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Nuclear fission dynamics within a generalized Langevin approach
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Within the generalized (non-Markovian) multidimensional Langevin approach, the time and energy
characteristics of symmetric fission of highly excited heavy nuclei are studied. In two-dimensional space of
the collective deformation parameters, it is considered a nuclear descent from the top of the fission barrier to the
scission point. The distributions of descent times and total kinetic energy of fission fragments are calculated as
functions of memory time, measuring the relative size of memory effects in the collective dynamics. We found
that the peculiarities of the non-Markovian dynamics at fairly large values of the memory time are reflected in
the saturation of the mean time of motion from the saddle to scission with the growth of the strength of memory
effects in the system.
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I. INTRODUCTION

Nuclear large-scale dynamics (nuclear fission, heavy-ion
collisions, etc.) is a good probe for the investigation of
the complex time evolution of finite Fermi systems. The
conceptual question here is how collective modes of motion
appear in a system with many degrees of freedom and how
they interact with all other intrinsic modes. Nuclear collective
dynamics can be studied by using the concept of macroscopic
motion for a few collective degrees of freedom, which are
chosen to describe the gross properties of the nucleus [1–3].
Such approaches are acceptable for the slow collective motion
where the fast intrinsic degrees of freedom exert forces on the
collective variables. The crucial point there is the separation
of the total energy of the system into potential energy,
collective kinetic energy, and excitation energy obtained by
dissipation. Moreover, the dissipation of collective motion
implies fluctuations in the corresponding collective variables,
as follows from the fluctuation-dissipation theorem [4].

Dissipation of the nuclear collective energy reveals itself,
for instance, in the nonzero contribution of the internucle-
onic collisions to the widths of the nuclear giant multipole
resonances. On the other hand, the experimental observation
of the finite variance of the kinetic energy of the fission
fragments gives rise to the fact that fluctuations also have to be
associated with the collective variables. Both the dissipation
and the fluctuations can be described by introducing friction
and random forces, which are related to each other through the
fluctuation-dissipation theorem. In this respect, the Fokker-
Planck or Langevin approaches are suitable for the study of
the nuclear large-scale dynamics (see Refs. [5–7] and refer-
ences therein). In general, basic equations of motion for the
macroscopic parameters, describing the complex dynamics of
many-body systems like nuclei, have non-Markovian structure.
One of the first considerations of memory (non-Markovian)
effects for classical liquids can be found in Ref. [8]. For the
collective dynamics in atomic nuclei, memory effects have
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been investigated earlier within different approaches, such
as the dissipative diabatic model [9–11], the linear response
theory [3,12], and the fluid dynamic approach [13–16]. Thus,
in Refs. [5] and [17], within the one-dimensional generalized
Langevin approach, it was found that memory effects in
collective dynamics enlarge the fission rate and accelerate a
nuclear descent from the fission barrier (see also Ref. [18]).
In this respect, it will be of great importance to measure the
effect of the non-Markovianity of the collective dynamics on
the other nuclear fission characteristics like the mean value and
the dispersion of the total kinetic energy of fission fragments
at infinity. This is the main purpose of the present work. We
study both the saddle-to-scission time distribution and the
total kinetic energy distribution in two-dimensional collective
space.

The plan of the article is as follows. In Sec. II we start
from the phenomenological generalized Langevin equations of
motion for the collective deformation parameters. Section III is
devoted to the numerical determination of the distributions of
descent times and total kinetic energy of the fission fragments.
Summary and conclusions are given in Sec. IV.

II. THE MULTIDIMENSIONAL GENERALIZED
LANGEVIN APPROACH TO COLLECTIVE DYNAMICS

We start our discussion of the non-Markovian aspects
of nuclear large-amplitude collective motion by writing the
generalized Langevin equations of motion in multidimensional
collective space:

q̇i =
∑

j

B−1
ij pj ,

ṗi = −1

2

∑
jk

∂B−1
jk

∂qi

pjpk − ∂Epot

∂qi

(1)

−
∑
jk

∫ t

0
Kij (t − t ′, q, q ′)B−1

jk (q ′)pk(t ′)dt ′ + ξi(t),

i = 1, 2, . . . ,
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which is a natural extension of one-dimensional non-
Markovian Langevin dynamics given in Ref. [19] for the
case of several dynamic variables. Here, q ≡ q1, q2, . . . stand
for the collective deformation parameters and p ≡ p1, p2, . . .

stand for the corresponding conjugate momenta, Epot is the
collective potential energy of deformation and Bij is the
inertia tensor. The noise term ξi in Eq. (1) is a Gaussian
random process whose correlation properties are defined by
the memory kernel Kij of the retarded friction force through
the second fluctuation-dissipation theorem [20]

〈ξi(t)ξj (t ′)〉 = δijKij (t − t ′, q[t], q[t ′])T , (2)

where T is temperature of a nucleus. The model (1)–(2)
describes a non-Markovian Brownian motion of several
collective deformation parameters in a thermal bath formed by
intrinsic nucleonic degrees of freedom of a nuclear many-body
system.

The memory kernel Kij chosen was in the following simple
form:

Kij (t − t ′, q, q ′) = exp

(
−|t − t ′|

τ

)
Zij (q, q ′),

(3)
i, j = 1, 2, . . . ,

where τ is the relaxation time of collective excitations
and Zij (q,q ′) is the non-Markovian generalization of the
deformation-dependent friction tensor. The functional form of
the time decay factor in Eq. (3) was dictated by our previous
microscopic derivations of the time properties of collective
friction given in Refs. [16,21,22]. The parameter τ measures
the strength of the memory effects in collective dynamics.
Thus, in the limit of frequent collisions between nucleons,
τ → 0 (i.e., when the memory effects are relatively weak), we
have a white noise process with

〈ξi(t)ξj (t ′)〉 → δij τ · δ(t − t ′)Zij (q, q)T , τ → 0. (4)

The retarded force in Eqs. (1) becomes a usual Markovian
friction force,

∑
jk

∫ t

0
Kij (t − t ′, q, q ′)B−1

jk (q ′)pk(t ′)dt ′

→ τ ·
∑

j

Zij (q, q)B−1
jk (q)pk(t), τ → 0. (5)

In the opposite rare collision regime, τ → ∞, we get a so-
called blue noise with the correlation function

〈ξi(t)ξj (t ′)〉 → δijZij (q, q ′)T , τ → ∞, (6)

and the memory integral in Eq. (1) gives rise to a conservative
force:∑

jk

∫ t

0
Kij (t − t ′, q, q ′)B−1

jk (q ′)pk(t ′)dt ′

→
∑
jkl

∫ q[t]

q[t=0]
Zij (q, q ′)B−1

jk (q ′)Bkl(q
′)dq ′

l , τ → ∞.

(7)

In fact, the friction in the non-Markovian system (1)–(3) is a
non-monotonic function of the relaxation (memory) time τ . It
dissappears both for the extremely small times τ (when the

friction coefficient ∼τ ) and the fairly large values of τ (when
the friction coefficient ∼1/τ ).

For practical applications of the model (1)–(3), we rewrite
the basic equations of motion as follows

q̇i =
∑

j

B−1
ij pj ,

ṗi = −1

2

∑
jk

∂B−1
jk

∂qi

pjpk − ∂Epot

∂qi

− Ri(t), (8)

Ṙi = −Ri

τ
+

∑
jk

Zij (q, q)B−1
jk (q)pk(t) − αi(t),

with Ri(t = 0) = 0 and, where αi is a white Gaussian noise,
with

〈αi(t)αj (t ′)〉 = 2δijZij (q, q)T δ(t − t ′). (9)

III. NUMERICAL CALCULATIONS

The model (8)–(9) was applied for the study of symmetric
fission of highly excited heavy nuclei. The space shape of the
nuclei was obtained by rotation of some profile function Y 2(z)
around the z axis. It is considered a two-parametric family of
the Lorentz shapes [2]:

Y 2(z) = (
z2 − ζ 2

0

)(
z2 + ζ 2

2

)/
Q, (10)

where the multiplier Q = −ζ 3
0 (ζ 2

0 /5 + ζ 2
2 ) guarantees the

conservation of the nuclear volume. Here, all quantities of
the length dimension are expressed in the radius R0 of the
spherical equal-volume nucleus. The parameter ζ0 in Eq. (10)
defines an elongation of the figure, while the parameter ζ2 is
responsible for the neck of the figure. Thus, in the case of
ζ2 = ∞ we have a spheroidal shape and for ∞ < ζ2 < 0 the
neck appears.

The equations of motion (8)–(9) were solved numerically
with the help of the simplest Euler method with the initial
conditions corresponding to the saddle-point deformation and
the initial kinetic energy Ekin,0 = 1 MeV (initial neck velocity
ζ̇2 = 0). The numerical calculations were performed for the
symmetric fission of a nucleus 236U at the temperature T =
2 MeV. We define the scission line from the condition of the
instability of the nuclear shape with respect to the variations
of the neck radius:

∂2Epot(q)

∂ρ2
neck

= 0, (11)

where ρneck = ζ2/
√
ζ0(ζ 2

0 /5 + ζ 2
2 ) is the neck radius. The

collective potential energies of deformation Epot(q) were taken
from Refs. [2] and [23]. The inertia Bij (q) and friction Zij (q)
tensors were determined within the hydrodynamical model
[23,24].

A. Saddle-to-scission time distribution

First, we considered a time for the motion of a nucleus
from the top of the fission barrier to the scission point (11).
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FIG. 1. Typical non-Markovian deterministic (i.e., in the absence
of the random force) (dashed line) and stochastic (solid line) paths of
the system (1)–(3) are shown in terms of the neck radius ρneck(ζ0, ζ2)
(10) of a highly excited 236U for the memory time τ = 2 × 10−23 s.
The horizontal line is the value of the neck radius, (ρdet

neck)scis,
determined from the scission condition (11) for the deterministic
trajectory of the system.

Our main goal here is to measure the effect of random force
on the non-Markovian dynamics (8)–(9). In practice, we used
a bit different condition for the scission. Thus, we first defined
the deterministic (i.e., in the absence of the stochastic force)
path of the system and found the value of the neck radius of
the nucleus at the scission point (11), (ρdet

neck)scis. Then, we ran a
total number of 2 × 104 stochastic trajectories ζ0(t), ζ2(t) and
each of them was stopped if

ρneck[ζ0(t), ζ2(t)] = (
ρdet

neck

)
scis. (12)

In Fig. 1, we show a typical deterministic (dashed line) and
stochastic (solid line) trajectory of the system (8)–(9) in terms
of the neck radius ρneck(t). The horizontal line in the figure
is the scission value of the neck radius (ρdet

neck)scis, determined
from the deterministic motion of the system. A distribution
p of the scission events tsc at two values of the memory
time τ are computed in Fig. 2. In the first case, τ1 = 2 ×
10−23 s, the memory effects in the system are quite weak, while
in the second case, τ2 = 8 × 10−23 s, they are fairly strong. The

FIG. 2. A probability density histogram p of the times tsc

when the stochastic trajectories ζ0(t), ζ2(t) hit the scission line
ρneck(ζ0, ζ2) = (ρdet

neck)scis, where (ρdet
neck)scis is the deterministic value

of the neck radius. The dashed histogram is obtained for the memory
time τ1 = 2 × 10−23 s (when the memory effects in the system are
quite weak) and the solid histogram corresponds to the memory
time τ2 = 8 × 10−23 s (when the memory effects are fairly strong).
The corresponding times of descent in the absence of the random
force are shown by small vertical arrows.

FIG. 3. The mean descent time 〈tsc〉 for the non-Markovian
deterministic (dashed line) and stochastic (solid line) dynamics
(1)–(3) is plotted as a function of the strength of memory effects τ .
The infinite growth of the mean time of descent for the deterministic
dynamics is due to a “blocking” of the system, i.e., when the
nuclear system undergoes characteristic oscillations in the vicinity
of saddle point because of the additional elastic force arising from
the time integral in Eq. (1) (see also Ref. [16]). In the case of
non-Markovian Langevin dynamics, the mean descent time 〈tsc〉
saturates at large values of memory time τ because the system
can overcome the blocking through the thermal random jump of
the collective deformation parameters ζ0, ζ2 (see the Appendix).

vertical arrows in Fig. 2 represent the corresponding descent
times for the deterministic motion.

We see that the descent times’ histograms p(tsc) are
shifted to the left, compared to the deterministic estimations
of the descent times tsc. This fact may be explained by
assuming a “stochastic acceleration” of the nuclear descent.
The “acceleration” effect was earlier predicted in Ref. [18].
The scission events become more spread with the size of
memory effects τ . The fact that the non-Markovian collective
dynamics occurs faster in a stochastic environment is justified
by calculating the mean time of descent, 〈tsc〉, shown in Fig. 3.
The random force speeds up the nuclear motion by “shaking
loose” a system and, as a consequence of that, giving rise to
a smaller time of motion between two given points, compared
to the corresponding time for the deterministic path of the
system.

Remarkably, in the region of the small memory times τ , the
mean descent time for both the deterministic and the stochastic
non-Markovian dynamics is practically the same, since at small
memory times, τ → 0, the contribution from the random force
is negligibly small [see Eq. (5) and comment to it]. In the
opposite limit, τ → ∞, the average time of the motion from
the fission barrier grows with the size of the memory effects
τ , because of the appearance of a blocking conservative force
(7) preventing the nuclear descent. As seen from Fig. 3, such a
blocking of the non-Markovian motion is not observed when
the motion takes place in a stochastic environment and this is
reflected in the saturation of the mean descent time 〈tsc〉 with
τ ; see the explanation of this fact in the Appendix.

B. Energy distributions

We also measured the features of the non-Markovian
Langevin collective dynamics by calculating a Coulomb
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interaction energy at the scission, ECoul, and a translation
kinetic energy of the fission fragments at infinity, TKE.

The TKE is given by a sum of the mean values of the
Coulomb interaction energy at the scission, 〈ECoul〉, and the
pre-scission kinetic energy 〈Ekin,ps〉,

TKE = 〈ECoul〉 + 〈Ekin,ps〉. (13)

At the scission point, the fissioning shape of the nucleus is
replaced by two equal-mass spheroids for which the distance
between the centers of mass, d, is the same as the distance
between the two halves of the fissioning nucleus:

d = 5

4
ζ0

ζ 2
0 + 3ζ 2

2

ζ 2
0 + 5ζ 2

2

∣∣∣∣
scis

. (14)

The corresponding velocity ḋ may be obtained by differentia-
tion of the Eq. (14) with respect to time. The elongation c of
each of the separated spheroids is defined through

2c + d = 2ζ0,scis, (15)

where ζ0,scis is the scission value of the parameter ζ0. With
the help of Eqs. (14) and (15), one can evaluate the Coulomb
interaction energy ECoul (see Ref. [2]) and the pre-scission
kinetic energy Ekin,ps.

In Fig. 4, we plotted the mean value of the Coulomb
interaction energy at the scission 〈ECoul〉 as a function of the
memory time τ . The corresponding deterministic calculation
is shown by a dashed line. Comparing the deterministic and
stochastic results for 〈ECoul〉, one may conclude that the faster
stochastic descent (see Fig. 3) leads to more compact scission
configurations of the fissioning nucleus and the Coulomb
interaction energy 〈ECoul〉 than in the deterministic case. As
in our previous article [16], we point out that the usage of
the two-spheroid parametrization (14)–(15) underestimates
the value of the interaction Coulomb energy at the scission
ECoul on approximately 5 MeV (for the nucleus 236U) obtained
within more sophisticated calculations of ECoul [24].

FIG. 4. The mean value of the Coulomb interaction energy of
the fission fragments at the scission 〈ECoul〉 for the symmetric fission
of the nucleus 236U at the temperature T = 2 MeV. The dashed line
represents the calculation of the non-Markovian dynamics in the
absence of the random force. The larger values of the Coulomb energy,
obtained within the non-Markovian Langevin calculation, are a result
of the nuclear descent (see Fig. 3) being faster in the presence of
the random force than in the absence of it. The faster a nucleus
reaches a scission, the more compact its fissioning configuration is
and, consequently, the larger the Coulomb interaction energy of the
fission fragments at the scission 〈ECoul〉.

FIG. 5. The same as in Fig. 4 but for the translation kinetic energy
of the fission fragments at infinity TKE (13). The arrow shows the
experimental value of TKE taken from Refs. [25] and [26].

The values of the translation kinetic energy of the fission
fragments at infinity are given in Fig. 5. The calculation of
the TKE in the absence of the random force is plotted with a
dashed line. The arrow shows the experimental value of the
TKE [25,26]. In view of the last comment on Fig. 4, in the case
of the deterministic motion of the system, a good agreement
with the experimental data is obtained at the memory time
τ det ≈ 8 × 10−23 s. The stochastic non-Markovian dynamics
implies, at least, larger sizes of memory effects, τ stoch > τ det.

We also calculated the variance σ 2 of the fission fragments’
energy distribution. The corresponding results are presented
in Fig. 6. The arrow in Fig. 6 indicates experimental data
for the variance taken from Refs. [25–27]. The initial growth
of the energy variance σ 2 originates from the fact that, at
small values of the memory time τ , the time-retarded force in
Eq. (1) is well approximated by usual (Markovian) friction
force with the friction coefficient growing linearly with τ

[see Eq. (5)]. At large values of the memory time τ , the
friction (dissipative) part of the retarded force drops out while
the conservative (time-reversible) part amplifies giving rise
to the increase of the stiffness of the system. These features
of the non-Markovian collective dynamics were discussed in

FIG. 6. The same as in Fig. 4 but for the variance σ 2 of the
translational kinetic energy distribution of the fission fragments at
infinity. The experimental value of the energy variance σ 2 [25–27] is
shown by the arrow. The initial growth of the energy variance at small
values of the memory time τ is due to the fact that the time-retarded
force in the equations of motion for the collective parameters (1)
is reduced to the usual friction force with the friction coefficient
∼τ at τ → 0. The saturation of the variance σ 2 at large values of
memory time τ manifests the existence of the thermal fluctuations in
the non-Markovian system (1)–(3) at any strength of memory effect
τ (see also Appendix).
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detail for the deterministic descent from the fission barrier
in Ref. [16]. Here, we found that they reveal themselves in
the subsequent decrease of the variance σ 2 of the fission
fragments’ energy distribution under the stochastic modeling
of the nuclear descent; see the behavior of the variance at quite
big strengths τ of the memory effects in the system (1)–(3). The
following fact must be pointed out. We calculated the energy
variance only for the symmetric fission of 236U. Usually, the
experimental data for the variance (as well as for the mean
value) of the total kinetic energy of the fission fragments are
given as an average over the variances of all observed pairs
of fragments. In this respect, the value 125 MeV2 exceeds an
experimentally observed value of the energy variance σ 2 for
a specific symmetric fission channel. On the other hand, the
relative yield of the fission fragments with equal massses grows
with the increase of the initial nuclear temperature T because
of the hindrance of the shell effects. Thus, at temperatures of
T � 2 MeV, the fission of heavy nuclei is almost symmetric
and this enables us to expect that the value 125 MeV2 relatively
well reproduces the experimental value of the energy variance
for the fission fragments with equal masses.

IV. SUMMARY AND CONCLUSIONS

The stochastic non-Markovian approach to fission dynam-
ics based on the two-dimensional generalized Langevin equa-
tions has been used to measure the memory effects in nuclear
large-amplitude collective motion. The time retardation of the
friction term in the Langevin equations of motion (1) chosen
was in the simple exponential form (3), where the relaxation
time τ is a parameter defining the relative size of memory
effects.

The model description of the nuclear non-Markovian
motion [Eqs. (1)–(3)] was applied to study the fission dynamics
of a nucleus 236U from the top of the fission barrier to a
scission (11). The collective deformation parameters were
taken as parameters of the two-dimensional Lorentz family
of nuclear shapes (10). By calculating the distribution of the
descent times (see Figs. 2 and 3), we found that the random
force accelerates significantly the descent from the barrier
compared to the corresponding non-Markovian deterministic
motion. The acceleration effect increases with the strength
of memory effects in the system τ . Is is important to note
that the mean descent time of the deterministic motion rises
up monotonically with the memory time as a result of the
appearance of additional conservative force from the memory
integral in the equations of motion (1) (see Eq. (7) and
Ref. [16]). The situation is principally different for the non-
Markovian Langevin collective dynamics, i.e., when the time
evolution of the nuclear deformation parameters is subject to
thermal fluctuations, which leads to the saturation of the mean
descent time 〈tsc〉 at fairly large values of the memory time τ

(see Fig. 3).
To investigate quantitatively the peculiarities of the non-

Markovian Langevin collective motion, we calculated the
first two moments of the energy distribution of the fission
fragments. By comparing the calculated value of the mean
kinetic energy TKE to experimental data [25,26], we estimated

the memory time and found that τ stoch � 8 × 10−23 s, implying
the presence of fairly strong memory effects in the system [16].
The computed variance σ 2 of the energy distribution at the
value of memory time τ stoch ∼ 8 × 10−23 s was found to lie
relatively close to the experimentally observed variance
σ 2

exp ≈ 125 MeV2 [25–27] (see Fig. 6 and our comment on the
experimental determination of the variance σ 2 for symmetric
fission of heavy nuclei).

APPENDIX

To demonstrate the presence of the thermal fluctuations
in the collective dynamics (8)–(3) in the regime of infinitely
strong memory effects, τ → ∞, we start from a schematic
one-dimensional description of large-amplitude collective
motion as was done in Ref. [28]. We introduce a single
collective deformation parameter q and write a linearized
Langevin equation of motion for q in the following form:

Bq̈ = k(q − q0) − k̄

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′ + ξ (t),

(A1)

where q0 is the initial value of the collective parameter, k is
the drift coefficient, k̄ is the model coefficient, and ξ (t) is
the Ornstein-Uhlenbck stochastic process with the correlation
function

〈ξ (t)ξ (t ′)〉 = T k̄exp

(
−|t − t ′|

τ

)
. (A2)

The model description (A1) of the nuclear collective motion
allows us to have an analytical solution close to the time
evolution of the collective parameter q [28],

q(t) = q0 + B(t)v0 +
∫ t

0
B(t − t ′)ξ (t ′)dt ′, (A3)

with

B(t) = Cκe
κt + Aωe−γ tsin(ωt) + Bωe−γ tcos(ωt). (A4)

Here, the constants Aω,Bω, and Cκ are given by

Cκ = κ + a

(κ + γ )2 + ω2
, Aω = − (κ + γ )(−γ + a) − ω2

ω[(κ + γ )2 + ω2]
,

Bω = − κ + a

(κ + γ )2 + ω2
, (A5)

where

κ = A1 + B1 − a/3, γ = (A1 + B1)/2 + a/3,

ω =
√

3(A1 − B1)/2,

with

A1 = [−((a/3)3 − ab/6 + c/2)

+
√

((−a2/9 + b/3)3 + ((a/3)3 − ab/6 + c/2)2)]1/3,

B1 = [−((a/3)3 − ab/6 + c/2)

−
√

((−a2/9 + b/3)3 + ((a/3)3 − ab/6 + c/2)2)]1/3,

and

a = 1/τ, b = −k + k̄, c = −k/τ.
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The parameter κ determines the drift of the system from the
top of the fission barrier, γ and ω define, correspondingly, the
damping and frequency of the characteristic shape oscillations
of a nucleus appearing at fairly large values of memory time τ

(see Ref. [16]). With the growth of memory effects, the system
in the absence of the stochastic term in Eq. (A1) becomes
more and more blocked because of the additional elastic force
appearing from the time integral. In the limit τ → ∞, the
system undergoes pure (κ = 0) undamped (γ = 0) oscillations
given by

qdet(t) = q0 + sin(ωt)

ω
· v0. (A6)

The amplitude of these oscillations is quite small such that
the system is blocked and can not reach a scission point, qscis,
qdet(t) 
 qscis.

If the collective dynamics is affected by the random force,
described in terms of the Ornstein-Uhlenbeck process (A1)
and (A2), the thermal fluctuation part, qstoch, always presents
in the collective deformation’s time evolution even in the limit
of infinitely strong memory effects, τ → ∞,

qstoch = 1

ω

∫ t

0
sin(ω(t − t ′))ξ (t ′)dt ′. (A7)

Therefore, one can claim that the non-Markovian stochastic
dynamics (A1) and (A2) provides reaching of the scission for
finite times at any size of memory effects τ . This feature of
the generalized Langevin motion shows up in the saturation
of the mean descent times 〈tsc〉 at the large values of memory
times τ seen in Fig. 3. Also, this feature would imply nonzero
values of the dispersions of dynamical variables as can be seen
from Fig. 6 for the variance of the energy distribution of fission
fragments.
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[9] S. Ayik and W. Nörenberg, Z. Phys. A 309, 121 (1982).
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