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Wigner energy and shell gaps in two-nucleon separation energies
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Two-nucleon separation energies are differences of binding energies. They provide important information on
the relative stability of nuclei and, in particular, on shell gaps. In this work, the behavior of the decrements
(change of slope) of two-nucleon separation energies has been studied. It has been shown that the bulk of this
decrement at a shell-gap consists mainly of twice the difference of two effective single particle energies, plus
a pairing correction. The decrement of the two-nucleon separation energies has a maximum (spike) for N = Z

nuclei. A comparison with values calculated by using a seniority binding energy formula shows that the spike is
due to the Wigner energy. The evolution with nuclear mass of the isospin dependence of the Wigner energy is
discussed.
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I. INTRODUCTION

Binding energies of atomic nuclei are fundamental for
studying nuclear properties, such as two-body interactions.
For instance, the recent advent of radioactive isotope beams
has expanded regions of nuclei for which binding energies
have been measured, and magnitudes of shell gaps and of
pairing energies in nuclei far from the stability line have
been extensively discussed [1]. In deriving such quantities,
differentiation of binding energies is often employed.

For instance, the single-neutron separation energy is the
derivative with respect to the neutron number (with a discrete
increment)

Sn(N,Z) = B(N,Z) − B(N − 1,Z), (1)

where B(N,Z) is the positive binding energy of a nucleus with
N neutrons and Z protons. Sn expresses the energy required
to remove a neutron from the nucleus. The single-proton
separation energy Sp is similarly defined. In an analogous
way, the two-nucleon separation energies represent twice the
derivatives with respect to N or Z, denoted by S2n and S2p,
respectively.

Experimental values of the single separation energies Sn, Sp

and double separation energies S2n, S2p can be found in [2].
If we look, for example, at the S2n(N,Z) curves shown there,
we notice that the two-neutron separation energy generally
decreases with increasing N , reflecting the symmetry energy
and the shell filling, while at certain values of N the slope of
the curve changes sharply. Therefore it becomes interesting
to examine the decrements of the separation energies (DSE),
defined as

�S2n(N,Z) = S2n(N,Z) − S2n(N + 2,Z), (2)

�S2p(N,Z) = S2p(N,Z) − S2p(N,Z + 2) (3)

for neutrons and protons, respectively [1,3,4]. �S2n(N,Z) and
�S2p(N,Z) represent second derivatives with respect to N or
Z, respectively. Although single-nucleon separation energies
can be used for the same purpose, we will concentrate on
properties of two-nucleon separation energies, which display

a smoother N,Z dependence, being relatively free of pairing
effects. The DSE indicates the amount by which the last
neutrons become less bound as a pair of neutrons is added
to the nucleus.

If we plot �S2n and �S2p as functions of N and Z, we
notice sharp maxima (up to 10 MeV) at magic numbers [3].
The reduction in binding of the last neutron becomes much
larger when a major shell fills, forcing further neutrons to enter
higher-energy (less bound) orbitals. Moreover, if one looks at
such a plot, another feature appears, namely that the values
of �S2n (�S2p) and other linear combinations of binding
energies, are quite large for even-even N = Z nuclei [1,5–7].
These spikes were attributed to the Wigner energy [8] or, more
generally, to T = 0 interactions.

The main aim of the present work is to study the origin
of the spikes observed for �S2n and �S2p in N = Z nuclei.
For this purpose, we will use a seniority-based mass formula
for the binding energies, and we will consider only even-even
nuclei. The results for the sd and f7/2-shells will be discussed.

Before concentrating on the Wigner energy, we will
examine a few important properties of the separation energies,
including their behavior at shell closures. A convenient
definition of a shell gap will be proposed.

II. PROPERTIES OF SEPARATION ENERGIES

A. Relations between separation energies

The two-neutron separation energy

S2n(N,Z) = B(N,Z) − B(N − 2,Z) (4)

can be rewritten, with the aid of Eq. (1), in the form

S2n(N,Z) = Sn(N,Z) + Sn(N − 1,Z). (5)

Parallel results hold for protons, here and throughout. The
difference �S2n(N,Z) [see Eq. (2)] can be decomposed into
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four single-neutron separation energies

�S2n(N,Z) = Sn(N,Z) + Sn(N − 1,Z)

− Sn(N + 2,Z) − Sn(N + 1,Z). (6)

Another important linear combination of binding energies
is the pairing energy Pn. We will use the simple “three-nuclei”
definition of the pairing energy, which is taken to be the
difference between the gain in binding energy on adding a pair
of neutrons and twice the gain in binding energy on adding a
single neutron. So

Pn(N + 2,Z) = B(N + 2,Z) − B(N,Z)

− 2[B(N + 1,Z) − B(N,Z)], (7)

Pn(N + 2,Z) = B(N + 2,Z) + B(N,Z) − 2B(N + 1,Z)

(8)

which is equivalent to

Pn(N,Z) = Sn(N,Z) − Sn(N − 1,Z). (9)

The following relation can be deduced from Eqs. (5) and (9):

S2n(N,Z) = 2Sn(N,Z) − Pn(N,Z). (10)

In analogy to the two-neutron DSE of Eq. (2), let us
introduce the difference of two single-neutron separation
energies

�Sn(N,Z) = Sn(N,Z) − Sn(N + 2,Z) (11)

and the difference of two pairing energies

�Pn(N,Z) = Pn(N + 2,Z) − Pn(N,Z). (12)

(Note the order of the arguments in the last two equations.)
The relation

�S2n(N,Z) = 2�Sn(N,Z) + �Pn(N,Z) (13)

can be deduced from Eqs. (2), (11), and (12). It is a model
independent identity, following directly from the definitions.

B. Shell gaps

How can one define a shell gap? Defining it as the difference
of single particle energies (SPE) delimiting the gap is not
acceptable, if only because there is no unique definition
of the SPE. They are often defined as the eigenvalues of
a single-particle Hamiltonian which contains a realistic or
just convenient one-particle potential, such as the harmonic
oscillator or the Woods-Saxon potentials [9]. Single particle
energies could be directly extracted from excitation energies,
but only in particular cases, e.g., for a doubly magic core plus
one particle, and even then it is open to argument whether or
not they should be weighted by spectroscopic factors. If other
valence particles are added, this method need no longer work.
In many cases, SPE have been treated as free parameters, thus
avoiding the requirement of a physical definition.

In recent years, the concept of effective single particle
energy (ESPE) has been introduced [10,11]. In shell-model
language, the ESPE contains a bare single particle energy
(arising from the interaction of a valence nucleon with the
closed doubly-magic core) as well as the effect of interactions

TABLE I. �Pn = �S2n − 2�Sn for 48Ca and 208Pb in MeV.

Nucl. �S2n �Sn �Pn

48Ca 5.723 3.593 −1.463
208Pb 4.984 2.183 0.618

with the other valence nucleons. It can be taken to be the change
in the binding energy of the nucleus upon introducing a single
valence nucleon, and as such it is equal to the separation
energy of a nucleon occupying the single particle level, with
opposite sign. In this way, we deal with a definition which
is directly connected to an observable. It is the analog of the
ionization energy of an electron but it is a negative number.
The theoretical definition of the ESPE depends on both the
SPE and the matrix elements of the two-body interactions, in
such a way that the connection to experiment mentioned above
is respected.

Now, we can grasp the physical meaning of Eq. (13). It
tells us that the DSE �S2n is equal to twice the difference
of two ESPE, plus a pairing correction. One may ask how
important is the latter. As we can see in Table I, the pairing
correction represents 26% of the DSE for 48Ca and 12% for
208Pb. This means that the bulk of the DSE comes from twice
the difference of the two effective single particle energies.

We note that, as a major shell is filled, each addition of a
pair of neutrons leads to a reduction in the neutron separation
energy and hence to a higher ESPE. This change in ESPE,
measured by �Sn, is roughly constant within a shell, assuming
no major changes in the pairing energy. At the magic numbers,
where the major shell is filled, the next ESPE (for N + 2
neutrons) rises above the shell gap, producing large values
for �Sn and �S2n. This accounts for the spikes in �S2n at
magic numbers. The DSE value at a magic number is, up to
pairing, twice the difference in ESPE of the levels delimiting
the shell gap. Therefore, it is natural to define the width of the
shell gap as the difference of these two ESPE [10]. It may be
approximated by half the DSE at magic numbers.

III. WIGNER ENERGY

A. Seniority binding energy formula

A proton-neutron seniority formula for the binding energy
of the ground state (g.s.) [12–14] will be used, namely,

B(jn; g.s.) = B(n = 0) + nC + n(n − 1)

2
α

+β

[
T (T + 1) − 3

4
n

]
+ γ

⌊n

2

⌋
+ E′

Coul. (14)

B(jn; g.s.) is the ground state binding energy of a nucleus with
n valence nucleons (both neutrons and protons) in a single-j
subshell, with isospin T and lowest seniority. B(n = 0) is the
binding energy of the doubly magic core, which has N = Z

and an isospin T = 0. The Wigner term is βT . � n
2 � is the largest

integer smaller than or equal to n
2 . The term in γ represents the

pairing energy. The number of J = 0, T = 1 valence pairs in
the ground state of an even-even nucleus is n/2. E′

Coul is the
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Coulomb energy, from which the Coulomb energy of the core
has been subtracted. Instead of Z and N , a nucleus is specified
by n and Tz, with n the total number of valence nucleons and
Tz = (Z − N )/2.

The coefficients C, α, β, and γ are free parameters which
have been fitted to experimental binding energies for the sd-
shell [13]. In order to check the exact form of the isospin
dependence, T (T + 1) was replaced in the present work by
T (T + w) in the calculation of �S2n (see Sec. III C). The free
parameter w has been introduced by Zeldes [14].

The initial calculation in [13] was carried out for j = 3/2
in the sd-shell. Although Eq. (14) has been derived for the
single-j case, and with w = 1, its successful application to the
g.s. of nuclei between 28Si and 36Ar shows that it may be a good
approximation also in the case of configuration mixing. We
will assume that T = |Z − N |/2. In particular, in even-even
N = Z nuclei T (g.s.) = 0. A similar equation, based on the
notion of generalized seniority, has been successfully used [15]
for describing the binding energy of a semimagic nucleus.

The presence of a term in |Z − N | leads to a singularity of
the binding energy due to the fact that the derivative of this
absolute value with respect to Z or N is not continuous at
N = Z. This is also the origin of the “cusp” of the binding
energy of N = Z nuclei described in [1].

If we introduce the binding energies from Eq. (14) [with
T (T + 1) replaced by T (T + w)] into Eq. (4) we obtain

S2n = B(n, T ) − B(n − 2, T ′)
= 2C + α(2n − 3) + γ + δECoul

+ β
[
T (T + w) − T ′(T ′ + w) − 3

2

]
(15)

with

δECoul(2n) = −0.717Z2

(
1

A1/3
− 1

(A − 2)1/3

)
(16)

in MeV. T and T ′ are the isospins of the nuclei (N,Z)
and (N − 2, Z), respectively. The core contribution to the
Coulomb energy has vanished following the subtraction. The
Wigner energy (WE) is equal to −βT w. We can now use
Eq. (15) for calculating �S2n(N,Z) according to Eq. (2).
�S2p can be calculated in a similar way; only the Coulomb
correction will be different, namely,

δECoul(2p) = −0.717

(
Z2

A1/3
− (Z − 2)2

(A − 2)1/3

)
. (17)

The decrement of the separation energy (DSE) can be
expressed in an analytical form

�S2n = −4α − 2β(1 + wδNZ), (18)

up to the Coulomb correction. The single-neutron DSE is

�Sn = −2α − β(1 + wδNZ), (19)

again up to the Coulomb correction. If the ground states of the
(N,Z) and (N + 2,Z) nuclei arise from filling the same shell,

�S2n(N,Z) = 2�Sn(N,Z). (20)

This result is compatible with the identity, Eq. (13), since
the seniority formula, together with Eq. (12), implies
�Pn(N,Z) = 0.

B. Role of parameters

Before seeing the results of the calculation, it will be
interesting to identify the roles played by different parameters.
Since �S2n and �S2p represent second derivatives (with
finite increments), the terms linear in n in Eq. (5), as well
as the constant ones, will not play any role. Therefore, only
the two-body and isospin terms will be relevant. Moreover, we
should not forget the Coulomb corrections.

The simple analytical equation (18) shows that �S2n or
�S2p is approximately constant in an isotope (or isotone) se-
ries, with the exception of the N = Z nucleus, which displays
a maximum. The height of the constant baseline, which will
be clearly seen on the figures, is a linear combination of the
parameters α and β, i.e., the baseline comes from the two-body
and T -quadratic terms. The term linear in T , i.e., the WE does
not play any role.

On the other hand, in the N = Z case, �S2n is higher than
the baseline by the amount −2wβ (β < 0). This increase is
caused only by the term linear in T , i.e., by the WE. Of course,
the same considerations are valid for �S2p.

Moreover, the heights of the baseline and of the spike are the
same for all isotope (isotone) series within the validity limits
of the parameter set. Of course, there are small differences
caused by the Coulomb correction.

There are more elaborate formulas for the WE such as,
e.g., eq. (20) of [16]. In the case of even-even nuclei, the
latter is reduced to a term proportional to |N − Z|. The WE
has a weak mass dependence. Our results show that the mass
dependence can be neglected within the limits covered by a
set of parameters of Eq. (14).

The role of the Coulomb correction cannot be described
in simple terms, but the calculation shows that it represents a
relatively small correction, albeit not negligible, especially for
�S2p.

C. Results

In order to extract values of the Wigner energy parameter
w from the decrements of two-nucleon separation energies,
Eq. (14) was first fitted to all measured masses (as listed in
Ref. [2]) in the sd shell and, separately, in the f7/2 shell. This
fit was performed with a T (T + w) isospin dependence, after
first correcting the binding energies for Coulomb effects and
subtracting the Coulomb-corrected measured binding energy
of the core nucleus 16O or 40Ca, respectively, and produced the
parameter values listed in Table II. Here w is dimensionless,
while all other parameters are in MeV.

The associated rms deviations of the fit were 2.976 MeV
for 123 data points in the sd-shell and 1.549 MeV for 60 data
points in the f7/2-shell. This should be compared to the fitted
data, which range up to almost 300 MeV. It is noteworthy that,
in these “global” fits, which included both odd and even N and
Z,w differs from zero by 4 − 5σ and from w = 1 by about
2.5σ .

Next, the two-nucleon separation energies S2n and S2p listed
in Ref. [2] were corrected for Coulomb energy and used
to generate Coulomb-corrected decrements of two-nucleon
separation energies for even-even nuclei in the sd and f7/2-
shells. For each even N from N = 10 to N = 18 in the sd
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TABLE II. Parameters of the binding energy formula.

Shell C α β γ w

sd 7.692(555) 0.114(12) −2.065(155) 2.697(1055) 1.959(364)
f7/2 10.059(451) 0.159(20) −1.069(174) 1.692(791) 3.073(773)

shell, �S2n for isotope chains for even Z in the same 10 to
18 range were fitted to Eq. (18), producing values for the
constant background −4α − 2β and for the Wigner “spike”
−2βw (see Fig. 1). The latter was divided by −2β, using
the β value obtained in the full binding energy fit, to obtain
a value of w for each even N involved. The corresponding
procedure produced values of w for each even Z in the relevant
range from fits of �S2p to isotone chains for even N . (See
Fig. 2.) The same process was repeated for the f7/2-shell. (See
Figs. 3 and 4.) The standard error in w for each isotope or
isotone chain included the statistical error of the fit and the fit
error in −2β, in quadrature.

The ten values of w obtained in the sd-shell have an average
value of 1.46, with a standard deviation of 0.59, and individual
standard errors of roughly 30%. A few individual fits have
rather small w values, generally with large standard errors.
Those with standard errors of 40% or less differ from zero
by roughly 3–6σ and from w = 1 by roughly 1–2σ . When
weighted with the inverse squares of their standard errors,
these 10 w values have a weighted mean of 〈w〉 = 1.65(12).
Note that the weighted mean is larger than the unweighted
mean because the smaller values of w tend to have larger
standard errors.

The four values of w obtained in the f7/2-shell have an
average value of 1.68, with a standard deviation of 0.17, and
individual standard errors of about 35%. They differ from
zero by some 3σ and from w = 1 by roughly 1–1.5σ . When
weighted with the inverse squares of their standard errors,
these four w values have a weighted mean of 〈w〉 = 1.64(28).

The theoretical curves in the figures displayed here were
calculated in each shell using fixed values of w and of
the constant background. Both �S2n and �S2p of nuclei in
the sd-shell (Figs. 1 and 2) were calculated with the same value
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∆
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FIG. 1. (Color online) �S2n for the sd-shell. Dots: experimental
data; continuous line: calculation. The value w = 1.46 has been used
for all nuclei. Data for N = Z nuclei are shown in red.

w = 1.46. The rms deviation of the calculated points from the
experimental data is 1.26 MeV. The value w = 1.68 was used
for the f7/2-shell (Figs. 3 and 4), with an rms deviation of
0.34 MeV. Most experimental values of �S2n in the sd-shell
are higher than the calculated ones for N = 14. This is
probably due to the closure of the d5/2-subshell.

It may be noted that the Coulomb correction to S2n is about
1 MeV, the Coulomb correction to �S2n about 0.1 MeV, in the
sd-shell. The corresponding numbers for S2p and �S2p are
11.5 MeV and 1.5 MeV, respectively. There is little variation
in the Coulomb correction to �S2n or �S2p across the shell.

Despite the variability of the individual w values and their
sometimes sizable standard errors, the overall pattern seems
reasonably clear. There is a systematic Wigner effect, differing
from zero by several σ but not strongly incompatible with
w = 1, in both the sd- and the f7/2-shells.

D. Isospin dependence

In both the sd and f7/2 shells the expression T (T + 1)
represents a rough approximation to the isospin dependence
of Eq. (14). As a matter of fact, due to the appearance at N = Z

of a spike above the baseline, the DSE is a sensitive indicator
of the Wigner energy.

The T (T + 1) isospin dependence in Eq. (14) reflects
the isospin SU(2) symmetry. However, if we imagine a
dynamic symmetry which starts from the Wigner SU(4)
spin-isospin symmetry [8,13], and also includes an SU(2)
isospin symmetry, we may expect a linear combination of
T (T + 1) and T (T + 4) [17]. Depending on the relative sizes
and signs of the coefficients of this linear combination, the
result is of the form T (T + w), where w can take on any value,
of either sign (though 1 � w � 4 if the coefficients of T (T + 1)
and T (T + 4) have the same sign). Maxima at N = Z of a

∆
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FIG. 2. (Color online) �S2p for the sd-shell. Same notation and
value of w as in Fig. 1.

024307-4



WIGNER ENERGY AND SHELL GAPS IN TWO-NUCLEON . . . PHYSICAL REVIEW C 80, 024307 (2009)

N

∆
2
n

Z=26

Z=22

Z=24

[M
eV

]

 1

 3

 5

 7

 1

 3

 5

 7

 1

 5

 7

 22  23  24  25  26

 3

S

FIG. 3. (Color online) �S2n for the f7/2-shell. The value w =
1.68 has been used. Same notation as in Figs. 1 and 2.

proton-neutron double binding energy difference have been
studied in [5]. A test of the SU(4) symmetry using the same
double binding energy differences has been carried out by Van
Isacker et al. [7]. A qualitative agreement with experiment has
been observed for the p-shell.

One may consider an extended dynamic symmetry which
includes the Elliott SU(3) symmetry [7,18]. A corresponding
binding energy formula may be deduced, but such a project
goes beyond the scope of the present work.

The form of the isospin term in the mass formulas has been
discussed in [14] and, more recently in [19]. Both authors
use Q2β as indicator. The former work indicates a wide
range of w in the mass interval 72 � A � 208, with the w

parameter increasing with A and reaching a maximum w ∼ 9
at A = 207. Also the latter work indicates deviations from
w = 1, suggesting a global 〈w〉 ∼ 0.6, across the full range of
measured A values, for a term of the form T (T + w)/A.

In [20,21] the isospin dependence is extracted from differ-
ences between isobaric analog states, with different isospins,
in the same nucleus. The authors come to the conclusion that
the form T (T + 1) is valid for nuclei with A � 60. When A
increases, w gradually approaches the value 4. According
to [21] this feature suggests quartet structures for medium

Z

∆
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FIG. 4. (Color online) �S2p for the f7/2-shell. Same notation and
same value of w as in Fig. 3.

mass nuclei with N ≈ Z. The formation of quartets in N = Z

nuclei has been investigated in [22].
The values of w extracted from global fits of mass formulas

to measured nuclear masses are not well determined [23], but
tend to be of order w ∼ 0.5 to w ∼ 2 (when positive). Such
formulas have an explicit A dependence, the Wigner term
being proportional to T/A. A single global value of w can
be determined from the ratio of the coefficients of the Wigner
and volume symmetry terms, but its interpretation may be an
object of discussion. The approaches of [14,20] and [21] have
no explicit A dependence.

The present work, being limited to a small range of A

values, ignores the possibility of A dependence within the
limits of a shell. However, the Wigner parameter w fitted in
this work increases when going from the sd to the f7/2-shell,
in qualitative agreement with [19].

The present approach is restricted to nuclei with N,Z � 28
where the validity of the proton-neutron seniority scheme is
reasonably well established. Besides, since we study only
nuclei with N ≈ Z, this method makes sense only for diagonal
shells.

IV. CONCLUSION

The difference of two-neutron separation energies is defined
as

�S2n = S2n(N,Z) − S2n(N + 2,Z), (21)

with a similar expression for two-proton separation energies.
�S2n and �S2p have maxima at magic numbers. It has been
shown that �S2n at a shell closure is dominated by the
difference of two effective-single particle energies. The latter
difference represents a realistic definition of the shell gap.

�S2n and �S2p display a spike for most known even-even
N = Z nuclei with A � 70. This spike is due to the Wigner
energy. The experimental values of this observable have been
compared with the results of calculations based on a seniority
mass formula. The latter contains the isospin term T (T + 1),
which is the Casimir operator of the SU(2) isospin group.
A more general expression is T (T + w), where w is a free
parameter. Values of w between 1 and 4 may be expected if
we assume a dynamic symmetry of SU(4) ⊃ SU(2) type with
coefficients of the same sign. The values of w fitted in this work
to N = Z nuclei in the sd- and f7/2-shells are 1.46(59) and
1.68(17), respectively. Existing literature indicates deviations
from the T (T + 1) form for heavier nuclei.

This work shows that the isospin dependence of nuclear
mass formulas must include a term proportional to T ,
representing the Wigner energy. A binding energy formula
which contains the symmetry energy term T 2 but no Wigner
term linear in T is incomplete. The spikes of �S2n and �S2p

at N = Z constitute a sensitive indicator of the presence of the
Wigner energy.
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