<j

( pi − pj )2

m
(46)

=
(

1 − 1

A

) ∑
i

p2
i

2m
− 1

Am

∑
i<j

pi · pj . (47)

The use of an intrinsic Hamiltonian has a number of con-
sequences for our calculations. While the total ground-state
energy is lowered by the center-of-mass correction, the pairing
field and pairing energy obtain positive contributions from the
two-body part of the Tint, leading to a reduction compared
to calculations without center-of-mass corrections. In the
plain Hartree-Fock case, the eigenvalues of the intrinsic
HF Hamiltonian can be no longer directly identified with
single-particle energies because its A dependence invalidates
Koopmans’s theorem. Indeed, if the eigenvalues are interpreted
as perturbative approximations to the exact separation ener-
gies,

εHF
µ ≈ EN+1 − EN, (48)

one sees that the A dependence of the Hamiltonian leads to
correction terms that account for rearrangement effects caused
by the addition or removal of a nucleon (see Refs. [13,43]).

In the HFB case, the need for a similar procedure becomes
evident in the behavior of the Lagrange parameter λ, which
generally assumes positive values and can therefore not
directly be identified with the Fermi energy of the system.
Unfortunately, the addition or removal of a particle to a system
with pairing is a nontrivial issue [36,44], and the generalization
of the aforementioned single-particle energy correction terms
to the HFB case is not obvious, especially because part of
the correction is state-dependent, whereas λ is no longer
associated with a definite single-particle level. At present,
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we therefore adopt the simpler state-independent correction
discussed in Ref. [43],

λcorr = λ − 1

A
〈Tint〉. (49)

Likewise, we define corrected canonical single-particle ener-
gies by

εcorr
µ = hµµ − 1

A
〈Tint〉. (50)

In plain HF, the difference between the simple correction and
the more involved approach amounts to 100–200 keV for levels
near the Fermi surface. Likewise, a naive consideration of
the exact separation energy EN+1 − EN would give rise to a
correction to the canonical gap:

�corr
µ = �µµ̄ − 1

A
〈Tpair〉, (51)

where the kinetic pairing energy 〈Tpair〉 is typically 1–2 MeV
at most in the tin isotopes, hence this correction would amount
to 10–20 keV or less and has been omitted at present. The best
strategy to avoid such conceptual uncertainties related to the
perturbative definition of the gaps and single-particle energies
is the self-consistent calculation of odd nuclei, which will be
addressed in a subsequent publication. In addition, there are
some general questions regarding the expectation values of
A-dependent Hamiltonians in HFB states without sharp parti-
cle number that go beyond the scope of the present discussion
and will be the studied elsewhere [45]. These caveats should
be kept in mind in the following sections.

To conclude our discussion, we compare our treatment
of the intrinsic kinetic energy to the widely used one-body
approximation, which omits the two-body contribution in
Eq. (47) altogether. Considering the tin isotopic chain, the
ground-state energies and charge radii of the two approaches
differ by 1% at most (see Fig. 2), while the spectroscopic
structure of the resulting ground states is somewhat different.
Figure 3 displays the canonical single-particle spectra; for

-8.5

-8.4

-8.3

E
/A

[M
eV

]

100 104 108 112 116 120 124 128 132
A

4.5

4.6

4.7

R
c
h
[f

m
]

FIG. 2. (Color online) Ground-state energies (top) and charge
radii (bottom) for the tin isotopes, calculated with the Gogny
D1S interaction: full intrinsic kinetic energy ( ), and one-body
approximation ( ). Experimental values are indicated by black bars
[46,47].
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FIG. 3. (Color online) Canonical single-particle spectra of tin iso-
topes: full intrinsic kinetic energy (left) and one-body approximation
(right). Calculations were done with the Gogny D1S interaction.

the one-body approximation, further corrections to the single-
particle energies are typically not applied. The general trends
of the single-particle energies are the same in both cases,
but one notices that the calculations with the full intrinsic
kinetic energy lead to a slightly reduced level density, which
will impede pairing correlations and is expected to reduce
the pairing energy or the gaps in comparison to the one-body
approximation. Hence, we compare the canonical neutron gaps
�n of the two approaches in Fig. 4. We find that the kinetic
two-body term has a considerable effect, reducing the gap
by as much as 30%, i.e., about 500 keV, for the midshell tin
isotopes in calculations with the Gogny D1S interaction. This
effect is due to the combination of the reduced level density
and the repulsive kinetic energy contribution to the pairing
field (12). The actual size of the quenching will depend on
the details of the fit of a phenomenological interaction, hence
one cannot generalize the results for Gogny D1S easily to
the Skyrme interactions, for instance. Comparing with the
canonical single-particle spectrum, we also notice that the dips
near the subshell closures in 106Sn, 114Sn, 120Sn are slightly
enhanced in the calculation using the full intrinsic kinetic
energy.
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FIG. 4. (Color online) Canonical neutron gaps of tin iso-
topes for the full intrinsic kinetic energy ( ) and the one-body
approximation ( ) (see text). Experimental �(3)(N ) are indicated
by ( ) [46]. Calculations were done with the Gogny D1S interaction.
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IV. VUCOM AS A PAIRING FORCE

A. Theoretical gap systematics

To assess the pairing properties of VUCOM, we perform
hybrid calculations of the tin isotopic chain, using Gogny
D1S in the particle-hole channel. Because the changes in
ground-state energies and charge radii are minor compared
to Fig. 2, we refrain from showing these results again and
focus directly on the canonical neutron pairing gaps. Figure 5
shows the pairing gaps obtained using VUCOM for a range of
parameters ᾱ = 0.03, . . . , 0.1 fm4.

The canonical gaps obtained with the various VUCOM are
about half the size of the ones obtained with Gogny D1S in
the pairing channel (cf. Fig. 4). In the midshell region, the
experimental �(3)(N ) are underestimated by about 50% as
well. Varying the range of the UCOM transformation via ᾱ,
we find that the gaps remain very stable for ᾱ = 0.03 fm4

to 0.06 fm4. Qualitatively, this implies that the attractive
interaction matrix elements that are responsible for the pairing
remain mostly unaffected in this range of parameters. This
is indeed the case for the matrix elements in the relative 1S0

partial wave [8–10], which is expected to dominate the pairing
at densities below saturation [48]. Moreover, the 1S0 matrix
elements hardly change at all beyond ᾱ = 0.05 fm4, and hence
it is surprising that a notable reduction of the pairing gaps is
found for ᾱ = 0.1 fm4, especially because VUCOM becomes
more attractive overall at the same time (cf. Sec. V).

To understand this observation, we have to consider two
aspects of our calculations. First, we have to realize that
the UCOM transformation causes a prediagonalization of the
two-body Hamiltonian in momentum space, focusing the
attractive and repulsive strength of the interaction near
the diagonal region that is accessible in mean-field type
calculations. Because the pairing is governed by the matrix
elements near the Fermi surface, where the pairing tensor κ is
peaked, the pairing gaps are extremely sensitive to changes in
the matrix elements in this very particular region of momentum
space. The ground-state energy, however, is far less sensitive to
such details. The second aspect is the formulation of the HFB
method in a single-(quasi-)particle basis, which implies that

50 54 58 62 66 70 74 78 82
N

0

0.25

0.5

0.75

1

1.25

∆
n

[M
eV

]

FIG. 5. (Color online) Canonical neutron gaps of tin isotopes
for Gogny D1S+VUCOM with ᾱ = 0.03 ( ), 0.04 ( ), 0.06 ( ) , and
0.1 fm4 ( ). Solid lines were obtained with the full Tint, the dashed
line with the one-body approximation. Experimental �(3)(N ) are
indicated by ( ) [46].
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FIG. 6. (Color online) Canonical neutron gaps of tin isotopes for
Gogny D1S+VUCOM with ᾱ = 0.04 ( ) and 0.1 fm4 ( ). Comparison
of full interaction (solid) and 1S0 partial wave (dashed) in the pairing
channel. Experimental �(3)(N ) are indicated by ( ) [46].

any two-nucleon state with total orbital angular momentum
L is a superposition of states with all allowed couplings
of the center-of-mass and relative orbital angular momenta.
This leads to admixtures of relative partial waves beyond 1S0,
which still exhibit a more significant ᾱ dependence. Moreover,
because the total spin of the nucleon pair is independent of
the center-of-mass component of the two-body state, mostly
repulsive spin-singlet relative partial waves are admixed to the
1S0 wave, whereas the next significant contribution to pairing
in nuclear matter is due to the spin-triplet 3P2 partial waves
(see, e.g., Ref. [48]).

For this reason, it is instructive to consider the effect of a
partial-wave restriction for VUCOM in the pairing channel. The
canonical neutron gaps obtained using merely the 1S0 matrix
elements of VUCOM with ᾱ = 0.04 fm4 and ᾱ = 0.1 fm4 are
compared to those of the full calculations in Fig. 6. Whereas
the results for the Gogny D1S are practically unaffected under
such a restriction, we observe a significant effect of the higher
partial waves in the case of VUCOM, which cause a decrease of
the gaps by as much as 20–30% in the midshell tin isotopes.
We also find that the difference between the restricted and
full calculations is enhanced for the longer-ranged correlator
ᾱ = 0.1 fm4: the inclusion of the higher partial waves reduces
the gap by an additional 5–10% compared to the calculation
with ᾱ = 0.04 fm4. The different behavior of the two kinds
of interactions can be explained by the comparably simple
structure of Gogny D1S, which lacks q2, L2, and tensor terms
that give rise to the more diverse partial wave structure of
realistic NN interactions. Moreover, in the case of VUCOM,
one finds that the treatment of correlations induces a host of
additional tensor operators (see, e.g., Ref. [10]).

B. Comparison with SRG-evolved interactions

Recently, there has been an effort to use the RG-evolved
low-momentum interaction Vlow-k as a pairing interaction in
conjunction with the Skyrme SLy4 force [37,38]. Because this
study is in the same spirit as the discussion in this section,
we have carried out similar calculations using interactions
obtained by evolving Argonne V18 via the SRG flow Eq. (42)
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FIG. 7. (Color online) Canonical neutron gaps of tin isotopes
for Gogny D1S+VSRG with λ = 2.8 ( ), 2.4 ( ), 2.0 ( ) , and
1.8 fm−1 ( ). Solid lines: full Tint; dashed line: one-body approxi-
mation. Experimental �(3)(N ) are indicated by ( ) [46].

to cutoffs

λ = ᾱ−1/4 = 1.8, 2.0, 2.4, 2.8 fm−1.

While Vᾱ and Vlow-k are slightly different conceptually, a
Vlow-k with a soft cutoff function behaves very similar to an
SRG-evolved interaction [4,49]. Moreover, their properties
with respect to binding energies in NCSM calculations or
nuclear matter approaches are similar enough to expect the
same for their pairing properties. Compared to VUCOM, both
Vlow-k and VSRG are significantly softer and require additional
3N forces to produce saturation in nuclear matter or finite
nuclei (see Ref. [39] and also Ref. [9]).

The resulting canonical neutron gaps of the tin chain are
displayed in Fig. 7. The cutoff variation leads to changes on the
order of 10% in the midshell region around 114Sn. For λ = 2.0
and 2.4 fm−1, the theoretical gaps are almost identical. For
these values, the flow affects the interaction only at momenta
that are already decoupled from the low-energy scales relevant
for nuclear structure. The change obtained by lowering the
cutoff from 2.8 fm−1 can then be understood as the shift of
repulsion to higher momenta and many-nucleon terms, which
is typical for the SRG evolution and renders the interaction
more attractive in the partial waves that are relevant for pairing.
As the VUCOM with ᾱ = 0.1 fm4 in the previous subsection, the
corresponding SRG-evolved interaction with the lowest cutoff
1.8 fm−1 yields a decrease of the gaps.

The obtained results are considerably different from those
of Ref. [38], which presents canonical gaps �n close to
experimental gaps �(3)(N ) in a series of isotopic chains. Given
our previous findings discussed in this article, we argue that
the possible reasons for this discrepancy are twofold: as stated
in Ref. [38], Lesinski et al. use only the relative 1S0 partial
wave of Vlow-k as an input in the particle-particle channel
at present. In the previous subsection, we found that higher
partial waves can reduce the canonical gaps by as much as
20–30% (although in the specific case of VUCOM). Moreover,
in our discussion of the center-of-mass treatment in Sec. III B
we observed a significant suppression of the gaps caused by
the two-body term of the intrinsic kinetic energy (cf. Fig. 4).
For this reason, we have also included the gaps calculated
with the one-body approximation to the kinetic energy for

λ = 2.4 fm−1 in Fig. 7. These gaps are indeed close to the
experimental values, except near the major shell closures
where one has to include pairing correlations beyond the HFB
approximation. The suppression of the gaps due to the kinetic
two-body term amounts to as much as 600–700 keV. A similar
calculation for VUCOM with ᾱ = 0.04 fm4 is included in Fig. 5
along with the results using the full Tint, and it exhibits the same
effect. We note, however, that our results were obtained with
the specific choice (46) for the intrinsic kinetic energy, whereas
Lesinski et al. used the one- plus two-body form (47) [50].
While Eqs. (46) and (47) are equivalent at the operator level
and it has been explicitly shown that they lead to the same
energy expectation values in Hartree-Fock [51], it is not clear
that this is still the case in HFB calculations, in particular
due to use of an A-dependent Hamiltonian in a state without
fixed particle number. We will analyze this issue in detail in a
forthcoming publication [45]. Until then, we cannot rule out
that three-nucleon forces or beyond mean-field effects like the
coupling to surface vibrations may have important effects on
the pairing gaps.

At a first glance, our results are similar to those pre-
sented by Barranco et al. [52,53] in studies on the impact
of particle-vibration coupling on the pairing gap in 120Sn,
which combine the phenomenological Gogny D1S and SLy4
interactions in the particle-hole channel with the Argonne V14
interaction as a pairing force. We have to stress, however,
that this agreement might be incidental because there are
other important aspects that need to be considered [54,55].
For instance, the use of the “bare,” hard core AV14/18 in
conjunction with phenomenological forces that are essentially
of low-momentum character in the work of Barranco et al. is
certainly a consistency issue.

V. FULLY SELF-CONSISTENT HFB WITH VUCOM

Having gained some insight on how VUCOM behaves as a
pairing force in the previous section, we now use a fully self-
consistent HFB approach, using VUCOM in the particle-hole as
well as the particle-particle channel.

A. Ground-state energies and radii

We first consider the bulk properties of the tin isotopes
obtained in a fully self-consistent calculation with VUCOM

for ᾱ = 0.03, . . . , 1.0 fm4. Figure 8 displays the resulting
ground-state energies and charge radii. As expected from
previous work, the nuclei are bound already at the mean-field
level due to the explicit treatment of short-range correlations.
The difference of 4–6 MeV per nucleon from experimental data
is due to long-range correlations that are not described by the
UCOM correlation operators and can be described by beyond
mean-field methods like many-body perturbation theory, as
demonstrated successfully in [13,14]. The increase of the
binding energy with ᾱ implies that longer-ranged correlations
are shifted from the many-body state into the correlation
operators; it roughly corresponds to the cutoff dependence
of results obtained with pure two-body Vlow-k or SRG-evolved
interactions.
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FIG. 8. (Color online) Ground-state energies (top) and charge
radii (bottom) for the tin isotopes, calculated for VUCOM with ᾱ =
0.03 ( ), 0.04 ( ), 0.05 ( ), 0.06 ( ), 0.08 ( ), and 0.1 fm4 ( ).
Experimental values (——) taken from Refs. [46,47].

In contrast to Ref. [13], however, in which the UCOM
transformation was constructed by a different strategy, the
new SRG-generated correlation functions provide a significant
improvement of the charge radii, which lie within roughly
10% of experimental data and correctly reproduce the exper-
imentally observed trends over the isotopic chain (see also
Ref. [9]). Because the radius is a long-ranged operator, it is
rather insensitive to variations of ᾱ, as evident from Fig. 8
(note the scale of the plot).

B. Gaps

In Fig. 9, we show the canonical neutron gaps of the tin
isotopes. As in the hybrid calculations in Sec. IV, the gaps are
very stable under variations of ᾱ. It is noteworthy that this is
even the case for the long-ranged VUCOM with ᾱ = 0.1 fm4.
This improved stability could be a signal of the improved
consistency, because unlike in the hybrid Gogny D1S+VUCOM

calculations, the single-particle spectrum is directly affected
by the variation of ᾱ as well. Compared to the experimentally
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FIG. 9. (Color online) Canonical gaps in the tin isotopes for
VUCOM with ᾱ = 0.03 ( ), 0.04 ( ), 0.05 ( ), 0.06 ( ), 0.08 ( ),
and 0.1 fm4 ( ), compared to experimental �(3)(N ) ( ) [46].
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FIG. 10. (Color online) Corrected canonical neutron single-
particle energies in the tin isotopes, calculated for a VUCOM with
ᾱ = 0.04 fm4. Experimental single-particle energies of 132Sn (“Exp.”)
are included for reference [57].

extracted �(3)(N ), the theoretical gaps are significantly lower,
ranging from below 100 keV from the outer tin isotopes to
roughly 400 keV in the midshell region. In addition, we find
clear signals of each subshell closure in the tin nuclei.

These findings can be understood if we consider the
canonical single-particle spectra, which are shown for VUCOM

with ᾱ = 0.04 fm4 in Fig. 10. We note that the canonical
neutron energies are spread over an interval on the order
of 10 MeV, which is about twice as large as for the purely
phenomenological calculations with the Gogny D1S inter-
action in Fig. 3. The discrepancy between our spectra and
the experimentally extracted single-particle levels of 132Sn,
which are included in Fig. 10 for reference, is even more
severe. Such a low level density is a common feature of soft
NN interactions and consistent with previous studies using
VUCOM [13,15–17]. From BCS theory, it is well-known that the
formation of Cooper pairs strongly depends on a sufficiently
high level density in the region of the Fermi surface. For the
BCS gap, this is reflected by the relation [56]

� ∼ exp − 1

|g|n(0)
, (52)

where g is the strength of the (attractive) pairing interaction
and n(0) the level density at the Fermi surface. Consequently,
we see that the low level density generated by VUCOM presents
a major obstacle to nuclear pairing. To obtain more realistic
single-particle spectra, we will have to account for long-range
correlations that are presently not described by either the
correlation operators or the relatively simple many-body space,
as well as three- or possibly higher many-nucleon forces.

Comparing the theoretical and experimental single-particle
levels for 132Sn, we see that the 0g7/2 and 0h11/2 shells show a
particularly large deviation, whereas the remaining levels and
their splittings are reproduced rather well. Comparing with
Fig. 9, we see that for these levels the canonical gaps
are strongly suppressed as well, compared to the midshell
region where the lowest canonical quasiparticle energies are
associated with s or d orbitals. This strong dependence on
the single-particle angular momenta suggests a significant
influence of the tensor structure of VUCOM.
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FIG. 11. (Color online) Canonical (top) and average gaps (bot-
tom) of tin isotopes for VUCOM with ᾱ = 0.04 ( ) and 0.1 fm4 ( ).
Comparison of full interaction (solid) and 1S0 partial wave (dashed).
Experimental �(3)(N ) are indicated by ( ) [46].

To gain further insight, we first compare the canonical
neutron gaps to the average gaps defined by Eq. (30) in
Fig. 11. We find that the latter are practically constant over
the tin isotopic chain, suggesting that the shells with low
single-particle j provide the essential contribution to this
quantity, except at the subshell closures, where the pairing
collapses and the solution is reduced to the HF case. Next,
we revisit the restriction of the pairing interaction to the
relative 1S0 partial wave, which was discussed for the hybrid
calculation in Sec. IV. This eliminates tensor effects in the
pairing field, and as a result, we find a substantial increase
in the canonical gaps in Fig. 11. Considering that the same
restriction of VUCOM in the Gogny D1S+VUCOM calculation
presented in Fig. 6 only caused a much smaller increase of
the gap, we have to conclude that the interplay with the ph

interaction via self-consistency effects plays an important role
as well. Furthermore, we see that without the tensor interaction,
the canonical and average gaps are very similar, suggesting that
the pairing is balanced more uniformly over all shells.

Finally, we have tested the sensitivity of these results to
changes in ᾱ. In Fig. 11, we show only the calculation using
the long-ranged VUCOM with ᾱ = 0.1 fm4 for comparison. As
expected from the previous discussions, we find only minor
differences due to the ᾱ variation. The most notable changes
occur in the high-j subshells and are in line with our previous
statement that higher-lying partial waves require larger ᾱ to
become stable under ᾱ variations (if at all). The negligible
difference in both the canonical and average gaps when the
pairing interaction is restricted to the relative 1S0 waves serves
as a further confirmation.

The discussed observations underline the significance of the
tensor structure of a realistic (albeit effective) NN interaction
for the pairing correlations in finite nuclei. Although the HFB
approach considers these effects merely on a mean-field level,
and the possibility of a different behavior in more refined
many-body methods exists, it should nevertheless be clear that
the rather simplistic phenomenological forces obscure aspects
of the two-nucleon physics that may prove to be very important
for spectroscopic observables.

VI. CONCLUSIONS

In this article, we have presented a fully self-consistent
HFB approach based on an intrinsic Hamiltonian. By using
effective NN interactions derived from the realistic Argonne
V18 interaction, we are able to maintain a stringent link to
low-energy observables of the strong interaction, i.e., NN -
scattering phase shifts and deuteron properties. Because the
same interactions can also be used in other Hartree-Fock based
approaches and more refined ab initio many-body methods like
the no-core shell model [11] or the coupled cluster method
[58], this opens important perspectives for cross-checking
nuclear structure studies.

Focusing on the tin isotopic chain, we have calculated
theoretical pairing gaps and studied the effects of commonly
used approximations in the center-of-mass treatment as well as
the ansatz for phenomenological pairing interactions in density
functional theory [25]. We have discussed aspects of the
tensorial structure of realistic NN interactions whose impact
on the spectroscopic properties of finite nuclei is expected
to be significant and that are described only inadequately
by existing phenomenological functionals of the Skyrme or
Gogny type [26,27]. In particular, we have demonstrated that
the inclusion of all partial waves of the NN interaction as well
as the repulsive contribution of the intrinsic kinetic energy
in the pairing field have a significant effect on the gaps. In
the latter case, however, it remains to be seen whether this is
affected by the particular choice of the intrinsic kinetic energy
operator [50] and on the treatment of its A dependence [45].

In a fully self-consistent approach using VUCOM in the
particle-hole and the particle-particle channel, the low density
of single-particle levels near the Fermi surface proves to be
a strong impediment to nucleon Cooper pairing. This low
level density, implying a low effective mass as well, is a
general feature of soft, nonlocal interactions, and consistent
with previous studies [13,15]. Consequently, we conclude
that beyond mean-field effects like the coupling to surface
vibrations indeed play an important role in nuclear pairing.
Such a coupling would lead to a dressing of the single-particle
energies and is expected to improve the level density near the
Fermi surface, which would at least partially overcome the
effects of the nonlocality of VUCOM and similar interactions.

In principle, there are two directions in which an extension
of our framework can proceed: the inclusion of higher many-
body forces, and the use of a more sophisticated many-body
method. One of the ultimate aims of effective interaction
methods is to obtain results that are independent of the
control parameters of the transformation, in our case ᾱ. In this
sense, the transformation merely yields a unitarily equivalent
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representation of low-energy QCD that is more suitable to
the used many-body method. To achieve true consistency,
however, one would need (i) to start from a consistent set
of NN and higher nucleonic interactions and (ii) to include
them in the unitary transformation of the many-body states or
operators. The former requirement can be met by using N3LO
interactions derived in chiral effective field theory. While the
required consistent set of NN, 3N , and 4N interactions have
been worked out in principle (see, e.g., Refs. [59,60]), the
complex structure of the full 3N terms and the computational
demands for handling a 4N interaction have thus far prevented
their use in many-body calculations. The second aspect
complicates matters even further, because the inclusion of
the 3N force in either UCOM or SRG transformations is a
formidable challenge. At present, one therefore hopes that
such a transformation may render the 3N interaction less
important in actual calculations, so a simpler model like the
chiral N2LO interaction may reproduce the required effects
after a readjustment of its parameters [61]. In this spirit, we
have studied the use of a regularized 3N contact force in
conjunction with VUCOM as a first step [14]. While initial
HFB results including 3N forces together with first-generation
UCOM interactions are available in Ref. [62], we are preparing
a paper on such calculations with the new SRG-generated
correlation functions discussed in Sec. II F.

As for the many-body methods, the use of more refined
approximations improves the Hilbert space, enabling it to
describe residual long-range correlations that are not explicitly
treated by the UCOM correlation operators. In the context
of HFB, a straightforward extension is the use of projection
techniques to restore symmetries that are spontaneously
broken in the calculated ground state. The simplest example is
particle number projection, which can be implemented rather
easily, because the general structure of the HFB eigenvalue
problem is preserved (see, e.g., Ref. [63]). Another approach
that can describe additional correlations as well as collective
behavior is the quasiparticle random phase approximation,
using the HFB ground state as a starting point. Both of
these methods were explored for the first-generation UCOM
interactions in Ref. [62] and will be the subject of studies using
the SRG-generated VUCOM interactions in subsequent papers.
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APPENDIX: EXPRESSIONS FOR THE GOGNY
INTERACTION

We briefly recall the parametrization of the Gogny interac-
tions, which is given by [64]

v12 =
2∑

i=1

exp

(
− r2

µ2
i

)
(Wi + BiPσ − HiPτ − MiPσPτ )

+ t0 (1 + x0Pσ ) ρα (R) δ3 (r)

+ iWLS (σ 1 + σ 2) ·
←∇ × δ(3) (r)

→∇, (A1)

where Pσ and Pτ are the usual spin and isospin exchange
operators, e.g.,

Pσ = 1
2 (1 + σ1 ·σ2), (A2)

and the relative and center-of-mass positions are given by

r = r1 − r2, (A3)

R = 1
2 (r1 + r2), (A4)

and the gradient operator in the relative coordinates is

∇ = ∇1 − ∇2. (A5)

A. Two-body matrix elements

In Ref. [13], we have provided expressions for the evalu-
ation of two-body matrix elements in a relative LS-coupled
spherical harmonic oscillator basis |n(LS)JMT MT 〉 and
the subsequent Talmi transformation to obtain jj -coupled
matrix elements for use in Hartree-Fock and Hartree-Fock-
Bogoliubov and their extensions. With these expressions, the
evaluation of two-body matrix elements of the finite range
terms in Eq. (A1) is straightforward.

While the spin-orbit interaction in (A1) is given in a form
that facilitates the calculation of particle-hole and particle-
particle fields for use in self-consistent field methods, the
calculation of the corresponding relative two-body matrix
element is somewhat more involved than for the usual relative
(L · S) interaction. Suppressing isospin indices as well as
the angular-momentum projection M , and using rotational
invariance, we obtain

iWLS〈n(LS)J |
(←∇ × δ(r)

4πr2

→∇
)

· (σ 1 + σ 2) |n′(L′S ′)J 〉

= − 9

πa2
HO

WLS(−1)J
{

1 1 1
1 1 J

}
×Nn1Nn′1L3/2

n (0)L3/2
n′ (0)δL1δLL′δS1, (A6)

where Ll+1/2
n (x) are the Laguerre polynomials, aHO is the

oscillator length of the relative basis, and

NnL =
√

2n!

a3
HO	

(
n + L + 3

2

) . (A7)

The density-dependent matrix element is most conveniently
evaluated in a jj -coupled basis, and one finds

〈n1l1j1, n2l2j2; JT |v[ρ]n′
1l

′
1j

′
1, n

′
2l

′
2j

′
2; JT 〉

= 1

2
(1 + (−1)T x0)

t0

√
ĵ1ĵ2ĵ

′
1ĵ

′
2

4π (2J + 1)
In1l1n2l2;n′

1l
′
1n

′
2l

′
2

×
{

(1 − (−1)J+T +l1+l2 )(−1)j2−j ′
2+l2+l′2

× 〈
j1

1

2
j2 − 1

2

∣∣J0
〉〈
j ′

1
1

2
j ′

2 − 1

2

∣∣J0
〉

+ (1 + (−1)T )
〈
j1

1

2
j2

1

2

∣∣J1
〉〈
j ′

1
1

2
j ′

2
1

2

∣∣J1
〉}

, (A8)
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with

In1l1n2l2;n′
1l

′
1n

′
2l

′
2

=
∫

dr r2ρα(r)Rn1l1 (r)Rn2l2 (r)Rn′
1l

′
1
(r)Rn′

2l
′
2
(r). (A9)

The angular-momentum and isospin projections have been
suppressed because the matrix element does not depend on
them.

B. Fields

For the sake of efficiency, we calculate the particle-hole and
particle-particle fields of the density-dependent interaction as
in density functional approaches rather than by contracting ρ

or κ with the matrix element (A8) (see, e.g., Ref. [64]). Using

ρτ (r) =
∑
kk′

ρτ
kk′ψ

∗
kτ (r)ψk′τ (r), (A10)

κτ (r) =
∑
kk̄′

κτ
kk̄′ψkτ (r)ψk̄′τ (r), (A11)

where k̄ denotes a time-reversed state and τ = p, n, the matrix
elements of the fields are given by

	̆τ
kk′ =

∫
d3r ψ∗

k′τ (r)	̆τ (r)ψkτ (r) (A12)

and

�̆τ
kk′ =

∫
d3r �̆τ (r)ψkτ (r)ψk′τ (r). (A13)

Here,

	̆τ (r) = t0

[(
1 + x0

2

)
ρα+1(r) −

(
x0 + 1

2

)
ρα(r)ρτ (r)

]
+ t0

4
α(1 − x0)ρα−1(r)

(
ρ2(r) +

∑
τ ′

|κτ ′(r)|2
)

+ t0α

(
x0 + 1

2

)
ρα−1(r)ρp(r)ρn(r), (A14)

where the parts proportional to α constitute the rearrangement
term due to the density dependence of the interaction,
and

�̆τ (r) = 1
2 t0 (1 − x0) ρα(r)κτ (r). (A15)

In the case of spherical symmetry, the densities are reduced
to

ρτ (r) =
∑
ljnn′

2j + 1

4π
ρ

ljτ

nn′ Rnl(r)Rn′l(r), (A16)

κτ (r) =
∑
τ ljnn′

2j + 1

4π
(−1)lκ ljτ

nn′ Rnl(r)Rn′l(r), (A17)

where the phase (−1)l appears due to using the properties of
the spherical harmonics under time reversal and Rnl(r) are
radial spherical harmonic oscillator wave functions. Likewise,
the fields are

	̆
(ljτ )
nn′ =

∫
dr Rnl(r)	̆τ (r)Rn′l(r), (A18)

�̆
(ljτ )
nn′ =

∫
dr Rnl(r)�̆(lj )

τ (r)Rn′l(r), (A19)

with

	̆τ (r) = t0

[(
1 + x0

2

)
ρα+1(r) −

(
x0 + 1

2

)
ρα(r)ρτ (r)

]

+ t0

4
α (1 − x0) ρα−1(r)

(
ρ2(r) +

∑
τ ′

κ2
τ ′(r)

)

+ t0α

(
x0 + 1

2

)
ρα−1(r)ρp(r)ρn(r), (A20)

where we have used that ρ(r) and κ(r) are real and

�̆(lj )
τ (r) = 1

2 t0 (1 − x0) ρα(r)(−1)lκτ (r) . (A21)
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