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Continuum random-phase approximation for relativistic point coupling models
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Continuum relativistic random-phase approximation (CRPA) is used to investigate collective excitation
phenomena in several spherical nuclei along the periodic table. We start from relativistic mean-field calculations
based on a covariant density functional with density-dependent zero-range forces. From the same functional
an effective interaction is obtained as the second derivative with respect to the density. This interaction is used
in relativistic CRPA calculations for the investigation of isoscalar monopole, isovector dipole, and isoscalar
quadrupole resonances of spherical nuclei. In particular we study the low-lying E1 strength in the vicinity of
the neutron evaporation threshold. The properties of the resonances, such as centroid energies and strengths
distributions are compared with results of discrete RPA calculations for the same model as well as with
experimental data.
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I. INTRODUCTION

Density functional theory (DFT) provides a very successful
description of nuclei all over the periodic table. Based
on relatively simple functionals, which are adjusted in a
phenomenological way to the properties of infinite nuclear
matter and a few finite nuclei, this theory allows a highly
accurate reproduction of many nuclear structure data, such
as binding energies, radii, and deformation parameters of
finite nuclei and their dependence on mass number and
isospin. In addition to these static properties, one can use the
nuclear response to external multipole fields to investigate the
dynamics of such systems. In the framework of time-dependent
density functional theory, this response can be calculated
from the linearized Bethe-Salpeter equation using an effective
interaction derived from the same functional.

A very successful scheme of this type is covariant den-
sity functional theory (CDFT) [1]. It is based on Lorentz
invariance, connecting in a consistent way the spin and spatial
degrees of freedom of the nucleus. Therefore, it needs only
a relatively small number of parameters that are adjusted
to reproduce a set of bulk properties of spherical closed-
shell nuclei. Numerous works have shown that observations
involving both ground-state and excited-state phenomena can
be nicely interpreted in a relativistic framework.

The most popular applications of this type are based on
the Walecka model [2], where the nucleus is described as
a system of Dirac nucleons interacting with each other via
the exchange of virtual mesons with finite mass and the
electromagnetic field through an effective Lagrangian. In the
mean-field approximation this yields to various contributions
to the nuclear self-energy depending on the quantum numbers
of these mesons. Early investigations have shown that this
simple ansatz is not able to describe the incompressibility
of infinite nuclear matter [3] nor the surface properties of
finite nuclei such as nuclear deformations [4]. For that reason,
a medium dependence has been introduced by including
nonlinear meson self-interaction terms in the Lagrangian [3].

Several very successful phenomenological relativistic
mean-field (RMF) interactions of this type have been adopted,

as for instance the popular set NL3 [5,6]. Closer to the concept
of density functional theory are models with an explicit
density dependence for the meson nucleon couplings. This
density dependence can be calculated from first principles
in a microscopic Dirac-Brueckner scheme [7–9] or it can be
adjusted in a completely phenomenological way to properties
of finite nuclei [10–12].

One of the advantages of density functional theory is the
fact that with a proper choice of the parameters the success
of RMF for nuclear ground states ensures also a good basis
on which one can apply time-dependent density functional
theory to study nuclear excitations. To investigate the dynamic
behavior of the nuclear system, one considers oscillations
around the self-consistent static solution. This can be done by
solving the time-dependent relativistic mean-field equations
(TDRMF) [13] or, in the limit of small amplitudes, by using
the relativistic random-phase approximation (RRPA) [14].
The corresponding eigenmodes can be determined either by
diagonalizing the RRPA equation in an appropriate basis or
by solving the linear response equations in a time-dependent
external field. This requires a matrix inversion for given
frequency ω.

These two methods lead in principle to exactly identical
results. There are, however, cases where one of them is
clearly preferable. The proper treatment of the coupling to
the continuum is such a case, which can be solved in a very
elegant way, by the solution of the Bethe-Salpeter equation
within the response formalism.

We recall that the spectrum of the Dirac equations has a
discrete and a continuous part. For the ground-state properties
of the nucleus, one needs only the single-particle wave
functions of the occupied orbitals in the Fermi sea. They are
determined either by solving the corresponding differential
equations in r-space or by expansion in an appropriate basis,
given, for instance, by a finite number of eigenfunctions of
a harmonic oscillator [15] or of a Saxon-Woods potential in
a finite box [16]. For the bound states both methods yield
the same solutions with high accuracy. However, this is no
longer true for the states in the continuum. Here we have, in
the first case, scattering solutions in r-space for each energy
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with proper boundary conditions while, in the second case, a
finite number of discrete eigenstates that depend strongly on
the dimension of the expansion. They provide only a basis and
have little to do with physics.

These discrete eigenstates lead to a finite number of
particle-hole (ph) configurations for the solution of response
equations with a discrete spectrum. They provide us with
the so-called spectral representation of the response function
in contrast to the continuum representation, where the exact
scattering states with the proper boundary conditions are used
at each energy.

Self-consistent RRPA calculations have a long history. The
early investigations in the 1980s [17–24] were based on the
Walecka model with linear meson-nucleons couplings. They
were able to describe the low-lying negative-parity excitations
in 16O by the method of matrix diagonalization [17,18],
isoscalar giant resonances in light and medium nuclei [20] by
the solution of the linear response equation in the spectral rep-
resentation, and the longitudinal response for quasielastic elec-
tron scattering with a proper treatment of the continuum [19].

The first RRPA calculations based on nonlinear models
[25,26] were carried out in the spectral representation includ-
ing only normal (ph) pairs with particles above the Fermi
energy and holes in the Fermi sea. This seemed to be a rea-
sonable approximation, because the configurations formed by
particles in the Dirac sea and holes in the Fermi sea (ah pairs)
are more than 1.2 GeV away from the normal ph pairs. Indeed,
a proper coupling to the Dirac sea and current conservation was
neglected in these investigations. They showed considerable
deviations from the results obtained form time-dependent
RMF calculations with the same Lagrangian, particularly for
isoscalar excitations [27,28]. A fully self-consistent treatment
with current conservation requires the inclusion of a very large
number of ah pairs connected with a considerable numerical
effort. Most of the very successful applications of RRPA theory
based on nonlinear meson-nucleon coupling models in the past
10 years have been carried out in this way [29–45].

There are also relativistic continuum RPA calcula-
tions based on the nonspectral representation of the re-
sponse function using the single-particle Green’s function
in the continuum with proper boundary conditions [21,46].
These calculations are done for meson exchange forces with
finite range. The early investigations were based on linear
models [24]. Later on the method was generalized to include
nonlinear coupling terms between the mesons [47]. This leads
to a a more sophisticated density dependence that is crucial for
a realistic description of giant resonances in nuclei [47–50].

Of course, because of the finite range of the effective
force these models are relatively complicated not only for
static applications to triaxially deformed or rotating nuclei
but also for investigations of nuclear dynamics, such as the
solution of the relativistic RPA or linear response equations
for the description of excited states. In particular one needs
simpler forces for applications going beyond the mean-field
approach such as particle vibrational coupling (PVC) [51–54]
or configuration mixing calculations in the framework of
the generator coordinate method (GCM) [55–58]. Therefore
over the years several attempts have been made to develop
relativistic point-coupling (PC) models with forces of zero

range [59–62], in analogy to nonrelativistic Skyrme function-
als, but only recently parameter sets have been found that
are comparable in quality to the density-dependent meson-
exchange models [63–65].

PC models contain no mesonic degrees of freedom and are
therefore closer to the philosophy of the density functional
theory. Their essential advantage is of course the fact that the
zero range of the effective interaction reduces considerably
the numerical effort in practical applications. Because of their
simplicity they are nowadays much used in many complex
calculations going beyond the mean-field approach [51–58].
However, so far they have not been used much for the dynamic
investigations and it is only quite recently that a code has been
developed to diagonalize the RPA equations for relativistic PC
models [39] and it has been shown that this latter approach
reproduces excitation and collective phenomena, in particular
giant multipole resonances, with a quality comparable to that
of standard finite-range forces.

This manuscript is devoted to an investigation of relativistic
PC models with an exact treatment of the coupling to the
continuum. The relativistic response equations are solved both
in the continuum and in the spectral representation and the
corresponding results are compared. We use the Lagrangian
PC-F1 [63], which is capable of reproducing a wide range of
experimental data.

The article is organized in the following way: In Sec. II we
present the main characteristics of the point-coupling RMF
theory, while the relativistic RPA equations are derived in
Sec. III. The proper treatment of the continuum in connection
with point-coupling models is discussed in Sec. IV and in
Sec. V we finally present applications of this method for the
spectra of in spherical nuclei. In particular we calculate the
strength function of isoscalar and isovector giant resonances as
well as their contributions to their respective energy-weighted
sum rules. The results are summarized in Sec. VI.

II. RELATIVISTIC MEAN-FIELD THEORY OF
ZERO RANGE

As in all the relativistic models, the nucleons are described
as point like Dirac particles. In contrast to the Walecka
model [66], however, where these particles interact by the
exchange of effective mesons with finite mass, point-coupling
models [59–62] neglect mesonic degrees of freedom and
consider only interactions with zero range. In principle, these
models are similar to the Nambu Jona-Lasinio model [67] used
extensively in hadron physics. There is, however, an important
difference: to obtain a satisfactory description of the nuclear
surface properties one needs gradient terms in the Lagrangian
simulating a finite range of the interaction.

A general point-coupling effective Lagrangian is con-
structed to be consistent with the underlying symmetries of
QCD (e.g., Lorentz covariance, gauge invariance, and chiral
symmetry). It should in principle contain every possible term,
allowed by these symmetries, but at the same time should also
be described by the least possible number of parameters to
give a quantitative solution.

In this work we use the PC Lagrangian introduced by
Buervenich et al. in Ref. [63]. It presents an expansion in
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powers of the nucleon scalar, vector, and isovector-vector
densities. The Lagrangian

L = Lfree + L4f + Lhot + Lder + Lem (1)

consists of the term for free nucleons:

Lfree = ψ̄(iγµ∂µ − mN )ψ, (2)

the term for normal four-fermion interactions

L4f = −αS

2
(ψ̄ψ)(ψ̄ψ) − αV

2
(ψ̄γµψ)(ψ̄γ µψ)

− αT S

2
(ψ̄ �τψ)(ψ̄ �τψ) − αT V

2
(ψ̄ �τγµψ)(ψ̄ �τγ µψ), (3)

the term for higher-order terms leading in mean-field approx-
imation to a density dependence

Lhot = −βS

3
(ψ̄ψ)3 − γS

4
(ψ̄ψ)4 − γV

4
[(ψ̄γµψ)(ψ̄γ µψ)]2,

(4)

the term containing derivative terms that simulate in a simple
way the finite range of the forces:

Lder = −δS

2
(∂µψ̄ψ)(∂µψ̄ψ) − δV

2
(∂µψ̄γνψ)(∂µψ̄γ νψ)

− δT S

2
(∂µψ̄ �τψ)(∂µψ̄ �τψ)

− δT V

2
(∂µψ̄ �τγνψ)(∂µψ̄ �τγ νψ), (5)

and finally the electromagnetic part

Lem = −1

4
FµνF

µν − e

2
(1 − τ3)Aµψ̄γ µψ. (6)

In these equations, ψ represents the nucleon spinors. The
subscripts S and V are attributed to scalar and vector fields,
while the subscript T is attributed to isovector fields. As
usual, vectors in isospin space are denoted by arrows, where
symbols in bold indicate vectors in ordinary three-dimensional
coordinate space.

From this Lagrangian and the corresponding energy mo-
mentum tensor we can derive a relativistic energy density
functional. It has the form:

ERMF[ρ̂,t] =
∫

d3rH (r,t), (7)

where the energy density

H (r,t) = Hkin(r,t) + Hint(r,t) + Hem(r,t) (8)

consists of a kinetic part,

Hkin(r,t) =
A∑
i

ψ̄i(r,t) (α p + βm − m) ψi(r,t), (9)

an interaction part

Hint(r,t) = αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jµjµ + γV

4
(jµjµ)2 + δV

2
jµ�jµ

+ αT V

2
�jµ

T V · �jT V µ + δT V

2
�jµ

T V · �( �jT V )µ (10)

and an electromagnetic part

Hem(r,t) = 1
4FµνF

µν − F 0µ∂0Aµ + eAµj
µ
p . (11)

The interaction part depends on the local densities:

ρS(r,t) =
A∑
i

ψ̄i(r,t)ψi(r,t), (12)

ρV (r,t) =
A∑
i

ψ̄i(r,t)γ0ψi(r,t), (13)

ρT S(r,t) =
A∑
i

ψ̄i(r,t)τ3ψi(r,t), (14)

ρT V (r,t) =
A∑
i

ψ̄i(r,t)τ3γ0ψi(r,t) (15)

and currents

j
µ

V (r,t) =
∑

i

ψ̄i(r,t)γ µψi(r,t), (16)

�jµ

T V (r,t) =
∑

i

ψ̄i(r,t)�τγ µψi(r,t). (17)

As in all relativistic mean-field models, the no-sea approx-
imation is used in the calculations of the nuclear densities
by summing only over the single-particle states with energies
in the Fermi sea. Vacuum polarization effects are not taken
into account explicitly but only in a global way by the
correct choice of the Lagrangian parameters. All interactions
in the Lagrangian (1) are then expressed in terms of the
corresponding local densities.

Many effects, which go beyond mean field, seem to
be neglected on the classical level, such as Fock terms,
vacuum polarization, short-range Brueckner correlations, etc.
However, the coupling constants of the method are adjusted to
experimental data, which, of course, contain all these effects
and many more. Therefore these effects are not neglected. On
the contrary, they are taken into account in an effective way.
This concept of RMF methods is therefore equivalent to that
of density functional theory [68].

The time-dependent variational principle

δ

∫ {
i〈�(t)| ∂

dt
|�(t)〉 − E[ρ̂(t)]

}
dt = 0 (18)

allows us to derive from the energy density functional E[ρ̂] an
equation of motion for the time-dependent relativistic single-
particle density:

ρ̂(r, r ′, t) =
A∑
i

|ψi(r, t)〉〈ψi(r ′, t)|, (19)

which has the form

i∂t ρ̂(t) = [ĥ(ρ̂(t)), ρ̂(t)]. (20)

The self energy, i.e., the single-particle Hamiltonian ĥ(ρ̂(t))
is obtained as the functional derivative of the energy density
functional with respect to the relativistic density matrix:

ĥ = δE[ρ̂]

δρ̂
. (21)
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This yields the Dirac Hamiltonian:

ĥ = α[−i∇ − V (r,t)] + V (r,t) + β(m + S(r,t)) (22)

with the self-consistent scalar and vector potentials

S(r,t) = S(r,t) + �τ · �T S(r,t), (23)

V µ(r,t) = µ(r,t) + �τ · �µ

T (r,t). (24)

The nucleon isoscalar-scalar, isovector-scalar, isoscalar-
vector, and isovector-vector self-energies are density depen-
dent and defined by the following relations:

S = αSρS + βSρ
2
S + γSρ

3
S − δS�ρS, (25)

�T S = αT SρT S − δT S�ρT S, (26)

µ = αV ρV + γV ρ3
V − δV �ρV − eAµ 1 − τ3

2
, (27)

�µ

T = αT V ρT V − δT V �ρT V . (28)

Here we have neglected retardation effects, i.e., second
derivatives with respect to the time for the various densities.

In the static limit we have

[ĥ(ρ̂), ρ̂] = 0, (29)

thus the static density ρ̂0 is obtained from the solution of
the self-consistent Dirac equations on all the nucleons with
eigenvalues εk and eigenfunctions ψk(r):

ĥ|ψk(r)〉 = εk|ψk(r)〉. (30)

For spherical symmetry the spinors have the form:

|ψnκ m(r)〉 = 1

r

(
fnκ (r)Yκ m(�)

ignκ (r)Yκ̄ m(�).

)
. (31)

The subscripts n, κ , and m are principal and angular-
momentum quantum numbers; κ = ∓(j + 1

2 ) for j = l ± 1
2 ,

where j and l are the total and the orbital angular momenta
of the nucleon. As usual, m is the z component of the total
angular momentum. The spherical spinors Yκ m(�) are given
in terms of spherical harmonics Ylml

(�) and Pauli spinors χms

as:

Yκ m(�) =
∑
mlms

(
1

2
mslml|jm

)
Ylml

(�)χms
, (32)

while the functions fi(r) and gi(r) satisfy the static radial
Dirac equations:(

V + S −∂r + κ
r

∂r + κ
r

V − S − 2m

)(
fi(r)

gi(r)

)
=

(
fi(r)

gi(r)

)
εi . (33)

The point-coupling Lagrangian used in this work contains
11 coupling constants. Based on an extensive multi parameter
χ2 minimization procedure, Bürvenich et al. [63] have
adjusted the parameter set PC-F1 to reproduce ground-state
properties of infinite nuclear matter and spherical doubly
closed shell nuclei. This set is listed in Table I and it has
been tested in the calculation of many ground-state properties
of spherical and deformed nuclei all over the periodic table.
The results are very well comparable with reasonable effective
meson-exchange interactions.

TABLE I. The coupling constants in the param-
eter set PC-F1 resulting from the fitting procedure
in Ref. [63]. The units are (fm−2) for the constants
α of the quadratic terms, (fm−4) for the constants δ

of the derivative terms, (fm−5) for the constants β of
the cubic terms, and (fm−8) for the constants γ of the
quartic terms in the Lagrangian.

Coupling const. PC-F1

αS −14.935894
δS −0.634576
αV 10.098025
δV −0.180746
αT S 0.0
δT S 0.0
αT V 1.350268
δT V −0.063680
βS 22.994736
γS −66.769116
γV −8.917323

The nuclear ground state is defined as the equilibrium point
of the functional (7), thus, is associated with the density that
minimizes ERMF[ρ̂]. Furthermore, small oscillations around
this equilibrium point correspond to the vibrational nuclear
states. They are usually described within the harmonic approxi-
mation, that is, using linear response theory. In nuclear physics,
this is the so-called RPA that has been already mentioned in
our discussion and will be described in more detail in the next
section.

III. RELATIVISTIC RPA FORMALISM

Under the influence of an external field F (ω) oscillating
with the frequency ω the nucleus is excited. The cross section
of this process is proportional to the strength function:

S(ω) = − 1

π
Im

∑
αβα′β ′

Fαβ∗Rαβα′β ′(ω)Fα′β ′

:= − 1

π
Im RFF(ω), (34)

where Fαβ is the operator inducing the reaction and Rαβγ δ(ω)
is the response function that, in an arbitrary representation
indicated by the Greek indices α, β, . . . [e.g., the (r,s)
representation] is defined as:

Rαβα′β ′(ω) =
∑

ν

{ 〈0|a+
β aα|ν〉〈ν|a+

α′aβ ′ |0〉
ω − Eν + E0 + iη

− 〈ν|a+
β aα|0〉〈0|a+

α′aβ ′ |ν〉
ω + Eν − E0 + iη

}
. (35)

The imaginary part iη is infinitesimal and is introduced to
fulfill the proper boundary conditions and to prevent R(ω) from
diverging at ω = Eν − E0. We use here the response derived
from the retarded Green’s functions as defined in Ref. [69].

In the independent particle model, |0〉 is the Slater determi-
nant of the ground state, formed by the self-consistent solutions
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of the Dirac equation (30) and |ν〉 = a+
p ah|0〉 are ph states,

while E0 and Eν are the corresponding energies. In the basis
|k〉, where the single-particle Hamiltonian (22) is diagonal we
obtain the free response function:

R 0
klk′l′ (ω) = nk − nl

ω − εk + εl + iη
δkk′δll′ (36)

with the occupation factors:

nk = 〈0|a+
k ak|0〉 =

{
1 for hole states with εk � εF

0 for particle states with εk > εF

(37)

The full response of Eq. (35) contains the transition
densities:

ρν
αβ = 〈0|a+

β aα|ν〉. (38)

They can be deduced from the time-dependent density matrix
in Eq. (19), which is derived from the variational principle in
Eq. (18).

In the small amplitude limit one uses the linear response
approximation [70] to obtain the full response R(ω) of
Eq. (35) as the solution of the linearized Bethe-Salpeter
equation:

Rαβα′β ′(ω) = R 0
αβα′β ′(ω)

+
∑

γ δγ ′δ′
R0

αβγ δ(ω)V ph
γ δγ ′δ′Rγ ′δ′α′β ′(ω). (39)

The relativistic residual interaction is found as the second
derivative of the energy density functional (7) with respect to
the density matrix

V
ph
αβα′β ′ = δ2E[ρ̂]

δρ̂αβδρ̂α′β ′
. (40)

Once again, we have neglected retardation and this effective
interaction has to be calculated at the static density.

In a short-hand notation the response equation (39) has the
formal solution

R(ω) = (1 − R 0(ω)V ph)−1R 0(ω) (41)

or introducing the inverse of R 0 we have

R(ω) = 1

R 0(ω)−1 − V ph
. (42)

The evaluation of the strength function (34) requires
therefore three steps. The starting point is the calculation of the
free response function R 0(ω). In the next step one determines
the interaction V ph and finally one solves the response equation
by the inversion (41). In details there are several methods to
proceed. In particular one can choose various basis sets to
solve these equations.

As we have seen in Eq. (36) the free response has a
particularly simple form in the basis of Dirac spinors (Dirac
basis) diagonalizing the self-consistent mean-field Eq. (30).
This is in particular simple for cases where the Dirac equation
is solved in a discrete basis, as for instance the oscillator basis
[15] or in a Saxon Woods basis [16] determined by the solution
of the Dirac equation in a box with finite size. However,
the simplicity in the calculation of R 0(ω) is compensated by
the computational effort required in the next steps. First, we

have to calculate a large number of matrix elements for the
interaction (40) in the basis of the corresponding ph states and
in a second step the matrix (1 − R 0(ω)V ph) has to be inverted
for each value of the frequency ω. In general the number of
single-particle states is rather large and this leads to a huge
number of ph states, requiring considerable computational
sources, not only in memory but also in computer time. This
is in particular a problem in the case of deformed nuclei. By
this reason this method can be used successfully only for light
spherical nuclei, where the number of ph states is limited.

On the other hand, the inversion is particularly simple in
the RPA basis. Inserting expression (36) into Eq. (42) we find
that the response function is equivalent to the resolvent of the
RPA matrix

R 0(ω)−1 − V ph = ω −
(

A B

−B∗ −A∗

)
, (43)

where

Aphp′h′ = (εp − εh)δpp′δhh′ + V
ph
php′h′ , (44)

Bphp′h′ = V
ph
phh′p′ . (45)

Of course, the calculation of this matrix requires the same
numerical effort as the evaluation of V ph in the Dirac basis
discussed above. However, there exist standard routines for
the diagonalization of the RPA matrix(

A B

−B∗ −A∗

) (
X

Y

)
µ

=
(

X

Y

)
µ

�µ (46)

and this diagonalization has to be carried out only once,
whereas the inversion of the response equation has to be done
for each value of the frequency ω. In the RPA basis given by
the eigenvectors |µ〉 the reduced response function defined in
Eq. (52) has a particular simple form

Rcc′ (ω) =
∑
µ>0

〈0|Q†
c|µ〉〈µ|Qc′ |0〉

ω − �µ + iη
− 〈µ|Q†

c|0〉〈0|Qc′ |µ〉
ω + �µ + iη

.

(47)

Using

〈0|F |µ〉 =
∑

ph

Fph
(
X

µ

ph + Y
µ

ph

)
(48)

we find for RFF(ω)

RFF(ω) =
∑
µ>0

|〈0|F |µ〉|2
ω − �µ + iη

− |〈0|F |µ〉|2
ω + �µ + iη

(49)

and for the strength function in Eq. (34)

S

(
ω + i

�

2

)
= − 1

π
Im RFF

(
ω + i

�

2

)

=
∑

µ

|〈0|F |µ〉|2 1

2π

�

(ω − �µ)2 + 1
4�2

. (50)

Here � is a smearing parameter, which introduces a folding
with a Lorentzian and is introduced by numerical reasons.
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In many cases the effective interaction V
ph
αβα′β ′ can formally

be written as a sum of separable terms:

V
ph
αβα′β ′ =

∑
c

Qc
αβV ph

c Q
† c

α′β ′ , (51)

where Qc are single-particle operators characterized by the
channel index c. As discussed in Appendix A, this is partic-
ularly the case for the effective interaction of the relativistic
point-coupling model PC-F1 used in the present investigation.
Working in the channels given by these operators Qc the
numerical effort can be simplified considerably.

We insert the effective interaction (51) into the Bethe-
Salpeter equation (39) and, introducing the reduced response
function,

Rcc′ (ω) =
∑

αβα′β ′
Q

c†
αβRαβα′β ′ (ω)Qc′

α′β ′ , (52)

equation (39) turns into the reduced Bethe-Salpeter equation

Rcc′ (ω) = R 0
cc′ (ω) +

∑
c′′

R 0
cc′′ (ω)V ph

c′′ Rc′′c′(ω), (53)

which has the same formal solution as given in Eq. (41). In
all cases, where one has a continuous channel index c, as for
instance the radial coordinate r , this is an integral equation.
In Eq. (53) the interaction V

ph
c is diagonal with respect to the

channel index c. This is not always the case. However, as we
shall see in Appendix A, the relativistic interaction PC-F1 can
be expressed to a large extent in this way. We have to allow
only in specific cases also for nondiagonal interactions V

ph
cc′ ,

as for instance in the case of the Coulomb force or in the
case of derivative terms. This is a rather simple extension of
the present method and therefore, for the sake of simplicity,
we will restrict ourselves in the following to an interaction
diagonal in the cannel index c. If the external operator F in
Eq. (34) can be expressed by the operators Qc as

F =
∑

c

fcQc (54)

we finally obtain the strength function as

S(ω) = − 1

π
Im RFF = − 1

π
Im

∑
cc′

f ∗
c Rcc′ (ω)fc′ . (55)

If F cannot be expressed in terms of the operators Qc we
obtain RFF from the Bethe-Salpeter equation (39) as

RFF(ω) = R 0
FF(ω)

+
∑
cc′

R 0
Fc(ω)Vc(1 − R 0(ω)V ph)−1

cc′ R
0
c′F (ω). (56)

IV. TREATMENT OF THE CONTINUUM

As we have briefly discussed earlier, a proper treatment
of the continuum is not possible by using a discrete basis,
because one needs a tremendously large number of ph states
with which to fill up the continuum. Instead, it can be properly
taken into account only if one makes use of the more flexible
linear response formalism in an appropriate channel space.

Starting from Eq. (52) for the reduced response function
and using Eq. (47) we derive the following expression for the
reduced free response, which depends only on the energy ω

and the channel indices c, c′:

R0
cc′ (ω) =

∑
ph

〈h|Q+
c |p〉〈p|Qc′ |h〉

ω − εp + εh

− 〈p|Q+
c |h〉〈h|Qc′ |p〉

ω + εp − εh

,

(57)

where h stands for occupied (hole) and p for unoccupied
(particle) states. It is easy to show that the sum over p can
be safely extended to run over the full space, because terms of
the form

∑
hh′ vanish due to the cancellation of forward- and

backward-going parts. Using completeness we obtain:

R0
cc′ (r, r ′; ω)

=
∑

h

〈h|Q+
c

1

ω + εh − ĥ
Qc′ − Qc′

1

ω − εh + ĥ
Q+

c |h〉

=
∑

h

〈h|Q+
c G(ω + εh)Qc′ + Qc′G(−ω + εh)Q+

c |h〉. (58)

ĥ is the Dirac Hamiltonian (22) and G(E) = 1/(E − ĥ) is the
corresponding single-particle Green’s function.

In this work we use relativistic zero range forces, thus it is
appropriate to work in coordinate space. The method described
in the following is a relativistic generalization of the method
introduced by Bertsch et al. (Refs. [71–75]) for nonrelativistic
zero range forces. In this case we solve the response equation
in r-space, which is considerably simpler than the method
introduced in Refs. [21,46] for finite-range forces.

In coordinate representation the indices α, β, . . . in
Eq. (35) are abbreviations for the “coordinates” 1 =
(r1,d1,s1,t1), where s is the spin, t the isospin coordinate, and
d = 1, 2 labels large and small components. Starting from the
energy density functional (7) we find the effective interaction
in Eq. (40) to be of the form (51):

V ph(1, 2) =
∑

c

∫ ∞

0
r2drQ(1)

c (r)υc(r)Q†(2)
c (r) (59)

with the local channel operators Qc(r) defined by

Q(1)
c (r) = δ(r − r1)

rr1
γ

(1)
D

[
σ

(1)
S YL(�1)

]
J
τ

(1)
T , (60)

where we distinguish the “coordinates” abbreviated by the
upper index (1) and the channel index (r, c) used in Eq. (51).
Due to this r-dependence, the dimension of the matrix
R0

cc′ (r, r ′; ω) in the numerical applications will be the number
of r-mesh points times eight, which represents the number of
the covariant channels c, given in Table A2 of the Appendix A.
This implies that all scalar, longitudinal, and transverse modes
(isoscalar and isovector) are fully included and mixed by the
matrix inversion of Eq. (41).

This channel index has now a continuous part given by the
radial coordinate r and a discrete part characterized by the
quantum numbers c = (D, S,L, T ), where the Dirac index
D runs over three 2 × 2 matrices γD = γ0, 1, γ5 defined in
Eq. (A3), S = 0, 1 is the spin, L the orbital angular momentum,
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and T = 0, 1 the isospin. Further details are given in
Appendix A.

Inserting the channel operators (60) into Eqs. (52) and (58)
we obtain the reduced free response function:

R 0
cc′ (r, r ′; ω)

=
∑
hκ

{
Q∗c

κhQ
c′
κh 〈h(r)|γ +

D Gκ (r, r ′; ω + εh)γD′ |h(r ′)〉

+Q∗c
hκQ

c′
hκ〈h(r ′)|γD′Gκ (r ′, r; −ω + εh)γ +

D |h(r)〉}. (61)

The sum runs over all the occupied states (hole) states h with
the two-dimensional radial Dirac spinor 〈h(r)| = (f ∗

h (r)g∗
h(r))

in Eq. (33) and over all the quantum numbers κ = (lj )
compatible with the selection rules in the reduced angular
and isospin matrix elements

Qc
hκ : = eTc

〈κh‖
[
σSc

YLc

]
J

‖κ〉, (62)

where eTc
= 1 in the isoscalar channel (Tc = 0) and eTc

= ±1
(for protons or neutrons) in the isovector channel (Tc = 1).
The reduced matrix elements of the operator [σSc

YLc
]J

contain integrations over the orientation angles � and sums
over the spin indices. The matrix elements of the form
〈h|γDG(E)γD′ |h〉 depend on r and r ′ and are obtained by
summing over the Dirac indices d = 1, 2 for large and small
components.

The Green’s function Gκ (r, r ′, E) describes the propagation
of a particle with the energy E and the quantum numbers
κ from r to r ′. It can be calculated by either spectral or
nonspectral methods. In the spectral representation [73] it
is obtained as a discrete sum

Gκ (r, r ′; E) =
∑

n

|n(r)〉〈n(r ′)|
E − εn

. (63)

over a complete set of eigenstates |n(r)〉 of the radial Dirac
equation (33) with the quantum number κ using box boundary
conditions (or an oscillator expansion). In this case the
continuum is discretized, in correspondence to the bound states
inside the potential. In principle, the radial quantum number
n runs over the whole single-particle basis characterized by
the angular quantum number κ , but one can show that this is
identical to summing only over the unoccupied states, because
the hole-hole pairs in Eq. (61) are not contributing, due to
the cancellation between forward- and backward-going parts.
Furthermore, because of the no-sea approximation the states
in the Dirac sea are empty and therefore the sum over n in
Eq. (63) has also to be extended over the negative-energy
states. This corresponds to the sum over the ah components
discussed in the Introduction. In practical applications one
has to restrict this infinite set by a finite sum introducing an
upper limit εp − εh < E

ph
cut in energy for the particle states p

above the Fermi surface and a lower limit εa − εh > −Eah
cut

for the negative-energy solutions a is introduced to make the
otherwise infinite sum tractable. This leads to a discretized
spectrum.

In the spectral representation the response function R 0(ω)
has poles at the ph energies ω = ±(εp − εh) and the full
response function R(ω) has poles at the eigenenergies �µ

of the RPA-equation (46) in the same restricted space. For

real frequencies ω it is purely real, and therefore the strength
function vanishes everywhere apart from these poles. For
complex energies ω + i�/2, however, these poles are shifted
from the real axis and one obtains a continuous spectrum,
with the phenomenological width �. This procedure yields
identical results as the diagonalization of the RPA matrix in
(46) along with a subsequent folding with a Lorentzian as
discussed in Eq. (50).

In the nonspectral or continuum approach [72] the single-
particle Green’s function is constructed at each energy
from two linearly independent solutions of the Schroedinger
equation with different boundary conditions at r = 0 and at
r → ∞. In the relativistic case the Dirac equation in r-space
depending on the quantum number κ is a two-dimensional
equation and therefore the corresponding single particle
Green’s function is a 2 × 2 matrix. Using the bracket notation
of Dirac for the two-dimensional spinors we can write [76]:

Gκ (r, r ′; E) =
{

|wκ (r)〉〈u∗
κ (r ′)| for r > r ′

|uκ (r)〉〈w∗
κ (r ′)| for r < r ′, (64)

where u(r) and w(r) are two independent Dirac spinors [76]:

|uκ (r)〉 =
(

fu(r)

gu(r)

)
, |wκ (r)〉 =

(
fw(r)

gw(r)

)
(65)

normalized in such a way that the Wronskian

W = fw(r)gu(r) − gw(r)fu(r), (66)

which is independent of r , is normalized to unity. The solution
uκ (r) is regular at the origin and the solution wκ (r) fulfills
outgoing wave boundary conditions [77]. Further details are
given in Appendix B.

Provided that the free response function R0
c,c′ (r, r ′; ω) has

been properly derived, we are able to solve the reduced Bethe-
Salpeter equation (53)

Rc,c′ (r, r ′; ω) = R 0
c,c′ (r, r ′; ω) +

∑
c′′

∫ ∞

0
dr ′′ R0

c,c′′ (r, r ′′; ω)

× υc′′ (r ′′)
r ′′ 2

Rc′′,c′ (r ′′, r ′; ω). (67)

where the index c′′ runs over the various discrete channels
given in Table VI. Finally the strength function is obtained as:

S(ω) = − 1

π
ImRFF (68)

= − 1

π
Im

∫ ∞ ∫
0
dr dr ′F ∗

c (r)Rcc′(r, r ′; ω)Fc′ (r ′). (69)

The sum rules are defined as moments of the strength function
S(ω) [78]:

mk =
∫ ∞

0
ωkS(ω) dω. (70)

They are helpful to characterize the spectral distribution of the
oscillator strength. In particular they allow us to define the
centroid energy by the ratio

Ec = m1

m0
. (71)
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This quantity can be compared directly with experimental
values. Of course, in most experiments only a restricted energy
range is accessible and therefore one also has to restrict the
integration in Eq. (70) to the same energy window.

Other important quantities are transition densities in various
channels c with respect to the operator F

δρc(r; ω) =
∑
c′

∫ ∞

o

dr ′Rcc′ (r, r ′; ω)Fc′ (r ′) (72)

as for instance the neutron and proton transition densities:

δρ(r)n,p = δρT =0(r; ω) ± δρT =1(r; ω). (73)

V. APPLICATIONS

In the previous section we briefly described how conven-
tional RPA methods treat the continuum part of the spectrum
through the introduction of a potential “wall” far from the
nucleus. In the credit side of this approach, general properties
of collective excitations can be very well reproduced, either
by using finite range or point-coupling interactions (Nikšić
et al. [39]). Because CRPA can treat the coupling to the
continuum exactly, it is of interest to see how well this model
does in reproducing the properties of excited state in finite
nuclei, in particular the giant resonances.

The most prominent resonances are the isoscalar monopole
resonance (ISGMR), which is a breathing of the nucleus as
a whole, the isovector dipole resonance (IVGDR), which
corresponds to a collective excitation of the proton against the
neutron density, and isoscalar quadrupole resonance (ISGQR).
In addition we have the isoscalar dipole resonance (ISGDR)
revealing the spurious state corresponding to a translational
motion of the nucleus. These modes show up in an energy
range of 10–30 MeV and they exhaust a major portion of
the corresponding sum rules [33,79]. In the next sections we
investigate the ISGMR, IVGDR, and ISGDR in more detail.

A. Numerical details

In the following, we perform several calculations using
the relativistic continuum RPA approach in r-space with PC
forces [63]. We select the doubly magic nuclei 16O, 40Ca,
132Sn, and 208Pb to investigate how the collective excitation
phenomena depend on an exact coupling to the continuum.

In a first step, the ground state of the nucleus is determined
by solving the self-consistent RMF equations (33) for the
parameter set PC-F1 given in Table I. The method we are
using is a fourth-order Runge-Kutta in r-space (Dirac-mesh)
where nucleons move in a spherical box with radius RD =
15 fm and with a mesh size dD = 0.05 fm.

Using the single-particle wave functions and the corre-
sponding energies of this static solution, we determine the
free response R 0 of Eq. (61) in the same box radius but using
a wider mesh in r-space (response-mesh). The size dR of this
mesh depends on the excitation mode; for the monopole modes
we use dR = 0.15 fm, while for the dipole a larger interval
dR = 0.30 fm is sufficient. Then we solve the Bethe-Salpeter
equation (68) to get the strength distribution S(ω).

At the same time, we perform similar calculations using
the discrete RPA approach, where the continuum is not treated

exactly, aiming of course to a more precise comparison with
the CRPA results. For those calculations, an energy cutoff
is necessary so a feasible diagonalization is achieved. In
particular, we have used an energy cutoff |εp − εh| < E

ph
cut =

300 MeV for the configurations with particles above the Fermi
sea and |εa − εh| < Eah

cut = 1500 MeV for configurations with
antiparticles in the Dirac sea.

B. Isoscalar giant monopole resonances

Results for the isoscalar monopole strength distribution are
attainable, once the corresponding external field

FT =0
L=0 =

A∑
i

r2
i (74)

is used. In this case, the classical energy weighted sum rule
m1(E0) becomes:

m1(E0) = 1

2
〈[F, [T , F ]]〉 = h̄2

2m
〈∇2F 〉 = 2h̄2

m
〈r2〉. (75)

The doubly magic spherical nucleus 208Pb is a particularly
good example in perform our calculations, because it has been
used in the literature to test numerous nuclear structure models
in the past, in particular applications of the random-phase
approximation [47,48,50,80–83].

In Fig. 1 we show the ISGMR strength distribution
obtained by continuum RPA (full red line) and com-
pare it with the discrete B(E0) values (blue) obtained
by the spectral representation of the response function for the
same parameter set PC-F1 [63]. Using the CRPA approach,
we find for the calculated centroid energy defined in Eq. (71)
that m1/m0 = 14.40 MeV, which is rather close to the result
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FIG. 1. (Color online) (a) The isoscalar monopole spectrum in
208Pb, calculated with the parameter set PC-F1. The red curve
corresponds to the strength distribution (units on the left-hand side)
obtained by a nonspectral representation without smearing (� = 0),
the blue lines give the discrete B(E0) values (units on the right-hand
side) obtained by the spectral representation with the same force.
The black arrow indicates the experimental centroid energy of the
resonance [84]. (b) The neutron and proton transition densities at the
peak with the energy E = 14.40 MeV.
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m1/m0 = 14.17 MeV deduced from discrete RPA calculations
as well as to the experimental value m1/m0 = 13.96 ±
0.2 MeV [84].

In those two methods, no additional smearing � = 0
has been used. This means that the observed width of the
continuum RPA strength corresponds entirely to the escape
width that in the Pb region is very small, due to the relatively
high Coulomb and centrifugal barriers in this heavy nucleus. In
contrast, discrete RPA provides no width at all. Otherwise, the
agreement of these two methods in this nucleus is excellent.

In Fig. 1(b), we give the neutron and proton transition
densities at the peak energy, as it is calculated in Eq. (73). They
emphasize the collective character of the isoscalar breathing
mode extended over the entire interior of the nucleus with
neutrons and protons always in phase.

In addition, the energy-weighted sum rule obtained in
CRPA using Eq. (70) is m1(E0) = 5.448 × 105 (MeV fm4).
This result is in excellent agreement with the DRPA calculation
m1(E0) = 5.446 × 105 (MeV fm4) as well as the classi-
cal value m1(E0) = 4Ah̄/2m〈r2〉 = 5.453 × 105 (MeV fm4).
This shows that the results obtained in the literature by
relativistic RPA calculations using the spectral method are
very reliable for such heavy nuclei [14,29,30,33].

In Fig. 2 we show the E0 strength distributions for the
lighter doubly magic nuclei 16O, 40Ca, and 132Sn. As in Fig. 1,
the smearing parameter � is zero, but now the escape width
is considerably larger for these nuclei. Figure 3 summarizes
the results for the isoscalar monopole strength distributions
as a function of the mass number A. In Fig. 3(a), we plot
the centroid energies of both continuum RPA (red dots) and
discrete RPA (blue dots), together with the experimental
centroid energies taken from Ref. [84]. We also show the phe-
nomenological A dependence Ē1− ≈ 31.2 A−1/3 + 20.6 A−1/6

by the dashed line. It becomes clear that CRPA can successfully
reproduce collective excitations over the known range of
nuclei.
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FIG. 2. (Color online) The isoscalar monopole strength distribu-
tion for doubly magic nuclei (a) in 16O, (b) in 40Ca, and (c) in 132Sn.
Details are the same as Fig. 1(a).

12

16

20

24

28

E
pe

ak
 [

M
eV

] CRPA
DRPA
EXP.

0 50 100 150 200

A

0

2

4

6

8

Γ 
[M

eV
]

ISGMR

(b)

(a)

FIG. 3. (Color online) (a) The ISGMR centroid energies as a
function of the mass number. (b) The experimental and theoretical
width of the ISGMR as a function of the mass number. Details are
given in the text.

In Fig. 3(b) we show the escape width �↑ of E0 resonances.
The red values correspond to the full width at half maximum
(FWHM) of the peak, using continuum RPA, while the
experimental values are indicated in black. The evident
disagreement is not surprising, if we consider that only 1p1h
configurations are taken into account, i.e., the major part of
the width resulting from the coupling to more complicated
configurations such as 2p2h, etc., is not described well in
this simple RPA approach. It has been shown in recent
investigations of the coupling to complex configurations within
the framework of the relativistic time-blocking approximation
(RTBA) [53] or the relativistic quasiparticle-time-blocking
approximation (RQTBA) [54] that such couplings can be
taken into account successfully in a fully consistent way
starting from one density functional E[ρ]. So far, relativistic
investigations of this type have been carried out with discrete
methods. At present, investigations in this direction including
the continuum properly go beyond the scope of this article.

C. Isovector giant dipole resonances

Isovector giant dipole resonance is the most well studied
collective excitation and the first to be observed experimentally
[85]. An external electromagnetic field of the form:

FT =1
L=1 = N

A

Z∑
p=1

rpY1M (�p) − Z

A

N∑
n=1

rnY1M (�n) (76)

causes protons and neutrons to oscillate in opposite phases
to each other and this leads to a pronounced peak in the
photoabsorption cross section. This mode has been well
studied in many nuclei [86].

With the increasing number of experiments in systems far
from stability and systems with large neutron excess, one
has been able to observe also low-lying E1 strength in the
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FIG. 4. (Color online) (a) The isovector
dipole strength distribution in 208Pb. Details are
essentially the same as in Fig. 1(a). However,
to distinguish the continuum (red curve) and
the discrete (blue lines) calculations we have
used here a small smearing parameter � =
10 keV in the continuum calculation. The black
arrow indicates the theoretical neutron emission
threshold. (b) Transition densities for neutrons
and (c) for protons at the energy of the PDR (left)
and at the GDR (right).

area of the neutron emission threshold. It is called pygmy
dipole resonance (PDR) and can be interpreted as a collective
mode with dipole character where the neutron skin oscillates
against an isospin saturated proton-neutron core. This mode
has first been predicted in phenomenological models [87,88],
exhausting several percentages of the electric dipole sum rule.
In recent years, it has been intensively investigated both on the
experimental side by the Darmstadt group [89,90] as well as on
the theoretical side, using discrete relativistic RPA calculations
based on NL3 [5,91].

In Fig. 4(a) the results of the isovector dipole strength
E1 in the nucleus 208Pb using the CRPA approach. The
centroid energy at 13.32 MeV is in excellent agreement
with the experimental excitation energy E = 13.3 MeV [92].
The energy-weighted sum rule (70) is found as m1(E1) =
916.28 (MeV fm2). This result is in agreement with the DRPA
calculation, where we obtain m1(E1) = 943.32 (MeV fm2)
and as usual somewhat (23.8%) larger than the classical
Thomas-Reiche-Kuhn (TRK) sum rule

mTRK = 9

4π

h̄2

2m

NZ

A
= 740.13 (MeV fm2). (77)

In addition to the giant dipole resonance a smaller peak appears
at the energy region of the neutron emission threshold around
E ∼ 7.5 MeV that corresponds to the pygmy resonance.

In Fig. 4(b) we give the transition densities associated the
low-lying peak at E = 7.66 MeV and the GDR peak at E =
12.9 MeV. The higher peak has clearly an isovector character,
because the neutrons are oscillating against the protons over
a large radial range centered at the surface. The lower peak
shows an isoscalar core, where neutrons and protons oscillate
in phase and a pure neutron skin moving against the T = 0
core. This is the typical behavior of the pygmy mode.

Closer investigation of pygmy resonances have shown that
this mode is in the neighborhood of the neutron separation
threshold, slightly below for small and slightly above for large

neutron excess (see for instance Ref. [37]). It is therefore
of particular importance to study this mode with a proper
treatment of the continuum, because in most of the previous
investigations this has not been possible [93]. We show in
Fig. 5 the details of the PDR in the nucleus 208Pb. Above
the theoretical neutron separation threshold that is found at
Eth = 7.58 MeV (black arrow) we have a continuous red curve
showing the E1 strength distribution calculated with CRPA
(units at the left-hand side) and also few full blue vertical lines
that correspond to the discrete poles of the DRPA equations
(63) (units at the right-hand side) and with length equal to the
corresponding B(E1) values.

In the same figure and below the threshold we have in
both cases discrete lines. The solid blue ones are again the
eigensolutions of the DRPA equation (46). The solutions of
the CRPA equations lead in this region also to discrete poles.
We show them by dashed red lines at the pole of the full
response function. Numerically, the only way to determine the
B(E1) values of these poles in CRPA is by using very small
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FIG. 5. (Color online) The E1 pygmy resonance (PDR) in the
nucleus 208Pb. The black arrow indicates the theoretical neutron
emission threshold at 7.58 MeV. The red dashed lines are obtained
by CRPA calculations below the threshold.
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TABLE II. Energies and B(E1) values for the three
most dominant peaks in the PDR area around the neutron
threshold for the nucleus 208Pb for continuum (CRPA)
and discrete (DRPA) calculations. The numbers given in
italic correspond to resonances in the CRPA calculations.
The units are MeV for the energies and (e2 fm2) for the
B(E1) values. More details are given in the text.

No. CRPA DRPA

E B(E1) E B(E1)

1 6.90 0.19 7.12 0.23
2 7.44 1.45 7.46 2.82
3 7.66 1.11 7.69 0.40
 2.75 3.45

imaginary parts � → 0 in the frequency ω + i 1
2� and then

determining the B(E1) values by simple integration over a
small interval around this pole.

By doing that, we finally observe that there are differences
in the details between the continuum and the discrete RPA
calculations close to the neutron separation threshold. In
Table II we show for both calculations the three most dominant
peaks in the area of the PDR around 7.5 MeV. In the discrete
calculations (DRPA) the strength is concentrated in one peak
at E = 7.46 MeV, whereas in the continuum calculations
(CRPA) most of the strength in this region is distributed
over two peaks, one below the neutron threshold at E =
7.44 MeV and a sharp resonance slightly above the threshold
at E = 7.66 MeV. The energy-weighted strength in this area is
17.09 (e2 fm2) (i.e., 1.86% of the total sum rule) for CRPA and
26.95 (e2 fm2) (i.e., 2.85% of the total sum rule) for DRPA.

In Fig. 6 we show the distribution of the isovector dipole
strength in the doubly magic nucleus 132Sn. Again, results
using continuum RPA equations (red curve) are compared
with the solutions obtained from the spectral representation
(blue lines). As one can see, there is excellent agreement
between the two methods, as far as the resonance position and
the overall distribution are concerned. Moreover, the energy-
weighted sum rule obtained in CRPA is given by m1(E1) =
563.60 (MeV fm2), which is in very good agreement with the
DRPA calculation m1(E1) = 591.02 (MeV fm4) and 22.9%
larger than the Thomas-Reiche-Kuhn sum rule in Eq. (77).
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FIG. 6. (Color online) The isovector dipole strength distribution
in 132Sn. Details are the same as in Fig. 4(a).
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FIG. 7. (Color online) The E1 pygmy resonance (PDR) in the
nucleus 132Sn. Details are the same as in Fig. 5. The arrow indicates
the theoretical neutron emission threshold at Eth = 7.13 MeV.

In addition, we find that the escape width in this nucleus
is considerably smaller in the E1 channel as compared to
the E0 channel in Fig. 2. This has the following explanation:
The selection rules for ph excitations with E0 character is
�j = 0 and no change in parity. It turns out that most of the
ph excitations contributing to the strong peak in the resonance
region have rather small � values for the particle configurations
and therefore a very low or no centrifugal barrier. This is
different for the E1 resonance, where one has a change in
parity and in addition changes of �j = 0,±1. In such a case,
a large part of the contributing ph pairs have particles with
larger � values, i.e., a strong centrifugal barrier and hence the
width becomes smaller.

In Fig. 7 we show the region of the PDR in the doubly
magic nucleus 132Sn. As already found in Ref. [37], the
theoretical neutron emission threshold at E = 7.13 MeV lies
much below the area of interest. As before, we calculate the
B(E1) values of the prominent peaks for both discrete and
continuum calculations with the total strength to be in good
agreement. In Table III we show in what extent each level
contributes to the total pygmy collective state. Finally, the
energy-weighted strength m1 in this area is 13.24 (e2 fm2)
(i.e., 2.35% of the total sum rule) for CRPA and 20.45 (e2 fm2)
(i.e., 3.46% of the total sum rule) for DRPA.

In Fig. 8 we show the electric dipole strength distribution
of the lighter nuclei 16O and 40Ca. The strength obtained in
CRPA calculations (red curves) are compared with the B(E1)

TABLE III. Energies and B(E1) values for the three
most dominant peaks in the PDR area above the neutron
threshold for the nucleus 132Sn for continuum (CRPA) and
discrete (DRPA) calculations. The units are MeV for the
energies and [e2 fm2] for the B(E1) values. More details
are given in the text.

No. CRPA DRPA

E B(E1) E B(E1)

1 8.11 0.03 8.067 0.037
2 8.48 0.02 8.186 1.601
3 8.82 1.44 8.511 0.260
 1.490 1.898
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FIG. 8. (Color online) The isovector dipole strength distribution
in the nuclei 16O (a) and 40Ca (b). Details are the same as in Fig. 4(a).
The theoretical neutron separation energies, indicated by black arrow
are Ethr = 11.33 MeV for 16O and Ethr = 8.91 MeV for 40Ca.

values resulting from discrete DRPA calculations (blue lines).
The position of the corresponding peaks and poles with large
strength are in rather good agreement, as explained in Table IV.
We find, however, that in the continuum calculations a much
larger escape width emerges, in particular for the nucleus 16O.

D. Isoscalar giant dipole resonances

In addition to the distribution of the isovector dipole
strength that is dominated by the IVGDR in many experimental
spectra, in recent years there has also been considerable
interest in measuring the isoscalar dipole strength distribution
[96–98]. In a similar way, one expects to find the ISGDR,
which corresponds to a compression wave going through
the nucleus along a definite direction and to learn from
such experiments more about the nuclear incompressibility.
Relativistic calculations based on discrete RPA [29,30,48]
have shown that the resonance energy of this mode is indeed
closely connected to the incompressibility of nuclear matter.

Along with this ISGDR resonance built on 3h̄ω excitations
above 20 MeV, calculations based on both relativistic [29]

TABLE IV. Isovector dipole (IVGDR) excitation energies
(in MeV) for several spherical nuclei, calculated with both
continuum and discrete relativistic RPA based on the point-
coupling force PC-F1.

CRPA DRPA Exp.

16O 20.6279 21.623 23.35 ± 0.12 [94]
40Ca 18.367 19.32 21.76 ± 0.11 [95]
132Sn 14.503 14.78
208Pb 13.32 13.23 13.3 ± 0.10 [92]

and nonrelativistic [99] RPA approaches have revealed a
low-lying isoscalar dipole strength in the region below and
around 10 MeV. Experimental investigations with inelastic
scattering of α particles at small angles [98,100] have also
found isoscalar dipole strength in this region. This strength
has been attributed in Ref. [32] to an exotic mode of a toroidal
motion predicted already in early theoretical investigations on
multipole expansions of systems with currents [101,102] and
investigated also by semiclassical methods [103,104].

On the theoretical point of view, there is further interest
in the isoscalar dipole mode, characterized by the quantum
numbers (Jπ = 1−, T = 0), because it contains the Goldstone
mode connected with the violation of translational symmetry in
the mean-field solutions. This mode corresponds to the center-
of-mass motion of the entire nucleus. Because of the missing
restoring force, this mode has vanishing excitation energy. It
is one of the essential advantages of the RPA approximation,
that it preserves translational symmetry and therefore it has an
eigenvalue at zero energy with the eigenfunction given by the
ph matrix elements of the linear momentum operator.

Because the ISGDR is expected to be a 3h̄ω excitation it is
usually associated with the external field derived in Ref. [105]

FT =0
L=1 =

A∑
i

(
r3
i − ηri

)
Y1µ(�i), (78)

where the factor η = 5
3 〈r2〉 is used to extract the spurious

center-of-mass motion.
In the upper part of Fig. 9 we display the distribution of the

isoscalar dipole strength in 208Pb, calculated with the operator
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FIG. 9. (Color online) (a) Spurious E1 isovector strength distri-
bution in 208Pb obtained by CRPA calculations with two different
values of the radial mesh size δr . (b) The position of the spurious E1
state as a function of the radial mesh size.
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(78) for η = 0, that is, we take no action for the spurious
state. We therefore observe a huge peak close to zero energy,
which dominates the spectrum and corresponds to the spurious
translational mode.

It turns out that the position of this spurious state is
an extremely sensitive object that strongly depends on the
numerics of the model. Of course, the optimal would be to
calculate the spurious state at exactly zero energy. Therefore
this excitation mode presents an ideal benchmark for numerical
efficiency of the RPA or the linear response equations. Detailed
studies have shown that the exact separation of the spurious
state requires a fully self-consistent solution [47]; a fact that
was not given in most of the older applications with Skyrme or
Gogny forces. In many cases, only few of the different terms
in the residual interaction had been taken into account in RPA
calculations.

In addition, the configuration space must be full. Indeed, the
discussed drawback of the conventional spectral representation
in a truncated ph configuration space affects the position
of the spurious state. Therefore, the convergence to zero
eigenvalue of the spurious translational mode occurs very
slowly and only in extremely large configuration space. In
relativistic applications this is translated to including also
large spectrum in the Dirac sea [14,22]. As a consequence,
in the spectral representation, one has to take into account
many configuration with particles in the Dirac and holes in
the Fermi sea, which complicates the numerical applications
considerably and inevitably decreases the efficiency of the
method.

Fortunately, using the continuum RPA approach, one is
free from such constraints and limitations, because the entire
configuration space is automatically included. The results in
Fig. 9 obtained with the operator (78) for η = 0 show clearly
the spurious state dominating the entire spectrum (see the
scale). Its position is not precisely at zero energy; rather, it
depends on the mesh size used for the solution of the continuum
response equation (the response mesh). In Fig. 9(a) we present
two calculations with different mesh sizes, whereas in Fig. 9(b)
we show how the spurious state moves to zero energy as we
use a finer radial interval. For the ideal case of an infinitesimal
mesh, the strength connected with the spurious state would be
completely separated from the rest of the spectrum.
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FIG. 10. (Color online) The isoscalar dipole strength distribution
in 208Pb. Details are the same as in Fig. 4(a).

TABLE V. Self-consistent (relativistic and nonrelativistic) RPA
calculations performed for the ISGDR in 208Pb, compared with
the most recent experimental data. The two columns refer to the
centroid energies of both the low- and high-energy sides of the
ISGDR mode.

Low (MeV) High (MeV)

CRPA 10.97 25.05
Hamamoto et al. [108] ∼14 23.4
Coló et al. [109] 10.9 23.9
Vretenar et al. [29] 10.4 26
Piekarewicz [48] ∼8 24.4
Shlomo, Sanzhur [110] ∼15 ∼25
Uchida et al. [98] 12.7 ± 0.2 22.4 ± 0.5

In Fig. 10 we show results obtained with the full operator
(78), i.e., with η = 5

3 〈r2〉, in a scale increased by three orders
of magnitude. Obviously this procedure removes the spurious
state with high precision. We also observed no influence of the
isoscalar mode in the isovector channel due to isospin mixing.
In this context we have to remember that the isospin mixing
introduced on the mean-field level is corrected on the RPA
level to a large extend (see Refs. [70,106,107]).

The main part of the remaining isoscalar dipole spectrum in
Fig. 10 is located at E ≈ 25 MeV. This “exotic” mode is best
described as a “hydrodynamical density oscillation,” in which
the volume of the nucleus remains constant and the state can
be visualized as a compression wave oscillating back and forth
through the nucleus [32].

Moreover, Fig. 10 shows an additional mode in the region
of 10–15 MeV that exhausts roughly 20% of the total sum rule.
This peak does not correspond to a compression mode, but as
discussed in Ref. [32] rather to a kind of toroidal motion. The
toroidal dipole mode is understood as a transverse zero-sound
wave and its experimental observation would invalidate the
hydrodynamical picture of the nuclear medium, because there
is no restoring force for such modes in an ideal fluid.

In conclusion, continuum RPA calculations manage not
only to predict the existence of the toroidal and the com-
pression mode but also to achieve a reasonable agreement of
the corresponding centroid energies to other models focusing
on the same problem, as well as to recent experimental data
[96,98]. In Table V, these results are presented for the case of
the well-studied nucleus 208Pb.

VI. CONCLUSIONS

Starting from a point-coupling Lagrangian, we have used
the nonspectral relativistic RPA approach to examine the
corresponding excitation spectra and we have compared
the results with spectral calculations based on the same
Lagrangian. This nonspectral method has several advantages.
The coupling to the continuum is treated consistently using the
relativistic single-particle Green’s function at the appropriate
energy. In this way, complicated sums over unoccupied states
are avoided. This is particularly important for relativistic
applications because the Dirac sea is now automatically treated
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properly and the unphysical transitions from holes in the Fermi
sea to particles in the Dirac sea is avoided as long as we restrict
our investigations to positive energies.

The ground-state phenomena are calculated using the same
Lagrangian by a self-consistent solution of the relativistic
mean-field equations in r-space. The residual particle-hole
interaction used in the RPA calculations is derived in a fully
self-consistent way from the second derivative of the corre-
sponding energy density functional. In this way no additional
parameters are required and one is able to reproduce the
collective properties, namely the multipole giant resonances
for various doubly closed shell spherical nuclei over the entire
periodic table.

The calculations are carried out by using a new relativistic
continuum RPA program for PC models that includes all the
terms in the Lagrangian, in particular the two-body interactions
with zero range, the density-dependent parts with all the
rearrangement terms, the derivative terms, the various current-
current terms, and the Coulomb interaction. As applications the
nuclei 16O, 40Ca, 90Zr, 132Sn, and 208Pb have been investigated
proving that a hight level of accuracy is achieved, as compared
to the discrete methods. Comparing calculations with spectral
and nonspectral representations of the response function for the
same Lagrangian we find that, in general, the spectra are well
reproduced within the spectral approximation if an appropriate
phenomenological smearing parameter is used and if a suffi-
ciently large number of ph configurations is taken into account
in the latter case. We find, however, differences in neigh-
borhood of the neutron threshold, where the coupling to the
continuum is not properly reproduced in the spectral method.

As compared to the discrete case the nonspectral repre-
sentation has the advantage of (i) a precise treatment of the
coupling to the continuum and a fully consistent determination
of the escape width without a phenomenological smearing
parameter; (ii) a faster evaluation of the cross section, because
one needs for fixed energy only two scattering solutions instead
of the thousands of ph configurations in the discrete case; and
(iii) a proper treatment of the Dirac sea without any further ah
configurations.

Relativistic CRPA describes very well the position of
resonances in doubly magic spherical nuclei. Provided that
proper pairing correlations are taken into account, a similar
method can also be applied in open-shell nuclei. This requires
the development of the relativistic continuum quasiparticle
random-phase approximation (CQRPA). This approach ac-
counts on equal footing for the influence of the residual
particle-hole (ph) as well as the particle-particle (pp) correla-
tions. Analogously to nonrelativistic calculations [111–114],
this can be achieved on the basis of relativistic CRPA theory
developed in this manuscript either by treating the pairing
correlations in the BCS approach for nuclei far from the drip
lines where no level in the continuum is occupied or in the
Hartree-Bogoliubov approximation valid for all nuclei up to
the drip line. Investigations in this direction are in progress.

Of course, the present approach is based on the RPA and
includes only 1p1h configurations. Therefore only the escape
width of the resonances can be reproduced properly. For
heavy nuclei the decay width resulting from a coupling to
more complex configurations is very important. In fact, such

couplings have been introduced successfully in the relativistic
scheme using the spectral representation in Refs. [53,54]. On
the nonrelativistic side such techniques have also been used in
the context of the nonspectral representation without [115,116]
and with [117] pairing. So far, however, fully self-consistent
relativistic applications including complex configurations with
a proper treatment of the continuum are still missing.
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APPENDIX A: THE EFFECTIVE INTERACTION IN
DENSITY-DEPENDENT POINT-COUPLING MODELS

In Eq. (40) the effective interaction for RPA calculations is
defined as the second derivative of the energy functional with
respect to the density matrix:

V
ph
αβα′β ′ = δ2E[ρ̂]

δρ̂αβδρ̂α′β ′
. (A1)

In coordinate representation the indices α, β, . . . are an
abbreviation for the “coordinates” 1 = (r1, s1, d1, t1), where
s is the spin and t the isospin coordinate and d = 1, 2 is the
Dirac index for large and small components. Starting from the
energy density functional (7) and neglecting for the moment
the Coulomb force, we find the density-dependent zero-range
force

V ph(1, 2) =
∑

c

�(1)
c δ(r1 − r2)υc(r1)�†(2)

c , (A2)

where the vertices �c are 8 × 8 matrices acting on the indices
s, d, t and reflect the different covariant structures of the fields
including spin and isospin degrees of freedom. We express the
4 × 4 Dirac matrices as a direct product of spin matrices σ and
2 × 2 matrices γD acting on large and small components

γ0 =
(

1 0
0 −1

)
, 1 =

(
1 0
0 1

)
, γ5 =

(
0 1
1 0

)
(A3)

and the spin matrices σS=0 = 1 and σS=1 = σµ with the
spherical coordinates of the Pauli spin matrices. In this way
we obtain the vertices �c = γD × σS × τT as direct products
of two-dimensional Dirac, spin, and isospin matrices (see also
the second column of Table VI).

Finally, in Eq. (A2) the quantities υc(r) describe the
strengths of all the various parts of the interaction derived in
a consistent way from the Lagrangian. The ones derived from
the four-fermion terms (3) are constants. Furthermore, due to
a density dependence of the higher-order terms (4) as well as
the corresponding rearrangement terms, υc(r) depends on the
static density and therefore on the coordinate r . In addition,
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TABLE VI. Vertices and quantum numbers of the different
channels in Eq. (A2).

c �c = γD ⊗ σS ⊗ τT D S L T

1 γ0 ⊗ 1 ⊗ 1 S 0 J 0
2 1 ⊗ 1 ⊗ 1 V 0 J 0
3 γ5 ⊗ σ ⊗ 1 V 1 J − 1 0
4 γ5 ⊗ σ ⊗ 1 V 1 J + 1 0
5 γ0 ⊗ 1 ⊗ τ3 S 0 J 1
6 1 ⊗ 1 ⊗ τ3 V 0 J 1
7 γ5 ⊗ σ ⊗ τ3 V 1 J − 1 1
8 γ5 ⊗ σ ⊗ τ3 V 1 J + 1 1

because of the derivative terms (5), they also contain Laplace
operators. Summarizing, we have:

c υc(r) =
scalar : αS + 2βSρS(r) + 3γSρ

2
S(r) + δS�

timelike vector: αV + 3γV ρ2
V (r) + δV �

spacelike vector: −αV − γV ρ2
V (r) − δV �.

(A4)

In the isovector case the constants αS, αV , δS , and δV are
replaced by αTS, αTV, δTS, and δTV. As we see in Table I the
corresponding values βTS = γTS = γTV vanish.

For spherical nuclei, the densities and currents in the
Lagrangian depend only on the radial coordinate r . Therefore
we expand the δ function in Eq. (A2) in terms of spherical
harmonics

δ(r1 − r2) = δ(r1 − r2)

r1r2

∑
L

YL(�1) × YL(�2). (A5)

Combining spin (S) and orbital (L) degrees of freedom we
find by recoupling to total angular momentum J(

σ
(1)
S × σ

(2)
S

)
(YL(1) × YL(2)) =

∑
J

[σSYL](1)
J × [σSYL](2)

J .

(A6)

Inserting this expression into Eq. (A4) we obtain for the
interaction a sum (or integral) of separable terms (channels)

V ph(1, 2) =
∑

c

∫ ∞

0
r2drQ(1)

c (r)υc(r)Q†(2)
c (r), (A7)

Each channel is characterized by a continuous parameter r and
the discrete numbers c = (D, S,L, J, T ). The corresponding
channel operators Q(1)

c (r) are local single-particle operators

Q(1)
c (r) = δ(r − r1)

rr1
γ

(1)
D

[
σ

(1)
S YL(�1)

]
J
τ

(1)
T (A8)

and the upper indices (1) and (2) in Eq. (A7) indicate that
these operators act on the “coordinates” 1 = (r1�1s1d1t1) and
2 = (r2�2s2d2t2).

The total angular momentum is a good quantum number
and for fixed J the sum over c in Eq. (A7) runs only over
specific numbers c = (D,S,L,T ) determined by the selection
rules. We concentrate in this manuscript on states with natural
parity, i.e., π = (−)L = (−)J . Considering that S = 0 for the
scalar and the timelike vector and that S = 1 for the spacelike

vector we therefore have

L =
{

J for S = 0

J ± 1 for S = 1
.

Finally we have eight discrete channels. Their quantum
numbers are shown in Table VI.

An essential feature of the effective interaction (A4) is that
it contains derivative terms in the form of Laplacians � (re-
tardation effects are neglected). In spherical coordinates, they
contain radial derivatives as well as angular derivatives. The
latter can be expressed by the angular-momentum operators
acting on spherical harmonics YLM . Therefore we obtain:

� = r2←−∂ r

1

r2

−→
∂ r + L(L + 1) − 2

r2
. (A9)

Here the radial derivatives
←−
∂ r and

−→
∂ r act on the right

and on the left side in Eq. (67), i.e., on R 0
c′c(r ′r) and on

Rcc′′ (r, r ′′). Because the integration is discretized r → rn =
nh the operator

−→
∂ r is represented by a matrix in r-space as

for instance by the tree-point formula:

∂̂nn′ = 1

2h
(δn′,n+1 − δn′,n−1). (A10)

This means that the term υc(r) in Eq. (68) is no more diagonal
in the coordinate r and it must be replaced by a matrix υc(r, r ′).

The term that leads to off-diagonal terms in channel space
is the Coulomb interaction. It brakes isospin symmetry and
therefore it will be described by the general form υcc′ (r, r ′). In
particular, we will have

VC(1, 2) =
(

1

2
(1 − τ3)

)(1)
α

|r1−r2|
(

1

2
(1 − τ3)

)(2)

(A11)

and the r-dependence can be written as:

α

|r1−r2| =
∑
L

υC(r, r ′)YL(�) × YL(�′) (A12)

with

υC(r, r ′) = 4πα

2L + 1
× rL

<

rL+1
>

, (A13)

and r< and r> are the smaller and the greater of r and r ′. This
leads to a matrix υcc′ (r, r ′) in Eq. (68) as shown in Table VII.

TABLE VII. The structure of the channel matrix υcc′ (r, r ′)
for the Coulomb interaction.

β 1 α β �τ �τ α�τ
β 0 0 0 0 0 0
1 0 + 1

4 υC 0 0 + 1
4 υC 0

α 0 0 − 1
4 υC 0 0 − 1

4 υC

β �τ 0 0 0 0 0 0

�τ 0 + 1
4 υC 0 0 + 1

4 υC 0

α�τ 0 0 − 1
4 υC 0 0 − 1

4 υC
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APPENDIX B: THE CONTINUUM REPRESENTATION FOR
THE GREEN’S FUNCTION

In a nonspectral or continuum approach the relativistic sin-
gle particle Green’s function Gκ (r, r ′; E) obeys the equation:

(E − ĥκ (r))Gκ (r, r ′; E) = δ(r − r ′), (B1)

where ĥκ (r) is the radial Dirac operator of Eq. (33) depending
on the quantum number κ = (lj ). This Green’s function can be
constructed at each energy E from two linearly independent
solutions

|u(r)〉 =
(

fu(r)

gu(r)

)
, |w(r)〉 =

(
fw(r)

gw(r)

)
(B2)

〈u∗(r)| = (fu(r)gu(r)), 〈w∗(r)| = (fw(r) gw(r)) (B3)

of the Dirac equation with the same energy E

(E − ĥκ (r))|u(r)〉 = 0, (E − ĥκ (r))|w(r)〉 = 0, (B4)

but with different boundary conditions. The functions u(r) and
w(r) are normalized in such a way that the Wronskian is equal
to:

W =
∣∣∣∣∣fw(r) fu(r)

gw(r) gu(r)

∣∣∣∣∣ = fw(r)gu(r) − gw(r)fu(r) = 1. (B5)

Of course these scattering solutions depend on the energy
E and on the quantum number κ , i.e., we have |uκ (r, E)〉 and
|wκ (r, E)〉. The Dirac equation in r-space is a two-dimensional
equation and therefore the corresponding single-particle
Green’s function is a 2 × 2 matrix. Using the bracket notation
of Dirac for the two-dimensional spinors and following Ref.
[76] we can express this Green’s function as:

Gκ (r, r ′; E) =
{

|wκ (r; E)〉〈u∗
κ (r ′; E)| for r > r ′

|uκ (r; E)〉〈w∗
κ (r ′; E)| for r < r ′ (B6)

with

Gκ (r ′, r; E) = G�
κ (r, r ′; E). (B7)

The solution uκ (r) is regular at the origin, i.e., following
Ref. [77] we have for E > V + S in the limit r → 0:

u(r) → r

(
jl(kr)

κ
|κ|

E−V −S
k

jl̃(kr)

)
→

( r
(2l+1)!! (kr)l

κ
|κ|

r(E−V −S)
k(2l̃+1)!!

(kr)l̃

)
, (B8)

with k2 = (E − V − S)(E − V + S + 2m) > 0 and jl(z) is a
spherical Bessel function of the first kind. The wave function
wκ (r) represents at large distances for E > 0 an outgoing
wave, i.e., we have for r → ∞

w(r) →
⎛
⎝ rh

(1)
l (kr)

κ
|κ|

ikr
E+2m

h
(1)
l̃

(kr)

⎞
⎠ →

(
1

κ
|κ|

ik
E+2m

)
eikr , (B9)

where h
(1)
l (z) is the spherical Hankel function of the first kind

and for E < 0 an exponentially decaying state, i.e., we have
for r → ∞

w(r) →

⎛
⎜⎝ r

√
2Kr
π

Kl+ 1
2
(Kr)

−Kr
E+2m

√
2Kr
π

Kl̃+ 1
2
(Kr)

⎞
⎟⎠ →

(
1

−K
E+2m

)
e−Kr, (B10)

where K2 = (V − S − E)(E − V + S + 2m) > 0 and jl(z)
and Kl+1/2(z) are modified spherical Bessel functions [118].
For E < 0 the two scattering solutions are both real. This
absence of any imaginary term will eventually give no contri-
bution to the cross section of Eq. (34). We have to keep in mind,
however, that at energies that correspond to eigenenergies of
a bound state, the solutions uκ (r, E) and wκ (r, E) coincide up
to a factor, which means that the Wronskian vanishes at this
energy. This corresponds to a pole in the response function on
the real energy axis. By adding a small imaginary part to the
energy E → E + i� we obtain a sharp peak in the strength
distribution.

APPENDIX C: THE FREE RESPONSE FUNCTION IN
r-SPACE

The reduced free response

R0
cc′ (ω) =

∑
ph

〈h|Q+
c |p〉〈p|Qc′ |h〉

ω − εp + εh

− 〈p|Q+
c |h〉〈h|Qc′ |p〉

ω + εp − εh

(C1)

depends on the energy E and the channel indices c, c′. The
operators Qc given by Eq. (A8) are characterized by the
channel index c = (r,DSLT ). Each single-particle matrix
element of the form 〈p|Qc|h〉 in Eq. (C1) separates into an
angular, an isospin, and a radial part:

〈p|Qc|h〉 = 〈p|τT |h〉〈κp‖ [σSYL]J ‖κh〉〈p|γD|h〉r . (C2)

Because we consider in this article only ph-RPA in the same
nucleus, the particle states have the same isospin as the hole
states and thus the isospin matrix element 〈p|τT |h〉 is simply
a phase ±1.

Considering that this channel operator has a δ function in
the radial coordinate, the radial matrix elements 〈p|γc|h〉r =
〈p(r)|γD|h(r)〉 then depend on r . They are found as sums over
the large and small components in the radial spinors |h(r)〉 and
|p(r)〉 for fixed values of r .

The angular matrix elements depend on the quantum
numbers κ of particle and hole states and, of course, on the
channel quantum numbers S and L. In particular, we find for
S = 0:

〈lj‖YJ ‖l′j ′〉 = 1 + (−)l+l′+J

2

ĵ ĵ ′Ĵ√
4π

(−)j− 1
2

(
j J j ′

− 1
2 0 1

2

)

(C3)

while for S = 1, it is

〈lj‖[σYL]J ‖l′j ′〉

= 1 + (−)l+l′+L

2

ĵ ĵ ′L̂Ĵ√
4π

[
(−)j

′+ 1
2

(
1 L J

0 0 0

)

×
(

j J j ′
1
2 0 − 1

2

)
−

√
2(−)l

′
(

1 L J

−1 0 1

)

×
(

j J j ′

1
2 −1 1

2

)]
. (C4)
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Using for the angular and isospin part the abbreviation

Qc
ph = 〈κp‖ [σSYL]J ‖κh〉〈p|τT |h〉, (C5)

we obtain for the reduced response function of Eq. (57) in
r-space:

R0
cc′ (r, r ′; ω) =

∑
ph

{
Q∗c

phQ
c′
ph

〈h|γ +
c |p〉r〈p|γc′ |h〉r ′

ω − εp + εh

−Q∗c
hpQc′

hp

〈h|γc′ |p〉r ′ 〈p|γ +
c |h〉r

ω + εp − εh

}
(C6)

As in Eq. (58) we extend the sum over p over the full space
and use completeness in the radial wave functions:

R 0
cc′ (r, r ′; ω)

=
∑
hκ

{
Q∗c

κhQ
c′
κh 〈h(r)|γ +

c Gκ (r, r ′; ω + εh)γc′ |h(r ′)〉

+Q∗c
hκQ

c′
hκ〈h(r ′)|γcGκ (r ′, r; −ω + εh)γ +

c′ |h(r)〉}. (C7)

Because the angular matrix elements depend only on the
quantum numbers κ the sum over p is here replaced by a
sum over the quantum numbers κ , which is restricted by the
selection rules of the reduced matrix elements (C5). Having
the exact form of the Green’s function for the static radial
Dirac equation (33), one can finally construct the nonspectral
or continuum reduced response function (61):

R 0
cc′ (rr ′; ω)

=
∑
hκ

{
Q∗c

κhQ
c′
κhγ

c
hw(r; ω + εh)γ c′

uh(r ′; ω + εh)

−Q∗c
hκQ

c′
hκγ

c
hw(r; ω − εh)γ c′

uh(r ′; ω − εh)
}

for r > r ′

=
∑
hκ

{
Q∗c

κhQ
c′
κhγ

c
hu(r; ω + εh)γ c′

wh(r; ω + εh)

−Q∗c
hκQ

c′
hκγ

c
hu(r; ω − εh)γ c′

wh(r ′; ω − εh)
}

for r < r ′

(C8)

where the Dirac matrix elements depend on the coordinate r:

γ c
hw(r; E) = 〈h|γc|w(E)〉r , (C9)

γ c
hu(r; E) = 〈h|γc|u(E)〉r , (C10)

γ c
uh(r; E) = 〈u∗(E)|γc|h〉r , (C11)

γ c
wh(r; E) = 〈w∗(E)|γc|h〉r . (C12)

Using Eq. (B7) we find

R 0
c′c(r ′, r; ω) = R 0

cc′ (r, r ′; ω). (C13)

It becomes clear now that the undeniable advantage of the
nonspectral approach as compared to the spectral one is the
fact that the sum over the unoccupied states (particle states)
is replaced by a sum over the quantum number κ , which is
restricted by the selection rules for the reduced matrix elements
Qc

κh. For each κ , one has to determine only the pairs of the
scattering wave functions |u〉 and |w〉 for the forward and
backward term. In particular the sum over κ does not have
to be extended over the states in the Dirac sea as in the
spectral representation (for details see Ref. [14]). Therefore,
not only the size of the configuration space is significantly
reduced but also, more notably, the particle-hole as well as the
antiparticle-hole basis is taken into account fully and without
any approximation.
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[99] G. Coló, N. Van Giai, P. F. Bortignon, and M. R. Quaglia, Phys.
Lett. B485, 362 (2000).

[100] H. L. Clark, Y.-W. Lui, and D. H. Youngblood, Phys. Rev. C
63, 031301(R) (2001).

024309-18



CONTINUUM RANDOM-PHASE APPROXIMATION FOR . . . PHYSICAL REVIEW C 80, 024309 (2009)

[101] V. M. Dubovic and A. A. Cheschov, Sov. J. Part. Nucl. 5, 318
(1975).

[102] V. M. Dubovic and L. A. Tosunian, Sov. J. Part. Nucl. 14, 504
(1983).

[103] S. I. Bastrukov, S. Misicu, and V. Sushkov, Nucl. Phys. A562,
191 (1993).

[104] S. Misicu, Phys. Rev. C 73, 024301 (2006).
[105] N. V. Giai and H. Sagawa, Nucl. Phys. A371, 1 (1981).
[106] E. R. Marshalek and J. Weneser, Ann. Phys. (NY) 53, 569

(1969).
[107] E. R. Marshalek and J. Weneser, Phys. Rev. C 2, 1682

(1970).
[108] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 57,

R1064 (1998).
[109] G. G. Coló, N. Van Giai, P. R. Bortignon, and M. R. Quaglia,

Phys. Lett. B485, 362 (2000).

[110] S. Shlomo and A. I. Sanzhur, Phys. Rev. C 65, 044310
(2002).

[111] S. Kamerdzhiev, R. J. Liotta, E. Litvinova, and V. I. Tselyaev,
Phys. Rev. C 58, 172 (1998).

[112] K. Hagino and H. Sagawa, Nucl. Phys. A695, 82 (2001).
[113] M. Matsuo, Nucl. Phys. A696, 371 (2001).
[114] E. Khan, N. Sandulescu, M. Grasso, and N. V. Giai, Phys. Rev.

C 66, 024309 (2002).
[115] S. P. Kamerdzhiev, G. Y. Tertychny, and V. I. Tselyaev, Phys.

Part. Nuclei 28, 134 (1997).
[116] S. P. Kamerdzhiev, J. Speth, and G. Y. Tertychny, Phys. Rep.

393, 1 (2004).
[117] E. V. Litvinova and V. I. Tselyaev, Phys. Rev. C 75, 054318

(2007).
[118] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1970).

024309-19


