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Universal decay rule for reduced widths
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Emission processes including α decay, heavy cluster decay, and proton and di-proton emission are analyzed
in terms of the well-known factorization between the penetrability and the reduced width. By using a shifted
harmonic oscillator plus Coulomb cluster-daughter interaction it is possible to derive a linear relation between
the logarithm of the reduced width squared and the fragmentation potential, defined as the difference between the
Coulomb barrier and the Q value. This relation is fulfilled with a good accuracy for transitions between ground
states, as well as for most α decays to low-lying 2+ excited states. The well-known Viola-Seaborg rule, connecting
half-lives with the Coulomb parameter and the product between fragment charge numbers, as well as the
Blendowske scaling rule, connecting the spectroscopic factor with the mass number of the emitted cluster, can
be easily understood in terms of the fragmentation potential. It is shown that the recently evidenced two regions
in the dependence of reduced proton half-lives versus the Coulomb parameter are directly connected with the
corresponding regions of the fragmentation potential.
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I. INTRODUCTION

The family of emission processes triggered by the strong
interaction contains various decays, namely particle (proton
or neutron) emission, two-proton emission, α-decay, heavy
cluster emission, and binary or ternary fission. There are also
other nuclear decay processes induced by electromagnetic
(γ decay) or weak forces (β decay). The purpose of this
work is to investigate only the first type of fragmentation,
where the emitted fragments are left in ground or low-lying
excited states. They are called cold emission processes and
are presently among important tools to study nuclei far from
the stability line. Nuclei close to the proton drip line are
investigated through proton emission, whereas the neutron
drip line region is probed by cold fission processes. On the
other hand superheavy nuclei are exclusivelly detected by
α-decay chains [1]. Actually the first article in theoretical
nuclear physics applying quantum mechanics [2] was devoted
to the description of the α decay in terms of the penetration of
a preformed particle through the Coulomb barrier.

There are two goals of this article. The first one is to explain
the well-known Viola-Seaborg rule [3], valid for all kinds of
cold emission processes. It turns out that it is possible to give
a simple interpretation of this rule in terms of two physical
quantities, namely the Coulomb parameter, connected with the
penetrability, and the fragmentation potential, connected with
the reduced width. A universal linear dependence between the
logarithm of the reduced width and fragmentation potential is
derived. It is shown that this interpretation is valid not only
for transitions between ground states but also for transitions
to excited states. Yet, the scaling dependence of spectroscopic
factors in heavy cluster decays versus the mass numbers of
the emitted cluster can be also understood in terms of the
fragmentation potential.

II. EXPERIMENTAL DECAY RULES

Let us consider a binary emission process P → D + C

from a parent (P ) to the daughter nucleus (D) and the lighter

cluster (C), which can be in particular an α particle or a
proton. The total decay width is the sum of partial decay widths
corresponding to different angular momenta, given by [4]

�l = 2Pl(El, r)γ 2
l (β, r), (2.1)

where the standard penetrability and reduced width squared [5]
were introduced:

Pl(El, r) = κlr∣∣H (+)
l (χl, κlr)

∣∣2 ,

(2.2)

γ 2
l (β, r) = h̄2

2µr

∣∣s(int)
l (β, r)

∣∣2
.

The outgoing spherical Coulomb-Hankel function H
(+)
l (χl,

κlr) depends upon two variables, namely the Coulomb (or
twice the Sommerfeld) parameter,

χl = ZDZCe2

h̄vl

, (2.3)

and the reduced channel radius, ρl = κlr . Here vl = h̄κl/µ

and κl = √
2µEl/h̄ are the asymptotic relative velocity and

momentum between the emitted fragments, respectively, in
terms of the reduced mass of the daughter-cluster system µ.
The center of mass (c.m.) channel energy El = Q − E

(ex)
l of

emitted fragments is also defined, in terms of the difference
between the total energy (Q value) and the excitation energy of
the daughter nucleus E

(ex)
l . The internal component s

(int)
l (β, r)

at a certain radius r inside the Coulomb barrier is for deformed
emitters a superposition of different Nilsson components mul-
tiplied by the propagator matrix [4], depending on deformation
parameters β, i.e.,

s
(int)
l (β, r) =

∑
l′

Kll′(β, r)f (int)
l′ (r). (2.4)

For spherical emitters with Kll′ = δll′ it coincides with the
wave function component f

(int)
l (r).
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The half-life is defined by the inverse of the total decay
width, i.e.,

T = h̄ln2

�
. (2.5)

Inside the Coulomb barrier the complex Coulomb-Hankel
function practically coincides with the real irregular Coulomb
function and has a very simple WKB ansatz [4],

H
(+)
l (χ, ρ) ≈ exp[χ (arccos

√
x − √

x(1 − x))](
1
x

− 1
)1/4 Cl

≡ H
(+)
0 (χ, ρ)Cl (2.6)

where, with the external turning point re = Z1Z2e
2/E and the

barrier energy V0 = Z1Z2e
2/r , the following notations were

introduced:

x = ρ

χ
= r

re

= E

V0 (2.7)

Cl = exp

(
l(l + 1)

χ

√
χ

ρ
− 1

)
.

For simplicity, transitions between states with the same angular
momentum l were considered here, such as α decays or proton
emission processes between ground states. Thus, the logarithm
of the so-called reduced half-life, corrected by the exponential
centrifugal factor squared C2

l , defined by the second line of
this relation, i.e.,

log10 Tred = log10
T

C2
l

= log10
h̄ ln 2

C2
l

− log10 2Pl − log10 γ 2
l , (2.8)

should be proportional to the Coulomb parameter, i.e.,

log10 Tred = a0χ + b0. (2.9)

Notice that in most decay processes between ground states
one has boson fragments, with zero angular momentum, i.e.,
Cl = 1. The case with l �= 0 is connected with fermions, i.e.,
proton emission, where Cl �= 1.

The above relation is also called the Geiger-Nuttall law,
discovered in 1911 for α decays between ground states (where
the angular momentum carried by the α particle is l = 0). The
explanation of this law was given by Gamow in 1928 [2], in
terms of the quantum-mechanical penetration of the Coulomb
barrier, i.e., the first line of Eq. (2.2). It is characterized by
the Coulomb parameter, which is proportional to the ratio
ZD/

√
Qα .

The α decays between ground states are characterized by
a remarkable regularity, especially for transitions between
ground states of even-even nuclei. The fact that α transitions
along various isotopic chains lie on separate lines, as stated by
the Viola-Seaborg rule [3], i.e.,

log10 T = a1ZD + a2√
Qα

+ b1ZD + b2, (2.10)

is connected with different α-particle reduced widths, multi-
plying the penetrability in Eq. (2.1). From Eq. (2.8) it becomes
clear that the reduced width should depend upon the charge
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FIG. 1. Logarithm of half lives for α decays from even-even
nuclei versus the Coulomb parameter (2.3). Differents lines connect
decays from nuclei with the same charge number.

of the daughter nucleus. This feature is shown in Fig. 1. Still
in doing systematics along neutron chains there are important
deviations with respect to this rule, as for instance in α decay
from odd-mass nuclei, and this feature is strongly connected
with nuclear structure details. Let us mention that different
forms of the Viola-Seaborg relation were used in Refs. [6]
and [7].

The Viola-Seaborg rule can be generalized for heavy cluster
decays [8], as is shown in Fig. 2. Here the angular momenta
carried by emitted fragments are zero. In Ref. [9] the following
generalized Viola-Seaborg rule for the heavy cluster emission
was proposed,

log10 T = a1
ZDZC√

Q
+ a2ZDZC + b2 + c2, (2.11)

with the following set of parameters,

a1 = 1.517, a2 = 0.053, b2 = −92.911,

c2 = 0 (even), = 1.402 (odd),

where c2 is the blocking parameter for odd-mass nuclei. Thus,
from Eq. (2.8) the reduced width in this case should depend
upon the product between daughter and cluster charges.

An interesting feature can be seen in Fig. 3 where the
logarithm of the reduced half-life (2.8) versus the Coulomb
parameter for various proton emitters is plotted [10,11]. In this
case most of emitters have nonvanishing angular momentum.
The data are roughly divided into two regions, corresponding
to Z < 68 (open circles) and Z > 68 (solid circles). This
pattern can be assimilated with a generalized Viola-Seaborg
rule for the two groups of charge numbers.

The situation with binary cold fission is quite different. Here
there is not a simple linear dependence between the half-life for
a given isotopic partition and the Coulomb parameter, because
mass asymmetry changes during the scission process.
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FIG. 2. Logarithm of half-lives for heavy cluster decays and
the corresponding α decays from the same mother nuclei versus
the Coulomb parameter (2.3). Differents symbols denote the charge
number of the emitted cluster.

III. A SIMPLE MODEL FOR THE REDUCED WIDTH

The decay processes can be schematically described by the
following cluster-daugher spherical potential:

V (r) = h̄ω
β(r − r0)2

2
+ v0, r � rB

= ZDZCe2

r
≡ VC(r), r > rB, (3.1)
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FIG. 3. Logarithm of reduced half-lives (2.8) for proton emitters
versus the Coulomb parameter (2.3). Open circles denote emitters
with Z < 68, while solid circles denote emitters with Z > 68.

where r0 = 1.2A
1/3
D is the surface radius of the daughter

nucleus. Indeed, microscopic calculations have shown that
the preformation factor of the α particle has a Gaussian
shape, centered on the nuclear surface [12]. Moreover, the
spherical component of the preformation amplitude gives more
than 90% contribution in the α-decay width of deformed
nuclei. Notice that the radial equation of the shifted harmonic
oscillator (ho) potential is similar to the equation of the
one-dimensional oscillator, but has approximate eigenvalues
given by

Enl = h̄ω

(
n + 1

2

)
+ h̄2l(l + 1)

2µr2
0

. (3.2)

By considering the Q value as the first eigenstate in the shifted
ho well Q − v0 = 1

2h̄ω, together with the continuity condition
at the top of the barrier rB , one obtains the following relation:

h̄ω
β(rB − r0)2

2
= Vfrag(rB) + 1

2
h̄ω, (3.3)

where the so-called fragmentation (or driving) potential was
introduced as the difference between the top of the Coulomb
barrier and the Q value,

Vfrag(rB) = VC(rB) − Q. (3.4)

The second component in Eq. (2.8) contains the logarithm
of the Coulomb-Hankel function inside the Coulomb barrier
which, according to Eq. (2.6), is proportional to the Colomb
parameter χ . The third part contains the reduced width squared
which, according to Eq. (2.2), is proportional to the modulus
of the internal wave function squared. For a shifted ho well
one has for the ground state∣∣f (int)

0 (r)
∣∣2 = A2

0e
−β(r−r0)2

. (3.5)

By using the notation γ ≡ γ0 and Eq. (3.3) one obtains the
following relation,

log10 γ 2(rB) = − log10 e2

h̄ω
Vfrag(rB) + log10

h̄2A2
0

2eµrB

. (3.6)

In this way one determines that indeed the logarithm of the
half-life is of the Viola-Seaborg type,

log10 T = c1(rB)χ + c2Vfrag(rB) + c3
(
rB,A2

0

)
, (3.7)

because the fragmentation potential contains the product
ZDZC . Its coefficient depends upon the touching radius, but
this radius has a very small variation along various isotopic
chains. Notice that the slope in Eq. (3.6) has a negative value
and it is connected with the shape of the interaction potential
(ho energy h̄ω), whereas the free term gives information about
the amplitude of the cluster wave function.

Our calculation has shown that the linear relation,
Eq. (3.6), but with different coefficients, remains valid in
the most general case of the double folding plus repulsive
interaction between fragments, used in Refs. [13] and [14].

IV. DECAY RULE FOR REDUCED WIDTHS

Most of the experimental data refer to the α decay.
Therefore, there were analyzed reduced widths in α decays
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FIG. 4. The logarithm of the α-decay reduced width squared
versus the fragmentation potential (3.4) for regions of the nuclear
chart described by Eq. (4.1).

connecting ground states of even-even nuclei. In Fig. 4 the
logarithm of the experimental reduced width squared is plotted
by using the above relation versus the fragmentation potential.
The data are divided into five regions of even-even α emitters
as follows:

(1) Z < 82, 50 < N < 82, Fig. 4(c), stars;

(2) Z < 82, 82 < N < 126, Fig. 4(a), crosses;

(3) Z > 82, 82 < N < 126, Fig. 4(b), circles; (4.1)

(4) Z > 82, 126 < N < 152, Fig. 4(c), squares;

(5) Z > 82, N > 152, Fig. 4(d), triangles.

In calculations the value of the touching radius was used,
i.e.,

rB = 1.2
(
A

1/3
D + A

1/3
C

)
, (4.2)

where the approximation Kll′ ≈ δll′ in Eq. (2.4) is fulfilled
with 90% accuracy for the most deformed nuclei [4]. Notice
that regions 1–4 contain rather long isotopic chains, whereas
region 5 contains not more than two isotopes/chain. This is the
reason why, except for region 5, the reduced width decreases
with respect to the fragmentation potential, according to
the theoretical prediction given by Eq. (3.6). Notice that in
regions 1 and 4, above 100Sn and 208Pb double-magic emitters,
respectively, the ho parameter of the α-daughter potential is
larger than that for regions 2 and 3, corresponding to charge
numbers around the double-magic nucleus 208Pb. However,
one obtains the largest amplitudes of the cluster wave function
in regions 2 and 3.

An interesting observation can be made from Fig. 5, where
the difference Tcor = log10 T − c2Vfrag(rB) − c3(rB,A2

0) ver-
sus the Coulomb parameter χ is plotted; the same five
symbols for the above-described regions are used. Amazingly
enough three lines corresponding to different amplitudes of
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FIG. 5. The difference log10 T − c2Vfrag(rB ) − c3 versus the
Coulomb parameter χ for five different regions described by
Eq. (4.1). The straight lines are the corresponding linear fits.

the cluster wave function were obtained. Regions 1 and 4,
corresponding to emitters above double-magic nuclei 50Sn
and 208Pb, respectively, have practically the same internal
amplitudes, A0. The same is true for regions 3 and 5.

The linear dependence of log10 γ 2 versus the fragmentation
potential (3.6) remains valid for any kind of cluster emission.
This fact is nicely confirmed by heavy cluster emission
processes in Fig. 6(a), which shows the dependence between
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FIG. 6. (a) The logarithm of the reduced width squared versus
the fragmentation potential (3.4). Different symbols correspond to
cluster decays in Fig. 2. The straight line is the linear fit (4.3) for
cluster emission processes, except α decay. (b) Cluster mass number
versus the fragmentation potential.
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the corresponding experimental values for the same decays in
Fig. 2. Here a similar dependence for α decays corresponding
to the same heavy cluster emitters is plotted. The straight line
is the linear fit for cluster emission processes, except α decays

log10 γ 2 = −0.586(VC − Q) + 15.399. (4.3)

The above value of the slope − log10 e2/h̄ω in Eq. (3.6)
leads to h̄ω ≈ 1.5 MeV, with the same order of magnitude as in
the α-decay case. The relative large scattering of experimental
data around the straight line in Fig. 6 can be explained by the
simplicity of the used cluster-core potential (3.1).

Let us mention that a relation expressing the spectroscopic
factor (proportional to the reduced width) for cluster emission
processes was derived in Ref. [15],

S = S(AC−1)/3
α , (4.4)

where AC is the mass of the emitted light cluster and Sα ∼
10−2. As can be seen from Fig. 6(b) between AC and Vfrag

there exists a rather good linear dependence and therefore the
above scaling law can be easily understood in terms of the
fragmentation potential.

Concerning the reduced widths of proton emitters in
Refs. [11] and [16], note the correlation between the reduced
width and the quadrupole deformation. This fact can be seen
in Fig. 7(a), where the region with Z < 68 corresponds to
β > 0.1 (open circles), whereas the other one with Z > 68
corresponds to β < 0.1 (solid circles). The two linear fits have
obviously different slopes. This dependence is induced by the
propagator matrix Kll′ (β, r) in Eq. (2.4). Notice that the two
solid circles with the smallest reduced widths correspond to
the heaviest emitters with Z > 80.
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FIG. 7. (a) The logarithm of the reduced width squared versus the
quadrupole deformation. Open circles denote emitters with Z < 68,
whereas dark circles denote emitters with Z > 68 for proton emission.
The two regression lines fit the corresponding data. (b) The logarithm
of the reduced width squared versus the fragmentation potential (3.4).
The symbols are the same as those in panel (a).

At the same time one can see from Fig. 7(b) that the
same data are clustered into two regions, which can be
directly related with the fragmentation potential (3.4). Here
the two linear fits in terms of the fragmentation potential,
corresponding to the two regions of charge numbers, have
roughly the same slopes, but different values in origin. Thus,
the two different lines in Fig. 3 can be directly connected with
similar lines in Fig. 7(b). They correspond to different orders
of magnitude of the fragmentation potential, giving different
orders to wave functions and therefore to reduced widths.

A special case is given by the two-proton emission. This
process was predicted a long time ago [17], but only a few
such emitters have been recently detected until now. Let us
mention that the most recent general treatment of the two-
proton emission process, assuming a three-body dynamics, is
given in Ref. [18] (and the references therein).

The experimental half-lives versus the Coulomb parameter
are denoted in Fig. 8(a) by triangles. The emitter charges are
also pointed out. Here a simplified version is assumed, where
the light emitted cluster is supposed to be a di-proton with
the charge ZC = 2. In this case one can use the factorization
of the decay width (2.1). One sees that half-lives (triangles)
follow the general trend (dashed line) of the usual proton
emitters, denoted in the same figure by the same symbols
used in Fig. 3. Figure 8(b) plots the logarithm of the reduced
width squared versus the fragmentation potential by triangles.
One indeed observes that the slope of the fitting dashed line
has a negative value − log10 e2/h̄ω, but with a much larger
value in comparison with proton emitters, given by the same
symbols as those used in Fig. 7(b). The three lines in this
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FIG. 8. (a) The logarithm of the half-life versus the Coulomb
parameter for two-proton emitters (triangles). Circles denote data
for proton emitters in Fig. 3. (b) The logarithm of the reduced
width squared versus the fragmentation potential (3.4) for two-proton
emitters (triangles). The same quantity denoted by circles for proton
emitters in Fig. 7(b). The solid lines fit proton data, while the dashed
lines fit two-proton data.

024310-5



D. S. DELION PHYSICAL REVIEW C 80, 024310 (2009)

figure, corresponding to proton and two-proton radioactivity,
respectively, are given by

log10 γ 2 = −0.283(VC − Q) + 1.329, Z < 68

log10 γ 2 = −0.365(VC − Q) + 3.440, Z > 68 (4.5)

log10 γ 2 = −2.075(VC − Q) + 4.403.

The ho energy is h̄ω ≈ 1.5 MeV for proton emission (i.e., the
same order as for heavy cluster radioactivity and α decay) and
h̄ω ≈ 0.2 MeV for two-proton emission, by considering the
di-proton approximation. This small ho energy is connected
with the use of Eq. (4.2) in estimating the spatial extension
of the di-proton system RC and therefore the fragmentation
potential. In reality the di-proton is not a bound system
and it changes its size during the barrier penetration. Our
microscopic estimate, by using a pairing residual interaction
between emitted protons from 45Fe, evidenced that the size
of the wave packet increases in the relative coordinate by
1 fm over a distance of 1 fm in the region of the nuclear
surface. Actually the reduced width defined by Eq. (2.1) can
be generalized by using the other extreme scenario, given by a
sequential emission, where this relation is integrated over all
possible energies of emitted particles [19].

An interesting observation concerns the amplitude A0 in
Eq. (3.6), given by the value of fitting lines in origin. It has
similar values for both two-proton and proton emitters with
Z > 68.

Now let us analyze α-decay processes to excited low-lying
2+ states. More than 70 decays of even-even rotational,
vibrational, and transitional nuclei were considered [13,14].
The hindrance factor (HF) is defined as the ratio of reduced
widths squared connecting the ground states and ground to
excited states with the angular momentum l = 2, i.e.,

HF = γ 2
0

γ 2
2

. (4.6)

Thus, by using Eq. (3.6), the logarithm of the HF becomes
proportional to the excitation energy of the daughter nucleus,

log10 HF = log10 e2

h̄ω
E

(ex)
2 + log10

A2
0

A2
2

. (4.7)

It is worth mentioning that this relation is equivalent to the
Boltzman distribution for the reduced width to the excited state
γ2. In Refs. [20] and [21] such a dependence was postulated
to describe HF’s.

In Fig. 9 the logarithm of the HF versus the excitation
energy for rotational nuclei with E

(ex)
2 < 0.1 MeV is plotted,

by using the same notations given by Eq. (4.1). As a rule
the HF’s have small values and therefore the wave functions
have similar amplitudes, A0 ≈ A2. Notice that region 4 in
Fig. 9(a), with Z > 82 and 126 < N < 126, contains most of
the rotational emitters (33 out of 41). Moreover, our analysis
has shown that here the HF has an almost constant value along
various isotopic chains, because the energy range is very short
(about 100 keV).
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FIG. 9. The logarithm of the hindrance factor versus the excita-
tion energy of the daughter nucleus for rotational nuclei. The symbols
and numbers correspond to the regions given in Eq. (4.1).

In Fig. 10 the same quantity as in Fig. 9 is given, but for
transitional and vibrational nuclei, with E

(ex)
2 > 0.1 MeV. The

situation looks here to be different and more complex, with
respect to rotational nuclei. The best example is given by the
same region 4 in Fig. 10(c), where the slope has a positive
value, as predicted by Eq. (4.7). Notice that this region contains
almost half of the analyzed vibrational emitters (14 out
of 31).
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FIG. 10. The same as in Fig. 9, but for transitional and vibrational
nuclei.
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V. CONCLUSIONS

Cold emission processes, in terms of the well-known
factorization of the decay width between the penetrability and
reduced width squared, were analyzed. Based on a simple
model of the two-body dynamics, namely a shifted harmonic
oscillator potential surounded by the Coulomb interaction, a
universal analytical relation expressing the logarithm of the
reduced width squared as a linear function in terms of the
fragmentation potential (defined as the difference between the
Coulomb barrier and the Q value) was derived. Notice that
the slope has the same order of magnitude, corresponding to
a ho energy h̄ω ≈ 1.5 MeV, for all decay processes, except
the di-proton emission, where the factorization (2.1) is not
anymore valid. This rule is a consequence of the fact that
the logarithm of the wave function squared is proportional to
the difference between the height of the Coulomb potential
at a given radius and the energy of the system. It is fulfilled
with a reasonable accuracy by experimental data, describing

transitions between ground states as well as for α transitions
to excited states in the most relevant region with Z > 82
and 126 < N < 152. As a particular case, the two regions in
the dependence of proton emitter half-lives, corrected by the
centrifugal barrier, versus the Coulomb parameter are directly
related with the corresponding regions of the fragmentation
potential. Thus, the clustering character of the wave function
inside the Coulomb barrier (i.e., the fragments are already
preformed here) is evidenced by this linear rule in terms
of the fragmentation potential. Yet the well-known scaling
relation, connecting the spectroscopic factor with the mass of
the emitted cluster, can be nicely explained in terms of the
fragmentation potential.
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