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A relativistic, three-particle model of the pion-nucleon system is constructed in the instant form of relativistic
quantum mechanics using the Bakamjian-Thomas procedure. The model space includes subspaces for the nucleon
(N), the resonances A = P33(1232), P;1(1440), D3(1520), S1;(1535), and S5,(1620), as well as N, T A, nN,
and N subspaces. The model specifies a Poincaré invariant mass operator that includes vertex interactions
that couple the various subspaces, as well as renormalization terms. Projection operator techniques are used to
reduce the equations arising from this mass operator to a set of three-dimensional Lippmann-Schwinger integral
equations that couple only the # N, w A, and nN channels. After a partial wave analysis these three-dimensional
equations simplify to three coupled, one-dimensional integral equations for each partial wave. The mass operator
interactions are derived from effective, hadronic Lagrangians that introduce a set of coupling constants. Cutoff
functions are introduced to take into account the nonelementary nature of the particles in the model. These cutoff
functions introduce a set of cutoff masses. The coupling constants, cutoff masses, and bare baryon masses are
determined by fitting to a partial wave analysis of pion-nucleon elastic scattering up to a c.m. energy of W =

1550 MeV.
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I. INTRODUCTION

For some time now people have been constructing and
analyzing relativistic models of few-particle systems based
on the direct construction of the generators of the proper
Poincaré group. The original motivation for this approach
can be traced back to an important paper by Dirac [1] in
which he pointed out that there are various possibilities
for incorporating interactions in the Poincaré generators.
Dirac called these possibilities the instant form, the point
form, and the front form. Each form is associated with a
three-dimensional hypersurface in Minkowski space that is
invariant under a subgroup of the Poincaré transformations,
x" = ax + b, and intersects every world line just once. For the
instant, point, and front forms the hypersurfaces can be taken to
bet = const., c2t2 — x> = g% > Owith7 > 0,and ct + 7 = 0,
respectively. In Dirac’s approach the generators associated
with these hypersurfaces are taken to be noninteracting,
and interactions are put into the remaining generators. In
the instant form, for example, the three-momentum P and
the angular momentum J are noninteracting, whereas the
Hamiltonian H and the generator of rotationless boosts K
contain interactions.

A practical scheme for constructing the instant form gener-
ators {H, P, J, K} was developed some time ago by Bakamjian
and Thomas [2]. In their approach the ten generators are
expressed in terms of another set of ten operators, {M, P, S, X},
where M is the mass operator, S is a spin operator, and X
is the so-called Newton-Wigner position operator [3]. This
second set of operators satisfies much simpler commutation
rules than the generators, which facilitates the construction of
models. In the Bakamjian-Thomas scheme P, S, and X are
taken to be noninteracting, and an interaction is put only into
the mass operator, M. It follows from the relations between the
sets {H, P, J, K} and {M, P, S, X} that this leads to an instant
form of relativistic quantum mechanics. Bakamjian-Thomas
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schemes have also been developed for the point and front
forms [4].

It is relatively straightforward to carry out a Bakamjian-
Thomas construction for a system in which there are coupled
one- and two-particle channels. In particular, models of the
pion-nucleon system have been constructed in which there are
single-baryon and meson-baryon channels [5—7]. Such models
contain vertex interactions that couple single-baryon states to
meson-baryon states, as well as interactions that couple meson-
baryon states directly to each other. The vertex interactions
lead to renormalization effects.

With systems of three or more particles another ingredient
enters into consideration, that is, cluster separability. This is
the requirement that when parts of the system are separated
by large spacelike separations the subsystems should be dy-
namically independent [4,8—10]. Coester [11] showed that for
three-particle systems cluster separability of the S matrix can
be achieved for a Bakamjian-Thomas construction; however,
it was subsequently shown that the Hamiltonian does not
become additive for separated subsystems [12]. Fortunately,
for any number of particles cluster separability for the Poincaré
generators can be achieved by a unitary transformation of the
generators obtained from a Bakamjian-Thomas construction
[4,8-10,13]. This unitary operator is often referred to as a
packing operator. Bakker et al. [14] have shown how the
front form can be used to construct three-particle models
that satisfy cluster separability when the particle number is
fixed.

A relativistic model of the NN-7 NN system has been
developed by Betz and Coester [15] within the Bakamjian-
Thomas framework. Their model describes NN scattering,
N scattering, wd scattering, and pion production and ab-
sorption. The elementary degrees of freedom are the nucleon,
the A isobar, and the pion. The practicality of the model has
been demonstrated by calculations carried out by Betz and
Lee [16].
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Relativistic effects in three-body bound states have been
investigated within the framework of a simplified model of
the three-nucleon system, constructed using the Bakamjian-
Thomas scheme [17]. The relativistic effects were found to
be rather small (i.e., approximately a 3% reduction in the
three-body binding energy). Recently, the Bakamjian-Thomas
approach has been used to construct and analyze realistic,
relativistic models of neutron-deuteron scattering [18].

The three-body front form equations of Bakker et al. [14]
have been used to study proton-deuteron scattering at a proton
laboratory energy of 800 MeV [19]. The relativistic effects
were found to be most noticeable for the spin observables.

The Bakamjian-Thomas construction has also been used to
formulate relativistic quark models of the baryons. In particular
Szczepaniak et al. [20] have used this construction to derive a
Poincaré invariant formulation of the Isgur-Karl quark model
for the baryons [21,22]. Coester et al. [23] have presented
a simply solvable quark model for the baryons within the
Bakamjian-Thomas framework. Their model reproduces the
empirical spectra of the baryons in all flavor sectors to an
accuracy of a few percent. Their model also involves the
construction of current density operators that are consistent
with empirical nucleon form factors at low and medium
momenta.

Pichowsky et al. [24] have used the Bakamjian-Thomas
construction to develop a model that describes mm scattering
from threshold up to 1400 MeV. Their model properly includes
unitarity cuts for one-, two, and three-hadron states.

Most relevant to the present work is Klink’s [25]
Bakamjian-Thomas construction of point form mass operators
from vertex interactions. He considered a simplified model
in which a scalar “nucleon” interacts with a scalar “pion.”
A truncated Hilbert space consisting of the direct sum of
N and n N states leads to an eigenvalue problem for the
physical nucleon mass as well as a Lippmann-Schwinger
equation for w N scattering. Another truncation consisting of
NN and m NN states leads to an eigenvalue problem for the
“deuteron,” along with a model for NN scattering with pion
production. A more realistic application of this approach has
been given by Krassnigg er al. [26], who have considered
vector mesons within the chiral constituent quark model in
which the hyperfine interaction between the confined quark-
antiquark pair is generated by Goldstone boson exchange.

Recently, the Bakamjian-Thomas approach has been
used to develop a method for constructing models of the
N system, which include mx N states [27,28]. A lim-
ited model space was used to illustrate the method. This
space consisted of an N subspace, a wN subspace, a
N subspace, and a mo N subspace. Here we will ex-
tend the space so as to construct a realistic model of the
N system. This extended space includes subspaces for
the N = N(938) Py, the resonances A = A(1232) P33, R =
N(1440) Py, D = N(1520) Dy3, S = N(1535) S}, and §' =
A(1620) S31,aswellaswt N, m A, nN, and wr N subspaces. A
mass operator is developed that includes coupling within and
between these various subspaces. Vertex interactions couple
the N and A subspaces to the & N subspace, couple the R, D,
and §’ to the 7 N and 7 A subspaces, and couple the S to the
N and nN subspaces. Renormalization terms are included
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along with these 1 < 2 vertex interactions to take into account
the renormalizations of the baryon masses. Vertex interactions
are also included and couple the # N and m A subspaces to
the wr N subspace. These interactions describe the processes
N < N and A < N in the presence of a spectator pion.
Renormalization terms are included along with these 2 < 3
vertex interactions. Traditional potentials that couple the 7 N
subspace to itself are also included. These potentials are based
on N, A, o, and p exchange processes.

Projection operator techniques are used to develop a set
of integral equations that only involve couplings among the
states of the m N, A, and nN subspaces. Elimination of
the single-baryon subspaces and the wzw N subspace leads
to effective, energy-dependent 2 < 2 potentials that produce
couplings among the # N, w A, and n N states. The elimination
of the single-baryon states leads to the so-called direct or
s-channel potentials that couple meson (w)-baryon (8) to
meson (u)-baryon (8’) states through an intermediate baryon
(B") state according to uB < B” < u'B’. The intermediate
baryons have bare masses that are renormalized by the
interactions. The elimination of the w7 N states leads to the
crossed or u-channel potentials that couple pion-baryon to
pion-baryon states through intermediate 7w N states according
tonB < naN < 7B, where B and B’ are an N or a A. The
final equations whose solutions are the various 7 N scattering
and reaction amplitudes are a set of three-dimensional,
coupled Lippmann-Schwinger equations, which after a partial
wave analysis involve a single continuous variable. These
Lippmann-Schwinger integral equations have singular kernels
that have to be handled with care. We employ a contour
deformation technique to deal with these singularities.

The various interactions that we develop are derived from
effective hadronic Lagrangians that introduce a collection
of coupling constants. To take into account the fact that
we are not dealing with elementary particles we introduce
phenomenological cutoff functions or form factors that contain
cutoff masses. We fit the coupling constants, cutoff masses,
and the baryons’ bare masses to a partial wave analysis of the
7 N elastic scattering data. The phenomenological nature of
the interactions we employ makes it clear that the calculations
carried out here are not fundamental in character. The claim
here is that the success of the calculations helps to establish
at the hadronic level the mechanisms that account for the
structure of the pion-nucleon scattering amplitudes. The hope
is that advances in understanding and analyzing quantum
chromodynamics will lead to fundamental explanations for
these mechanisms, which are essentially various exchange
processes between composite particles.

The outline of the paper is as follows. Section II gives
a brief summary of the Bakamjian-Thomas approach. Some
kinematics and a description of the basis states that span the
model space are given in Sec. III. Section IV presents the mass
operator. The reduction of the system of equations that the
mass operator leads to is carried out in Sec. V. The # N and
7 A propagators are derived in Sec. V1. Section VII presents the
upB < B’ vertex functions. The details of the crossed potentials
are worked out in Sec. VIIL. The N, A, o, and p exchange
potentials are presented in Sec. IX. Isospin symmetry and
rotational invariance are used in Sec. X to carry out a partial
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wave analysis of the three-dimensional equations derived in
Sec. V, thereby leading to a system of coupled equations in one
continuous variable. The method for constructing the partial
wave matrix elements of the various uf < u'B’ potentials
is given in Sec. XI. The method used for solving the final
coupled, one-dimensional integral equations is described in
Sec. XII. The results of solving these equations and fitting the
parameters to the data are given in Sec. XIII. A discussion
of the results and suggestions for future work is presented in
Sec. XIV.
Throughout we work in units in whichh = ¢ = 1.

II. GENERAL BACKGROUND

In a satisfactory relativistic quantum mechanics there exists
a unitary operator U(a, b), corresponding to the Poincaré
transformation x” = ax + b, that maps a quantum mechanical
state vector |v) associated with the x frame to the vector |¢/)
associated with the x’ frame according to

l¥') = Ula, b))

For proper transformations the unitary operator can be
parametrized in the form

U(a, b) = exp(ib - P)expli(§ - J + w - K)],
P =(H,P).

@2.1)

2.2)
2.3)

Here J is the angular momentum operator, K is the boost
operator, H is the Hamiltonian of the system, and P is the three-
momentum operator. Since the law of combination for the
Poincaré transformations is (a’, b") o (a, b) = (a’a, a’b + b'),
the unitary operators must combine according to the relation

U(d',b"U(a,b) =U(d'a,a’b +b") (2.4)

so as to provide a representation of the Poincaré group.
This implies a set of commutation rules for the generators
{H,P, K, J}, which is commonly referred to as the Poincaré
algebra.

In constructing the ten generators {H, P, K, J} it is con-
venient to work with another set of ten Hermitian operators,
that is, {M, P, S, X}, where M is the mass operator, S is a
spin operator, and X is the so-called Newton-Wigner position
operator [3]. This second set of operators satisfies a much
simpler set of commutation rules than the Poincaré algebra; in
fact the only nonzero commutators of this set are [2,4]

[Pm’ X, = =i, [Si, Sl = i€imnSa- (25)

The three-momentum operator P is common to both sets,
whereas the other generators can be expressed in terms of the
operators of the second set by the relations [2,4]

H = (P> + M?»)'?, (2.62)

J=XxP+S, (2.6b)

K=—‘x#+mx)- 2xS (2.6¢)
2 M+ H

It can be shown that if the commutators of the set
{M,P,S, X} are zero, except for those given by Egs. (2.5),
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then the generators given by Egs. (2.6), in combination with
P, satisfy the Poincaré algebra.

In the Bakamjian-Thomas construction [2,4] of the set
{M,P,S, X} the operators P, S, and X are chosen to be the
same as those for the system of particles without interactions,
whereas the mass operator M contains interactions. The
commutation rules for P, S, and X are then automatically
satisfied, and it is only necessary to ensure that

[M,P]=[M,S]=[M,X]=0. 2.7)

With this procedure the generators P and J are noninteracting,
whereas H and K contain interactions. This defines an
instant form of relativistic quantum mechanics, since the
Poincaré transformations constructed from the noninteracting
generators map a Minkowski space, = constant hypersurface
into itself.

It should be noted that the Lippmann-Schwinger equations
that are solved to obtain S-matrix elements from a Bakamjian-
Thomas mass operator are three dimensional in character, and
hence not manifestly covariant; therefore it is not obvious that
the S-matrix elements transform properly in passing from one
inertial frame to another. Fortunately, a number of authors
[4,9,11,29-31] have shown that the S-matrix elements do
transform properly.

III. THE MODEL SPACE

The model constructed here describes the nucleon,
N = N(938)P;;, the resonances A = A(1232)Ps3, R =
N(1440)Pyy, D = N(1520)D,3, S = N(1535)S;;, and §' =
A(1620)S3;, as well as two pions, 77y and 5, and the 1 meson.
The possible types of states are given by |8), where 8 is any of
the baryons, two-particle states | N), |moN), [T A), [T A),
and |nN), and the three-particle state |m;m,N). A state of
any type is orthogonal to any state of another type (e.g.,
(N|Nm) = 0).

The various energies that are encountered are given by

E.p) = (p* +m2)"?, (3.1a)

Wap(@) = Ea(@) + E(q), (3.1b)
Ea®. @) = [p* + Wi@] ", (3.1c)
Wae(k, @) = Eq(k) + Epc(k, ), (3.1d)
Ewcp. k@ =[p+ Wik o] G.le

In general W indicates a c.m. energy. For example, W x(q)
is the energy of a pion and a nucleon in a c.m. frame in
which the pion has three-momentum q and the nucleon has
three-momentum —q, and E,y(p, q) is their energy in a
frame in which their total three-momentum is p. The total
four-momentum of a set of particles with total energy E and
total three-momentum p is given by

p=".p) =(E p), (3.2)

where for convenience weletw = E;, & = Ey, e = Eg with
B#N,and w, = E,,.
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States of total four-momentum p are obtained by boosting
a c.m. or rest frame state using the unitary operator that
corresponds to a so-called canonical boost I.(p) [27]. This
particular boost is defined by

x = le(p)Xem, (3.3a)
0,0 )
K0 = Llem TR Eem ;}p Tem. (3.3b)
- Xcm
X = Xem + (x?m + ;’O +CW) %, (3.3¢)
W =+(p-p)> (3.3d)

The inverse boost is obtained by interchanging x and x.p,
and letting p — —p.

The state of a baryon with three-momentum p, isospin
component i, and spin component m is denoted by |pim)g.
The state of pion m, with isospin component # and a nucleon,
N, or delta, A, with components i and m is given by
[p(ku)im)qg, where a =1,2 and B = N, A. Here p is the
total three-momentum and K is the c.m. three-momentum of
the pion. The parentheses around ku will play a role when
the mass operator interactions are defined. The nN states are
given by |pkim),y.

The m,m;, N states are denoted by |p(ku)ptim), with a =
1,2;b =1,2;a # b. Here k is the three-momentum of 7,
in the 7,7, N c.m. frame, and p is the three-momentum of
7 in the m, N c.m. frame obtained by an inverse canonical
boost from the 7,7, N c.m. frame. It should be noted that the
a = 1 states are related to the a = 2 states since both are w7 N
states [27].

All of the states have delta function, Kronecker delta
normalizations—for example,

ap(P)im|p'(K'u")i'm') g
= 5% (p — P18 (K — k)8, Sii S (3:4)

IV. THE MASS OPERATOR

The mass operator that acts in the space spanned by the
states described in Sec. III is of the form

M=My+V, (4.1a)
V=>"Vi+ D> Vang+ Voo (4.1b)
B B=N,A

where M is the noninteracting mass operator, and V contains
the interactions. Here, and in what follows, unless indicated
otherwise, Y _ 8 indicates a sum over all the baryons (i.e.,
N,A,R,D,S, and §’). The noninteracting mass operator is
defined by its action on our basis states, that is,

Mylpim)g = mg|pim)g, (4.2a)
Molp(ku)im)ap = Wap(K)[p(ku)im)ag, =N, A,

(4.2b)

Molpkim),n = Wyn(K)|[pkim)yn, (4.20)

Molp(ku)ptim), = Wrrn(k, p)Ip(ku)ptim),. (4.2d)
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The interaction Vg acts in the {|8), |w; N), |[moN)} subspace
when 8 = N or A, in the {|8), [T N), [maN), |71 A), |[m2A)}
subspace when 8 = R, D, or §’, and in the {|S), |7 N), |2 N),
|[nN)} subspace when 8 = S. It is given by

Vy = Z/|pim>,3d3p[mj3°>—mﬂ]ﬁ<pim|

+ % i > { > f Ip(u)im)p

a=1 p’ uim i'm’
X Upp p(kuim, i'm")d® p d°k g(pi'm'| + (T)}, B +S,
(4.3a)
Vg = Z/ |pim)s d3p[m(50) — ms] s(pim|

1 2
5 ; { >3 / Ip(ku)im)n

uim i'm’

X Uy s(kuim, i'm’)yd® p &k s(pi'm’| + (T)}

+ { ZZ/ Ipkim),x

im i'm

x Uyy s(kim, i'm")d° p d*k s(pi'm’| + (T)}. (4.3b)

The first terms on the right-hand sides are mass renor-
malization terms with m$’ and mg the bare B mass and
physical B mass, respectively. The other terms describe
vertex interactions, for example, 7, + B8’ < B, where the
Unp p(kuim, i'm’) = Ug’ﬂﬂ/(i’m/, kuim) are vertex functions
that we will derive from effective Lagrangians.

The interaction V; yg describes the vertex interactions 7, +
N & B with ,, where b # a, playing the role of a spectator,
and it also includes a renormalization term. This interaction is
defined by

2
Ving =Y / Ip(ku)im)qp d* p dk Vi (k) ap (p(Kit)im|

a=1 uim
2
+ Z { ZZ/ Ip(ku)ptim), d>p dk d*p
a=1 utim i'm’

x Van,p(ptim,i'm’;K) o (plku)i'm’| + (1) ¢ (4.4)

We note that the parentheses around k and u draw attention to
the variables of the spectator pion 7,. Clearly this interaction
is diagonal in these variables, which is consistent with the
fact that they describe a spectator particle. The first term on
the right-hand side has to do with the renormalization of the
N and A in the presence of the spectator pion. We will see
subsequently how the functions Vj (k) are determined. The
second term describes the vertex interactions.
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TABLE I. Interactions.

B =N, A; B <& B (renormalization), S < 7N
Vs B=R,D,S; B& B
(renormalization), 8 < m N, T A

B =3S; § & S (renormalization), S < 7N, nN
Vang B =N, A; nf & nf (renormalization), 78 & na N

Voot N & N

The interaction V. is a traditional potential that couples
. N to m, N and is given by

Voot = ZZ Z / Ip(ku)im)ay d° p d>kd*k’

a=1 uim u'i'm’

X Vanan&uim, Ku'i'm") on (pK'u)i'm'|.  (4.5)

This potential includes N, A, o,and p exchange interactions.
The various interactions are summarized in Table 1.
The Poincaré invariance of the mass operator can be
established using the procedures outlined in Sec. V of
Ref. [27].

V. THREE-PARTICLE EQUATIONS

To derive integral equations for the various amplitudes we
introduce the following projection operators for the subspaces
of our model:

Pﬁ : {|plm>ﬁ}$:3 = NvA’RaDa S7 Sl,

Pug : {Ip(ku)im)qpt;a =1,2; B=N, A,
5.1
Pyy : {Ipkim),n},

Pran : {Ip(ku)ptim),};a =1 or 2.

These projection operators are mutually orthogonal, that is,
PP, = P,5,,. (5.2)

Since the states that define the projection operators are
eigenstates of the noninteracting mass operator M, we have
MyP, = P, M,. (5.3)
We let | W) be a state vector for the system that satisfies
(W — Mo)|¥) =

VIv), 54

and we indicate projections onto the various subspaces by

[Vu) = PulV). (5.5)
We can write, with the help of Egs. (4.3)-(4.5),
(W —m1ws) = PsVilvup), (5.6)
up’

where for B = N, A;up’ = n;N,mN, for =R, D,S;
uB' =mN, myN, m A, mA, and for B = S; uf’ =N,
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o N, nN (see Table I). Using Egs. (4.3)-(4.5) we obtain

[W - MO - PaNVnNN]h//aN)
=Y PavVsl¥s) + Pan Vool Wan) + Pan Vx| ¥nn),

B

(5.7)

[W - MO - PaAVnNA]h//aA)
D PaaVel¥p) + PasVanal¥axn), (5.8)

B=R.D,S'
[W — Mol|Yryn) = Pyn Vslrs), (5.9
2
[W — MollYman) =D > PranVanpl¥ap).  (5.10)
a=1 B=N,A

If we put Egs. (5.6) and (5.10) into Eq. (5.7), and rearrange,
we find an equation that only involves the two-particle
channels:

PT[T[
[W — Mo — PunVann — PaNVJrNNZ a nNNi| [Van)
— My
—ZZPanﬂ (0> Vel Vg
up'
+ Z Z P,y VrrNN nNﬁll/fbﬂ)
b#a f=N.A
P7T7TN
+PaNVp0t|waN>+PaNVnNNZ VnNAWfaA)-
— My
(5.11)

Here, and in what follows, z = W + ie, where ¢ is a positive
infinitesimal parameter. We shall see that the last term on the
right side of Eq. (5.11) vanishes.

If we put Egs. (5.6) and (5.10) into Eq. (5.8), and rearrange,
we find another equation that only involves the two-particle
channels:

Pm'rN
W — My — PiaVana — PaaVana Vana | Wan)
z— M

= 2 ZPaAVﬁ (0>Vﬂ|1/’“ﬁ)
B=R.D.S" up’'
+Z Z PaAVnNA nNﬁWhﬂ)
b#a f=N,A
Pm‘rN
+PaAVnNAZ_ nNN|waN)- (512)

We shall see that the last term on the right side of Eq. (5.12)
vanishes.

Finally, if we put Eq. (5.6) into Eq. (5.9) we complete
a closed system of coupled two-particle equations with the
result

(W — MollYryn) =

ZPNVS

+Pr]NVS

Py
o Vs 513
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We project Egs. (5.11)—(5.13) onto the basis states de-
scribed in Sec. III, and define the wave function components

p(Pim| W) = 8(p — p)g(im), (5.14a)

o8 (PK)im|W) = 8°(p — p)Wap(kuim)/v/2, (5.14b)
an (PKim|W) = 83 (p — p')n(kim), (5.14c)
o(pKu)ptim|¥) = 83(p — pWann(kuptim).  (5.14d)

Here p’ is the total three-momentum of the state |V).

We now construct the matrix elements of the various
interaction terms that occur in Eqgs. (5.11)—(5.13). With the
help of Egs. (4.4) and (4.2d), we can derive

. P,
ap PRI Vg =0

A Vanp [P Ku)i'm') s
=8P -p)8’k—KkK)suw

X Z/VﬁnN(Zm ptjn; k)

tjin

- JrnN(k :0)
(5.15)

Since the vertex functions V;y g(ptjn, im;K) must conserve
isospin, we find »_, (1, 1/2,1, jITM)Vzn g(ptjn, im;K) =
377,0mi Van p(pn, m;K), which in turn implies Vyy g(ptjn,
im;K) = (1, 1/2,¢, j|Tgi)Vzn g(pn, m;K). It then follows
from the orthogonality relation for the Clebsch-Gordon co-
efficients that the last terms on the right sides of Eqgs. (5.11)
and (5.12) vanish.

We shall now show that combining Eq. (5.15) with g =
B’ with the other contributions from the left-hand sides of
Egs. (5.11) and (5.12) leads to propagators for the # N and
A systems, respectively. From Eq. (6.11) of Ref. [27] we

X Van g(ptjn,i'm’;K).

have
VN n(@m, ptjn; k)
%;f N - rrrrN(k 0)
X Vann(ptjn,i'm';K)
F, ok
= BB / $p— L) s
- WJT]IN(k7 ,0)
where
dQ2(p) .
FnNN(,O;k)=/T;ZIVnN,N(thn,zm;k)F. (5.16b)

tjin
Combining these results with the other terms on the left side
of Eq. (5.11), and using Eq. (4.4), we can write

an (p(Ruw)im|z — Mo — Vyny

N .
— Vawn Venn P (Ku)i'm')n
- M,

= 83(p — P8 (K — K8 8iirSm Z;, 3y (k)i (K, 2),

(5.17)
where the 7w N propagator d N(k z) is defined by
drn(k, 2) = Zzn(k) [Z — Wan (k) — Vi (k)
Fann(p;k) }
— | @p—=——— | (5.18)
/ pZ - WnnN(ks p)
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We have introduced the function Z, y (k) so that

drink,z) —> z— Wyn(k), (5.19)
which leads to
VI(k) = — / £y Fann(pik) (5.20)
nN(k) J'[T[N(k ,0)
which in turn leads to
dun(k, 2) = Zzn(K)z — WnN(k)]{l +/d3p
% Fann(psk) }
[z — Wean(k, O)I[Wan(k) — Wrrn(k, p)]
(5.21)
along with [see Egs. (3.1b) and (3.1d)]
_ Fann(po; k)
Z'k=1+fd3 Akl . (522
v - Bt O

Using the simple identity 1/ab = 1/a* + (a — b)/a*b we can
rewrite Eq. (5.21) as

drn(k,z) = [z — WrrN(k)]{l — [z = Wan (k)]

deSP Zan(K)Frnn(p; k) }
[Z - WnnN(ka ,0)][8(]() - EnN(k» 10)]2
(5.23)
To construct the w A propagator we begin by defining [see
Eq. (5.15)] Ja by

511 JA(m m k Z) Z-/VA nN(lm PtJn k)

tin
d*p

_ t -k
xZ_ Woo (k. )nNA(p]nlm )

(5.24)

If we combine the terms from the left-hand side of Eq. (5.12)
and use Eqgs. (4.4) and (5.15), we can write

an{pBu)im|z — Mo — Vrya

Vanalp' Ku)i'm')aa

— VaNA
0

=83(p — p)8°(k — K8, Siivdea(m, m'; K, 7), (5.25)

where the r A propagator is defined by the inverse of the matrix
function whose matrix elements are given by

dea(m, m’;k, 2) = [z = Wra(k) — V(18w

— Ja(m, m';k; 2). (5.26)

Unlike d,y(k, z) we cannot have d,A(m, m’;K, z) vanish
when z — W (k). This is because according to Eq. (5.24)
Ja has a right-hand cut for z > 2m, 4+ my and picks up
an imaginary part in this range. Since WA (k) > m, + ma >
2my + my, Wy a(k) falls in this range.

We now consider the direct or pole terms in Egs. (5.11)—
(5.13). These are the terms with simple poles at z = m®.
As an example, we can show, with the help of Table I and
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Egs. (4.3a) and (5.14b), that the pole term in Eq. (5.12) is
given by

A(pKu)im| Z Z Z v,;,

B=R.D a’=1p'=N,A

w@mzzfzz

=N,Au'i'm’ B=R,Di"m"

(0) Vﬁh/’a ﬁ/>

Upa gkuim, i"m")Ug o (i"m", K'u'i'm")
m©
LT Mg
X A3k Y K'd'i'm') 3/ 2.
This result and similar results for the pole terms in Eqs. (5.11)
and (5.13) lead us to define

(5.27)

By g (kuim, Ku'i'm'; 2)

=Zgk) Y

ﬂ”l”m”
Urp pr(kuim, i"m"YUpr np(i"m” , K'u'i’'m’) 7172
) Z k),
z—mg,
B=N,A; B'=N,A, (5.28a)

where the sum on 8” is determined by (see Table I)
g'=N,A,R,D,S,S if =8 =N
if B,/ =N,A or

(5.28b)

B =R,D,S A,N or A,A.

In Eq. (5.28a), and subsequently, Z (k) = 1. Zl/z(k) has
been introduced into Eq. (5.28a), and will be introduced into
other interactions, so as to renormalize the vertex functions.

The direct interactions that involve the n/N channel are
defined by

BYy n(kuim, K'i'm'; z)

= Bff,’(, N EKi'm' Kuim;z")

1/2 Urn, skuim, i"m")Us oy (@i"m" , K'i'm")
<’<>Z ~
Z
(5.29)

and

Bly n(kim Ki'm';7)

_ Z Upn,skim, i"m")Us ,n(i"m", k’i/m’). (5.30)

©)
7 —myg

i"m"

We now consider the second terms on the right sides of
Eqgs. (5.11) and (5.13). These are the so-called crossed or
nucleon exchange terms. In working these out we need the
following results from Ref. [27]:

[VEY

a(pku)ptim|p'(K'u')p't'i'm'),
=8P — P)8ur 8188 [p — Frn (K, —k — K)]
% Q' (K, K)83[0 — fun(k, =k —K))], a # b, (5.31a)
Qum (K, K) = Byy(K', =k —K)B, y(k, -k — k)

x Dy ran (K, —k —K)ry(k, —k —K)]. (5.31b)
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Here f, y(py, py) is the three-momentum of 7 in the 7 N c.m.
frame, which according to the inverse of Eq. (3.3) is given by

1 1
fonv(Pr, Py) = E(pn —Ppn) — 3 [a)(pn) —e(pn)

m2 — m3 p
+ = N} , (5.32a)
JPp 1P+ ypp
P = px + pn = (0(Pr) + €(Pn), Pr + PN)-
(5.32b)

The function B, y(p:, pn) is defined by

w(px) + e(PN)

Brn(Pr, PN) = { o(pr)e(pn)

@l ®r, PY)lelfrnPr, Pr)] }”2
W n £z n (Pr, PN)]
(5.33)
The argument of the SU(2) representative D!/?) is determined
by

FanPr, PN) = rc[ "(px + ), PN]

(5.34)
Pr = (@(Pr), Px),  Pn = (€(PN), PN),

where 7, is a so-called Wigner rotation [4], which for canonical
boosts and a general Lorentz transformation a is defined by

re(a, p) = 17 (ap)al(p). (5.35)

Now with the help of Egs. (4.4) and (4.2d) and the identity
(see Eq. (4.52) of Ref. [27])

Wernlk, £y (K, —k — k)] = 0(k) + e(—k — k) + w(k)),
(5.36)

we find

. P ! VN ANEY /
” <p(ku>zm|vﬂNﬂZ—anNﬂ/|p &u')i'm' )y
- 0

= 83— P)Z, 2 () BLy oy Gkuim, Ku'i'm's ) Z 52 (k).

(5.37)

B,mp’

where

Brg 1 (kuim, Ku'i'm’; 7)

= Vaan(im. pu'jn:K)Z5 (k)

jnn'

o Ok, k) 712
7 — w(k) — e(—k — K) — w(k) Zap

X Venp(p'ujn’,i'm’;K'), B and B’ =N, A, (5.38a)
p= ﬂN(k/v -k — k/)s p/ = erN(kv -k — k/)a (538b)
The Vo term in Eq. (5.11) leads us to define [see Eq. (4.5)]

(k")

ot . .
BEN v (Kuim, Ku'i'm")

= Z 20 Vi oy (kuim, Ku'i'm)Z2 (k). (5.39)
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In writing out the details of Egs. (5.11) and (5.12) it is
convenient to define the following combinations:

BnN,nN(kuim, k/u/i/m/; Z)
= BgN,nN(kuimv Ku'i'm’;z)
+ By y o (Kuim, K'u'i'm'; z)
+ BYY oy (kuim, Ku'i'm’), (5.402)
BnN’nA(kuim, k/u/i/m’; Z)
= B nKu'i'm', Kuim; z*)
= B!\  akuim, Ku'i'm’;z)
+ By y o a(kuim, K'u'i'm'; 2), (5.40b)
BnA,r[A(kuim, k/uli/m/; Z)
= BgA,nA(kuims k/u/i,m/; Z)
+ By g on(kuim, Ku'i'm'; 7). (5.40¢)

If we now contract Egs. (5.11), (5.12), and (5.13) with
aN(Pu)im|, 4o (p(ku)im|, and ,n (pkim|, respectively, and
use Egs. (5.14b), (5.14c¢), (5.15), (5.17), (5.24), (5.26), (5.27),
(5.37), and (5.39), we find the equations

dnn(k, Z)Zn,vz(k)wnN(kuim)
= Z Z /B,,Nynﬁ/(kuim,k'u'i'm’;z)
B'=N,Au'i'm’
X &K' Z, P K mp K i'm)

+> / BZy v uim, Ki'm'; )d*k Y,y (K'i'm"),

(5.41)
> dualn,m' ik, 2)Z; N2 ()Y (kuim')
= Z Z /BnAwﬂﬂf(kuim,k’u’i’m/;z)
B'=N,Au'i'm'
X d*K Z,pg P (K YW (K0 i'm), (5.42)

[z — WnN(k)]wnN(klm)
- Z /B,”]lNynN(kim,k’u’i’m’;z)

u'i'm’

X APk Z NP (K Yy (Kt i'm)
+ Z / By (im, K'i'm'; )d K Y,y (K'i'm').

(5.43)

Assigning along with p’ the quantum numbers K', u’, i’,

and m’ to the pion-nucleon “initial state,” we add these
quantum numbers to our two-particle wave functions [e.g.,
Yoy Kuim) — Y yKuim, K'u'i’'m’)]. We let W = W, n(k')
and note that since [see Eq. (5.19)] d.nl[k, Wyn(k') +
ie]8*(k — k') =0, we can replace Y,y on the left side
of Eq. (5.41) with Yy (Kuim, Ku'i'm’) — Z_\/* (k)83 (k —
K8, 8ii:dmm’. We also add these quantum numbers to the
arguments of ¥, and ¥, y. After making this replacement
for Y,y in Eq. (5.41), we can divide through by d,y(k, 2).
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We will show in Sec. VI that there exists a matrix-function
I'(m,m,n’, m’;k, z), where n and n’are unit vectors, that has
the property

Z/ r(k, m,n,m"; k, 2)dS2(n)
X Y " dualm”,m'skn, 22 P (k)Y a U, uim)

= Z, (k) m s (kuim), (5.44)

which enables us to solve Eq. (5.42) for Z_ i/ Z(k)gb,, a(kuim).
We now can write

Zg/b/z(k)I/an(kuim, K'u'i'm')
= 83 (K — K)Suu8ii Sy
+dn_1:/(k’ DXy oyKuim, Ku'i'm'; 7),
XonznKuim, Ku'i'm'; 2)

— Z Z /BnN,ﬂﬁH(le'm, //u//l-//m//;z)

"=N,A u"i"m"

(5.452)

X d3k”Z;ﬂl,{2(k”)1/fﬂﬂn(k”u”i”m”, K'u'i'm)

+§ :/B;{N,n]v(kuima //i//m//;z)d3k//
i

X Yyn (Ki"m" Ku'i'm"), (5.45b)
Z P )W a(kuim, Ku'i'm'")
= Z/F(ﬁ,m,n,m”;k,z)m(n)
X Xnpaxntknuim” Ku'i'm'; 7), (5.46a)

X onKuim, Ku'i'm'; 7)
= Z Z /BnA,nﬂw(kuim,k”u”i”m”;z)
V=N,A u"i"m"
Xd3kNZ;;,{2(k”)wﬂ'3H( ”u”i”m”, /u/i/m/)’
(5.46b)

Vv (kim, K'u'i'm’)
= [z — Wyn (01" Xyn v (kim, Ku'i'm'; 2), (5.47a)
Xy onKim, Ku'i'm'; z)

— Z /BZINJN(kim’k//u//i//m//;Z)d3k//Z;11v/2(k//)

ui"m"

x anv(k//lft”i”m”, k/u/l—/m/)
d . "o, RERL
+ Z/BWN’,]N(kzm,kz m'; 2)d’k
i m//
x WWN( ”i”m”,k'i’m’).

(5.47b)

Upon putting Egs. (5.45a), (5.46a), and (5.47a) into
Egs. (5.45b), (5.46b), and (5.47b), respectively, we arrive
at the following closed set of coupled Lippmann-Schwinger
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equations for the scattering amplitudes:
Xonon(kuim, K'u'i'm'; 7)
= BynanKuim, Ku'i'm’;7)

+ Z /BﬂN,JrN(kuim,k//u//i”m//;z)

Wi m
d3k//

X —_—

dxn(k", 2)

+ Z [ BnN,nA(kuim, k//u//i//m//; Z)dSkN

u"i"m"

XnN,nN(k”M”i”m”’ k/u/i/m/; Z)

n

x f TK', m", nm”; k", 2)dQm)Xxa xn

X (k//n’u//i//m///’ /u/l-/m/;z)
+y :/BgNYnN(kuim,k”i”m”;z)
o’
dSk//
11 " VY, /.,
X —HX,]NJ,N(k i"'m", Ku'i'm'; ),
z— Wyn(k")
(5.48)
Xon onyKuim, Ku'i'm’; 7)
= BraxnKuim,K'u'i'm’; z)
+ E [B,,A,HN(kuim,k”u”i”m”;z)
Wi
d3k//
1" 11 " /Y /.
X—//XJINJ[N( uwirm., Mlm,z)
dﬂN(k ’Z)
+ § : /BﬂAﬂA(kuim’k//u//i//m//;z)d3k//
u//i//m//
X E fF(k”,m”,n,m’”;k”,z)dQ(n)
o
X Xpaxn&nu"i"m"  K'u'i'm’; ), (5.49)

Xy onKim, Ku'i'm'; z)

= By v &im, Ku'i'm';2)

+ Z /BffN’nN(kim,k/’u”i”m”;z)

i
d3k//
"1 " YY) /.,
X mX,,N,ﬂN(k u'i"m", Ku'i'm’; z)
TN )
+ § / Bly w&im K'i"m"; 2)
i//m//
d3k//

X ZW—(k”)X"N’”N(k”i”mN’ k’u’i'm/;z). (550)
— Won

In Secs. VI-IX we develop explicit models for our various
interactions starting with effective Lagrangians that describe
hadronic vertices.

VI. THE PROPAGATORS

In Sec. VII of Ref. [27] the vertex function
Vzn n(ptim, i'm’; k), which appears in the interaction Vg

PHYSICAL REVIEW C 80, 024002 (2009)

defined by Eq. (4.4), is derived starting with the effective
Lagrangian

STNN

Lann(x) = > Ny 8, - m()]ysN(x).

6.1)
my

In Ref. [27] we considered a mix of pseudoscalar and
pseudovector coupling; here we consider only pseudovector
coupling. Here s,yy is a pion-nucleon coupling constant.
Usually such a coupling constant is designated by g, nn, but
we will see that the coupling constants will be renormalized,
and we will consistently use s’s for unrenormalized coupling
constants and g’s for renormalized coupling constants.

The Lagrangian [Eq. (6.1)] leads to the following mw N-w N
matrix element of the corresponding Hamiltonian [27]:

(Prur, paun, pyim|Hyyy|ppu', pyi'm’)
=8(p — p)8*(P1 — P,)Suyu Hunn(Paua, pyim; plyi'm’)
+ (p1u1 < pau2),

p=pi+p2+py. P =P, +Dy. (6.2)
where
Hynn(prt, pyim;pyi'm’)
= i N (e* 1) Crnn( )
- 2mN t i'CanN Pz, PN, Py
X U(pyn, M)y, plysu(py, m’), (6.32)
er = F(1/vV2)(1, £i,0), €y=(0,0,1), (6.3b)

Cabc(pa » Pos Pi)
mpni,

1/2
_ . (64
[(271)3 2E, (pa) Eb () Ec (p),) } o4

When Eq. (6.3a) is transformed to the 7 N c.m. frame it
leads to the vertex function [27]

Ven n(ptim, i'm';K)
= Vy.n@'m', ptim; k)
Wan () ]1/2
Exn(=K, p)
Nt N
X Cann(p, p, —K)x,, 0 - Q(p, K) Xy,

= is;NNGrun(P)(E] - T)iir [
(6.52)

where xJ is a two-component column matrix with matrix
elements (x.Y), = 8, and

e(p) +my 1" Te(p) +my1"?
ZmN 2mN

Q(p,k)Z[

Wan(p) +my
2mN

[ 0

X

e(p)+my

4 WnN(p)_mN:| . (65b)
e(p)+my 2mpy

e(p) = [Exn(—K, p)e(—K) — k*1/ Wy n(p),

p' = KIE:n(=K, p) — e(=K)]/ Wrn(p).

(6.5¢)
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The vertex function contains a form factor, G, yy(0), which
takes into account the extension of our particles and gives
convergence to integrals and the integral equations. This form
factor is given by

G NN(p)_ (AJZTNN ) +AJTNN
T - )
[AZyy —2my + WZN(/’)] + Asyy

which is normalized to one when W.y(p) = my. We can
easily work out Fyy, which is defined by Eq. (5.16b), by
using the identity

(] D = —V3(1,1/2,1,i[1/2, 1),

where (1,1/2,¢,i|1/2,i")
The result is

(6.6)

6.7)

is a Clebsch-Gordon coefficient.

Fann(ps k)

=35;ynGann(p )N(Lk(p)) Czyn(p. 0, k)

. L) —my (o) +my [WnN(p) +my T
2mN

ZmN ZmN
e(p) +my e(p') —my [Wan(p) —my 7’
+ .
2my 2my 2my
(6.8)
We now derive the awNA vertex function

Van.a(ptjn,i'm’;K) that appears in the interaction of
Eq. (4.4) and is needed to construct the w A propagator
through Egs. (5.26) and (5.24). We start with the effective
Lagrangian [7]

(6.9)

Lanalx) = — ”m”AA (O[8,, T o - T(OIN(X) + (1),

b

where Ty is an isospin transition operator. In general, spin
and isospin transition operators are defined by [7]

Xpp = Zemxf(lﬁmnW’n’

mnn’

il X=S,T, (6.10)
where B stands for a baryon or its spin or isospin. Here
xf is a (28 4 1)-component column matrix with matrix
elements (X,’? )m = Onm- The Lagrangian [Eq. (6.9)] leads to

the following 7 N-m A matrix element of the corresponding
Hamiltonian:

(Piur, Paua, pyim|Hyya|pyu', pii’'m')
= 83(p — p)8*(P1 — P, )Suyu Hana(Pattz, pyim; plyi'm’)

+ (p1u1 & pauz),

P=Pi+P2+pPy. P =P, +P) (6.11)
where
Hyna(Prt, pyim;pri’'m’)
=iszna(€] - Tnn)it Cana(Px, Pn, PR)U(pN, M)
X pn“u’i Pla,m’). (6.12)

b

PHYSICAL REVIEW C 80, 024002 (2009)

The A spinor that appears here is given by [7]

> ua(p,m)

% {p'SNA

ul\(p,m) =

. Sya

(P - Syalp }M
ma [ea(P) +mal ), m
(6.13)
By using the same techniques as those used in Sec. VII of
Ref. [27] to derive V,n y(ptim, i'm’;K) it can be shown that
Van a(ptim, i'm’;K)
A 2n'm', ptim;K)

. . Wan(p) 72
=iSNaGana(p)(e; - Tyadii [T]ﬁp)}
X Cana (p, p, —K) U (o, m) n:: wa(py.m),
(6.14a)
with
pr = (@(p), p),  pn = (e(p), —p),

p/A = (SA(p/)v _p/)v
ea(p)) = [Exn(—K, p)ea(—k) — K*1/ Wan(p),
P =Kk[E;n(—K, p) — ea(=K)]/ Wan(p). (6.14b)
Substituting Eq. (6.14a) into Eq. (5.24) and using Eq. (6.10)
we find

Ja(m, m';k; z)

_ SENA dPp G2 ya(p)  Wan(p)
== C2ya (0, p. k)
mz 2 — Wean(k, p) Exn(k, p)
n
_ , YuPy +m ’ /
X Ta(pp.m) - pr 2 E—E o un(p).m). (6.15)

sz

The integrals over the direction of p can be done analytically
using the identity

P=\4r/3> Y (B)e,
where Y|" is a spherical harmonic. We find

dsz(p) 1] 1,

(6.16)

(6.172)
dQ(p) , 1
/ 1o PRYuPiPy = g5 8e(p)y” [wz(p) + —pz]
1
—38"p p*e(p)y” + w(p)p
x(gov" +v"gs —2go 2v°).
(6.17b)

With the help of these integrals and Eq. (6.13) we can show
that Eq. (6.15) becomes

Ja(m, m';K; z)
_ / dpp>G2yA(p) Wan(p)
A Jo 2= Warn(k, p) Exn(k, p) Can
x X2 A k) + B(p. K)SY, K&K - Sya)lxs. (6.18)

Alo, 0. k)
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where
o’ ,
A(p, k) = >Le(p)ea(p’) + mymal, (6.192)
3mymamz
27p” 2 2
B(p, k) = —{[3(/))8A(p ) +mymallBw™(p) + p°]
3m mym m
—2w(p)p*ea(p)}. (6.19b)
We define a 4 x 4 matrix function JA (K, z) by
Jak D) =D xndalm.m'k Dx,!,  (6.20)

m,m’

and consider the matrix elements | dSZ(k)Y]'";/2 j(k)JA(k 2)
Y[,’f; 2.7 (k), where

Y = ¥ ®)xs, (smmy [jm).  (6.21)

mymg
According to Eq. (4.10) of Ref. [7]
(k- S, (K)

= (=123 v @)@+ D@s + DRL + 1)
L

I1L\[ulLj
Vo000 ) 1s1(

where () and {} are 3j and 6j symbols, respectively.
Specializing this relation tou = 1/2 and s = 3/2, we find

1/2j—1\"*_
E ,] Y] 1/2, 1/2](k)’

2j4+3\"?
3j

(6.22)

K- Sya)Y! 303, =

(k SNA)Y;”H/z 3/2, j(k) ) ( ij 1/2,1/2, J(k)s

-~ 1[2j-17" ~
(k SNA)Y 1/23/2,() Ala s 4N Y‘,‘+|/2,1/2,j(k)v

213G+D
1(2j+3\"_, ~
(k Sna)Yj: Jj+3/2.3/2, J(k) ) < j+1 ) Y1212, (K,
(6.23)

We now define linear combinations of the Y,’f’3 ) j('l;) with
the same parity, (-1, by means of the relations

Zi 53 Yis3
VA uth oo Y” .
R o SRR (6.24a)
ARYS 0 US| Yiiipsp
Z?+3/2,j Y.;'n+3/2»3/2,j
) 1 2] +3 32j—-1
g = L | VA S
M| V325 —1) =27 +3
P B VA TR AT e
BG+D | V2j—1 —=J/3@2j+F3)
(6.24¢)

We note that the matrices U/ are real, orthogonal, symmet-
ric, and traceless. The zeros in Eq. (6.24a) are actually 2 x 2
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blocks of zeros. The Z ,’{‘J (ﬁ) are an orthonormal set of functions
with the convenient properties

kK-Sva)Z0(k) =0, A=j—3/2,j—1)2,
( Na)Z;;(K) J /2, ] / 6.25)

Iy 2
(k- Sya)Z(k) = folll/zj(k) A=j+1/2,j+3/2,

We now define J, (k, z) through the relation

/dQ(k)ZmT(k)JA(k AZ}, oK) = 8308 108y o (k. 2),

(6.26)
where according to Egs. (6.18) and (6.20)
o 4 2G2 W.
Tk, 2) = SiNAf PP~ GrnaP)  Wan(p)
0 Z— T[T[N(ks p) EJIN(kv 10)
X C2yalp. p LA, )+ B(p. Bm;],  (6.27)
with
0, A=j—-3/2, j—1/2,
m = . ) . (6.28)
2/3, r=j+1/2, j+3/2.

We can write, for the A propagator defined by Eq. (5.26),

den(m, m';K, 2) = x> da(k, 2D)x5, (6.29)

where

dra(k, 2) = Waa(k) Ja(k, 2),

(6.30)

with /™ a 4 x 4 unit matrix. Using Eq. (6.26) and the
orthonormality of the Z’” (k) we find

[z - — Vo™ —

[ da0z] @dss. 22, @

= 88j Ommdrzak, X, 2), (6.31)

where
denlk, A, 2) =72 — Wra(k) —

We are now in a position to “solve” Eq. (5.42), that is, to express
Y a(Kuim) in terms of the right-hand side of the equation. To
do this we have to solve an equation of the form

Y dualm, m';k, 2)p(k,m’) = F(k,m, z).

If we put Eq. (6.29) in Eq. (6.33), multiply from the left by
X}'ﬁ’ and sum on m, we find the equation

VIk) — Jk,z). (6.32)

(6.33)

dra(k, (k) = F(k, 2), (6.34)
where
¢U) =Y xmp(,m), F(k,2)=Y xmF(km,2).
" " (6.35)
To solve Eq. (6.34) we expand ¢(k) according to
oK) =Y Z1 R (k). (6.36)

Ajm
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Using Eq. (6.31) we find from Eq. (6.34)

Pr(k) = dA(k, A, 2) / dQKZ T K Fkz).  (6.37)
Combining Egs. (6.34), (6.36), and (6.37) we find
P(k) = / dQm)I (K, n;k, z)F(kn,z)
= f dQ) (K, n; k, 2)dya(kn,2)¢(kn),  (6.38)
where
P 'k, 2) =Y Zmd Ak 2, 2)Z0 ), (6.39)

Ajm

with n and n’ unit vectors. If we contract Eq. (6.38) with X,ﬁ T,
and insert the completeness relation for the x 2 between I' and

dxa, and between d, and ¢(kn), we find with the help of
Eq. (6.29)

P(km) = Z/dsz(n)r(l?,m,n,m”;k, 2)
X Y dea(m, m'skn, 2)p(kn,m'), (6.40)

where

Cm, 0, m'sk,z) = x> Tm, 0k, 2)x5.  (6.41)

This justifies Eq. (5.44).

We shall see that in our final equations for the various
scattering and production amplitudes the d_ A(k, A, z) play
the same role as the pion-nucleon propagator d;,{,(k,z),
and therefore we shall refer to the d i (k, A, z) as the
pion-delta propagators. According to Eq. (6.24a) the pos-
sible values of the parameter A are determined by angular
momentum coupling rules and parity considerations. For
j=1/2,x=1,2, whereas for j > 1/2,A=j—-3/2,j —
1/2, j +1/2, j + 3/2. The orbital parity is given by (—1)*,
and since parity is a good quantum number, for j = 1/2 we
have either A =1 or A = 2, whereas for j > 1/2 we have
either A =j —3/2and j 4+ 1/20rA = j —1/2and j 4+ 3/2.

For the cutoff function that appears in Eq. (6.27) we take

(AerA - m%])z + AiNA

2 9
[AiNA - m%v - mZA + W:%N (:0)] + A?rNA
(6.42)

Ganalp) =

which is normalized to one when W n(p) = mx.

We will consider two choices for the function V[ (k) that
appears in Eq. (6.30). Either we will simply set it equal to
zero or, by analogy to Eq. (5.19), we will determine it by the
requirement

Re [dﬂA(ka )\'7 Z)] — Oa (6.43)
z=> Wra(k)
which leads to
VI(k) = —Re{J;, [k, Wra(k) +ic]}. (6.44)
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VII. DIRECT INTERACTIONS

The direct interactions or pole terms are given by
Egs. (5.28)—(5.30). We now determine the various vertex
functions U, g that are needed for their construction.

The m N <= N vertex function can be obtained from
Eq. (6.5) by “turning off” the spectator pion. To this end we
let k — 0 and relabel by letting p — k and ¢+ — u to obtain

. ./ ! ! K
Untv (i, F'm') = ozl - 2@ - K Univ &),
(7.1a)
where
J1272s® GO N -
U k) =127 G ) I rEwR
NN (k) SN G )[(271)3 Zw(k)E(k)]
X etk) +my 7" k Wan (k) + my
v | e®dmy T 2my
(7.1b)

Justification for using different coupling constants and
cutoff functions in Egs. (6.5) and (7.1) is given in earlier work
by Fuda [32] and by Pearce and Afnan [33].

For all of our pole term cutoff functions we assume the
form

o
k2 ’ + A(O)z/ n“ﬁﬁ,
Gy (k) = [—“ff UL , (7.2a)
k> + A gp
kiﬂﬁ, = [mé/ —(mg — mu)z][m}zg, — (mg +mﬂ)2]/(2m5r)2.
(7.2b)

These cutoff functions are normalized so that Gf?g,ﬂ,(k) =1
when W g(k) = my.

The m N & A vertex function can be obtained by “turning
off” the spectator pion in Eq. (6.14). With the help of Eq. (6.13)
we find

Uy a(kuim,i'm")

13 ~
=—i 4__71_(3”'TNA)ii’(k'SNA)mm’UnNA(k)v (7.3a)
where

_ [0 co [m—NT/Z
Unnal®) = 5-szva Gana®) | 57 T

|:8(k)+mNi|1/2 k
o | B Tmy e K

7.3b
2y (7.3b)

My

The expressions for the other pole term vertex functions
can be obtained from Ref. [7] Since the basis states in
Ref. [7] have different normalizations than the ones used here it
is necessary to “translate” the results of Ref. [7]. By comparing
Eq. (3.8) with Egs. (3.14) and (3.19) of Ref. [7] we find that
the vertex functions to be used here are related to those of
Elmessiri and Fuda [7] by

Ufﬂfﬁ/(kuim, i'm)

2[Q27) 2w, (k)ep(kymp 112

Uup.p(kuim,i'm"y = (7.4)
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The vertex functions for the processes 7 N < Rand7 A < R
are given by

Uyn rKuim, i'm’)

i —~
= —(6‘;: . T),',"(O' . k)mm’ nNR(k)’

V127
Uznr(k)

12
B © 0 "™
=127 SanrGanr(k )[(2;7)3 2a)(k)8(k):|

L [ed+my 2k
2my ek) +my

(7.5a)

Wan(k) +my
mg+my

, (7.5b)

and
Una r(kuim,i'm")
i

3 ~
=—Z\/;<ez.T;A)w<k-s O Unar(k),  (7.6a)

Uz ar(k)

12
_ 0) 0) L
= 4,/ 3 SrarOxar(k) |:(27T)320)(k)8A(k):|

5 [8A<k>+mA]‘/ZLWM<k)

7.6b
2 (7.6b)

My ma

The vertex functions for the processest N < Dandw A < D
are given by

Uyn.pKuim,i'm’)

= \/:G - 0)ii(0 kS p K Urnp(k),  (7.72)
Uznp(k)
— Vizs©® GO gy 1/2
aND~aND (2]‘[)%2(1)(]{)8(]6)
172 _
% I:E(k;‘f‘mNiI (k) mN’ (7.7b)
my My
Upa.p(kuim,i'm’)
= \/1—4_71(622 LT i
% |:1 + €A(k:1—;mA(i(‘. SIVA)(i(\- SND)i| Urap(k),
(7.82)
Uzap(k)
— Vars® G ()[L]m
TAPTIAPTEL @) 20(k)e A k)
172 _
y [SA(§)+mA] W a (k) (7.8b)
ma My

The vertex functions for the processes TN < S and nN < S
are given by

UﬂNys(kuim, i’m')

1
=R

v Tt Sm Un s (), (7.92)
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Uxns(k)
12
B © O S
=127 SansGrnsk) |:(2n)3 2a)(k)8(k):|

. [e(k) +mN]‘/2 Wi n (k) —

. (7.9b)
2mN

msg —my

U,]N,s (kim, i’m’)

1
= \/T(Sii/(smm’ Ur;NS(k)’
T

U,ns(k)
1/2
= _Vars® GO (k)[ my }/
- nNS nNS

Q) 2w, (k)e(k)
L [e® +my V2 W k) —
ZmN

mg —my

(7.10a)

(7.10b)

The vertex functions for the processes N < S’ andr A & §’
are given by

Upn.s(kuim, i’'m’)

1
= N e - Tns)iirSmm Urns (k), (7.11a)
UrrNS’(k)
_ _\/—s(o) G(O) ( ) [ my }1/2
TNS NS ) 2w(k)e(k)
172 _
o |:8(k)+mNi| Wan (k) mN’ (7.11b)
2mN msg —mpy

Upn.s(kuim, i’'m’)

3
=—/ g(é‘z -Tas)iir

X [(K - S5\ )0 - W)y Uz as (K,
Uras (k)

_ 8 (O) G(o) ( )|: ma i|1/2
V73 tmasYaast | o S wk)ea k)

. [2at) +ma V2 W a(k) en(k) —
ZmA

(7.12a)

mgy ma

(7.12b)

VIII. CROSSED POTENTIALS

The crossed potentials are defined by Egs. (5.38) with
Van.nv and Vo n A given by Egs. (6.5) and (6.14). By following
the method used in Sec. VII of Ref. [27] to relate V,y n to
H,nny we can show that the crossed potentials are also given
by

By nﬁ,(kmm Ku'i'm';z)

213 ()G anp(P)Granp(p) Zyy (K)
7 — k) — e(—k — K) — o(k')
X Y HingKu',—k =K, jn;—K, im)
jn
x Hynp(ku, -k — K, jn; =K', i'm"),

(8.1)
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where
p=FnEK,-k-k), p =fyk -k-Kk), (82)

with f,y defined by Eq. (5.32). The Hamiltonian matrix

elements, Hyg, are given by Eqgs. (6.3), (6.4), (6.12), and

(6.13). It is interesting to note that the amplitude [Eq. (8.1)] is

also a direct consequence of time-ordered perturbation theory.
From Egq. (6.3a) it follows almost immediately that

By y oy (Kuim, Ku'i'm’; z)

s ZINOGann(0)Gann(0)ZY g (K

TN T (k) — e(—k — K) — (k)
x(ey -t 1)iCayn(K, -k —K, —K)
x Conn(k, =k — k', =K)xNTa(k, K)a' (K, K)xY,

(8.3)
where
2ty 2my
% {[1 — Ak, k)]m
0 Ck=k)
+[1 + Ak, k)]g(—k —K)+my }
(8.4a)
with
A Ky e (Ck-K) —eh)

2mN

Using Egs. (6.12) and (6.13) we can show that

Y

By oa(kuim, K'u'i'm'; z)
Z/5 ()G yn(0)Grnal(p))
z—wk) —e(—k - K) — o)
X (ey - T € Tna)ivCrnn (K, =k —K', —K)
X CUNA(k9 _k - k/s _k/)

= SgNNSaNA

X X la(k, KYwl (K, K)xs (8.5)
where
ik, ) [sA(—m +mA]'/2 [s(—k — k) +mN]”2
2ma 2my
L ESha
My
[ea(—K) + malo(K) +k-K k-Si, }
ma [ea(=K) +ma] My
|: o-k o -(-k -k ]
x |14 - .
ea(—=K) +mp e(=k —K) +my
(8.6)

Once again using Egs. (6.12) and (6.13) we find
Bon o a(kuim, K'u'i'm'; z)

2 GnNA(;O)GnNA(p/)
=SzNA ; S
z—w(k) —e(—k = K) — o)
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X (&y - T}Aﬁ “Tnadii
X C?TNA(k/9 _k - k/9 _k)CnNA(k9 _k - k/s _k/)
x xMw(k, K)w (K, K)x5. (8.7)

IX. ANTINUCLEON, DELTA, SIGMA, AND
RHO EXCHANGE

Antinucleon exchange does not play an important role in
our model, but we have found that it does have some effect on
the S;; and S3; so we include it.

A straightforward application of time-ordered perturba-
tion theory shows that the off-shell amplitude for 7N
elastic scattering when the intermediate state is NNN is
given by equations similar to Egs. (8.3) and (8.4), but
with the replacements z — w(k) — e(—k — k') — w(k’) —
7 —&(—k) —e(k +K') — &(—=K’) in Eq. (8.3) and &(—k —
k') — —e(k +K') in Eq. (8.4). Our model does not include
INNN) basis states so we use the Okubo method [7,34] to
construct an effective # N-7 N energy-independent potential.
This amounts to choosing W to be either the “initial” energy
oK) + e(—K’) or the “final” energy w(k) + £(—Kk), adding the
two resulting expressions together, and dividing by 2. We find

BYy . y(kuim, K'u'i'm’)

= 52 N ZR OGN (P)Gann (0 ZY (k)

1 1
) |:a)(k) ek +K) — £(—K)

1
+ oK) — ek +K)— 8(—k)}
X (eu/ T 63 : r)ii/CnNN(k/v k + k/’ _k)
X Canv(k K+ K, —K)xNb(k, K')

x (—b'(K, Ky, (9.1a)
where
_ 1/2 N 172
bk, K) — [e< k>+mN} [e(k+k> mN]
2my 2my
X {[1 —I'(k, k’)]a—'l(
e(—Kk) +my
, o-(k+Kk)
+[1 +F(k,k)]m}, (9.1b)
with

oK) — ek +K) — e(—K)

Ik, k)= e

(9.1¢)

We take our A,o, and p exchange potentials from
Egs. (A.19), (A.34), and (A.36), respectively, of Ref. [7]. To
take into account the difference in the normalization of the
basis states used here and in Ref. [7] we have to multiply the
Elmessiri-Fuda results [7] by a factor F'(k, k'), where

1
42 P o®e(—k)wk)e(—K)]/2"

Fk,K) = 9.2)
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For the A exchange potential we find
B2y oy (uim, K'u'i'm")

2 * i
= SHNA(eu/ : TNAeu : TNA)ii’

e+my 12 g +my
X
ZmN ZmN

1/2
} 2my F(k, K)
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The 7 + A <= N vertex function G;an(p) =1 when
W”A =my.
For the o exchange potential we find

Y 4

BY v nkuim, Ku'i'm")

= Suwdii'SonnSoNN G[(kn - k]/-[)z’ me, Aann]Z:,/}\%(k)

X ZI2 KNG (ky — K)oy Agny]

ok ks - k! , [s(—k)+mNT/2
Fa(k, K ;my, X Tmemy F(K,K) | ————
x|: Al my,mp) + P m2 N 2my
o-K A K ) ©30) 8 [8(—k/)+mN}1/z
X LK —my, —ma) |, 3a T e—
T N A 2my
FA(kak/;mN5mA) X [ k12 2 + k k/l 2 2]
, (ky —ky)> —ms — (ky —ky)” —mg
= Z OGN (0)Gran (D) Z, i (K) i Y
Nt N
Galk, K3my, my) X Xom [1 v " }xmu ©.4)
X e where e(—Kk) +my e(—=K) +my
A (A2 22 4 A4T"
1 1 2 | mmrT A
" [ L } (9.3b) Glt?,m, A] = [ A=Al } (9.5)
e—el—w & —¢&f —w
Gk, Ky, ma) and
) e & a4 2m] ke = (@K, K, ky =K, -k. 6
For the p exchange potential we find
" / " 2 2
X {[Qw + £0)Q20" +}) + k> + k BYy oy (kuim, Ku'i'm’)
—ma(@+ao + el —ma)k-K = SpraSonn Gllke — K2 . A prr 1 Z 0O Z, 5 (K)
2k2k/2 k/2 " ’ /k2 " 1 1
+ [// + a)/ () + o) + k(e + w)]} x Gl(ky — Ky, A pwn] |:‘€Z T ey ti|
—[ep —€—& —mp —2my] 2 2 i’
b ) e(—K) +my 1" Te(—K) +my "2
X (@ + o +ep)e—my)e —my), (9.30) x myF(k,K)
ma 2my 2my
Gran(p) g -k
Nt /
2 X xXm | RK K, my) + ———
_ (AzerN - m2A) + Ay (9.3d) |: N e(—k) +my
A2 2 o w2 212 A4 T o-K
[ xan — My T Win(p) — mN] + Azan x ————R(k. K/, _mN)i|X"1:’/’ (9.7a)
e=e(-k), & =e-k) ef=ea-k—K) e(=k) + my
o =owk), o =ok). (9.3¢)  Where
|
Sk, K,
RO, K, my) = — e Ko my)
(kN — kN)2 — m%
Sk, K, 2 Won(EK) — Won (K —k) — e(—K
" ( my) + (kp/2my)[ NE )2 2N( Nle (—k) — e(—k')] (9.7b)
(ke — KL —m2
[
and We now take for the interaction defined by Eq. (5.39)
Sk, K/, /
( my) ) Bf;(;\t, Ly Kuim, K'u'i'm")
= Wan (k) + Wan (k) — 2my BT sim K 4 B i, K
K =B (kuim,Ku'i'm’) + B (kuim,Ku'i'm’)
= 5, = {Wan () + Wan (K)]e(—K) T
my + B,y yKuim, Ku'i m)+Br[N,nN(kulm’ u'i'm’).
+e(—K) = 2my] = 2(ky - Ky —my)}. (9.7¢) ©8)
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This complete the specification of the propagators and
effective potentials, that is, the B’s that appear in the
Lippmann-Schwinger integral equations, Egs. (5.48)—(5.50),
that we need to solve to determine the various amplitudes
of the pion-nucleon system. We now turn our attention to
simplifying these integral equations by carrying out a partial
wave analysis.

X. PARTIAL WAVE EQUATIONS

We can simplify the coupled Lippmann-Schwinger equa-
tions, Eqgs. (5.48)—(5.50), by coupling the particles’ isospins to
atotal isospin 7" and component M, and by taking into account
that the dependence of the effective potentials (i.e., the B’s)
on the particles’ spin components, m, are through x~ and x 5.
We write

ZZ(lTﬂunTm

X Anpap(Kuim,Ku'i'm'; 2)(1Tgu'i'|T'M')
(10.1)
= 811 Sum x5 ALy o (K K 2)X0.
A=X,B, B and B =N,A.

We must treat the amplitudes that involve the n meson
differently since this meson has no isospin or spin. We write,
for the effective potentials,

> (1,12, uil TM)BEy, ,  (kuim, Ki'm’; 2)

ui

= 87.1720mi Xy By oy (K. K210 (10.2a)

> By oy im, Kui'm';2)(1,1/2,u'i'|T'M)

u'i’

,;z/vz v &K DX, (10.2b)

= 81018 x N

By v(kim Ki'm';2) = 8 x N B (kK5 2)xN,

(10.2¢)

and for the nN-m N scattering amplitude

Z Xy oy Kim, Ku'i'm'; 2)(1, 1/2,u'i'|T'M')

172

= 81/2.08im Xy | Xy o (Ko K52 300 (10.3)

With the help of these expressions, as well as Eq. (6.41), we
can rewrite Eqs. (5.48)—(5.50) as

nN v (K, K';2)
= BTy vk K30+ / BT, (k. q:2)
d3q
><—XTJr , ,z+/B;” k, q;2)d*
din(d.2) nan(@ K5 2) N, Ak, q;2)d g
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X / @ n;q, 2dQmX., y(gn K;2)

+d1.1,2 / B,l,/ls,,,N(k, q;2)

d361 x1/2
— Wyn(q) Xo.n

Xra v K:2)

v, K 2), (10.4)

= BT, vk, k,z>+/ BT, o(k :2)

d3q
——x! K Bl 2a(k, q; 2)d’K”
an(q,z) rrN,nN(q Z)+/ rrA,rrA( q Z)
x f I'@ nq, 2dQmXI, gnK3z),  (10.5)
X an(k K5 2)
= B (kK2 + / BYZ vk, q:2)
d3‘1 x /2
X ——— X% (@, K;2)
den(g.z) "NV

d3f] X2

B2
/ o K 82) g s X (@,

(10.6)

Our partial wave amplitudes are constructed using the
angular momentum eigenstates

Mg M q

Yias(K) = Z;;(K),

Y%\,J(/l;) = YLIV,I1/2,J(/k\)» (10.7)

where YLM 12, (k) isdefined by Eq. (6.21) and Z (k) is defined
by Eq. (6.24). For those amplitudes that 1nvolve only nucleons
we write

/ dQE)AQUKHY A RAT, LK)V M)

WN, W

=877 8um S ALY vk, K L;2),

N,

(10.8)
A=X,B, p and u =m,mn,

where we have used the fact that conservation of total
angular momentum and parity require that the orbital angular
momentum is conserved. For the amplitudes involving the A
we can write

f AQK)AQK)Y 5 R)AL, ok K52V, (K)

=87 8um ALY gk, LK L' 2),
(10.9)

A=X,B, B,/ =N,A, or A,N, or A, A.
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TABLE II. w N-m A couplings.

J L L
1/2 0 2
1/2 1 1
>3/2 J—1)2 J—1/2,7+3)2

>3/2 J+1/2 J=3/2,7+1)2

Using these expressions along with Eq. (6.39) for I'(n, n’; &, )
we find that Egs. (10.4)—(10.6) lead to

XTJ

nN,w

oo
= BI} .n(k. k’,L;z)+/ BIj .y, K" L;2)
0

X k//de// XTJ
dan (K", 2) T

+Z/

L
k//de//

X —

dT[A(k//v L//v )

0
+3T,1/25J,1/2/
0
k//zdk//
X —
z— Wyn(k")
X;iyﬂN(k7 L’ k/y L,;Z)

N(ka k/’ L;Z)

N&" K Ly z)

v stk LK L5 2)
Xakan®" L K L;2)
Bra (ks K, 032)

Xy K K 052), (10.10)

=Bl Nk LK L z)—i—/ BI{ .y, Lk, L';z)

k//zdk// :
* don k7, 2) Xonan®' K, L 2)
+ Z/ A aalk LK L")
L
k//2dk//
- k// L// k/ L 1011
X A(k”,L”, ) 7TA 7TN( Z) ( )
X\ Gk, K, 0;2)
00
= By an (k. K 0; )+/ B2, K, 0:2)
k//zdk// :
14 P
oo 1 2,172
+/ ,ﬂ/v,,,/v(k k', 0;z)
0
k//zdk//
W) Xynan K K 052). (10.12)
n

In deriving Eqgs. (10.10) and (10.12) we have used the fact that
the t N-nN and nN-nN interactions actonlyin7 = J = 1/2
states with L,y = L,y = 0. The limits on the sums on L”
in Egs. (10.10) and (10.11) are determined by conservation
of total angular momentum and parity. In Eq. (10.10) the
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TABLE III. 7 A-7r A couplings.

J L L
1/2 1 1
12 2 2
>3/2 J—1/2,7 +3/2 J—1/2,7 +3/2

>3/2 J=3/2,0+1)2 J=3/2,7+1)2

limits are given by Table II; for Eq. (10.11) they are given by
Table III.

XI. PARTIAL WAVE MATRIX ELEMENTS

The direct interactions BZﬂ, wp are given by Eqgs. (5.28)—
(5.30) with the various vertex functions U,g g given by
Egs. (7.1), (7.3), and (7.5)-(7.12). We couple the isospins
according to Eqgs. (10.1) and (10.2). Making these couplings
is easily carried out with the help of the identities

Z(lTlguHTM)(e

ui

u - Tpiir = 81,1, 8mis (11.1)

T=—3Tyy = —\/§T1/2,1/2,

(11.2)
C2p 41
c= (=1 Xp5,
Xpp = (=1 28+1°FF
(11.3)
X =8,T.

These relations follow from Eq. (6.10). In Eq. (11.3) 8 and
B’ denote the baryons or their spins or isospins. We note that
Eq. (11.2) is also valid fort — ¢ and T — S.

According to Egs. (10.8) and (10.9) we need to calculate
the integrals

f dQ(k)dQ(k’)YLAZ,TJ(k)BMﬁ KDY (KD,

which are diagonal in J and M and, for 8 = 8/ = N, also
diagonal in L. With the help of Egs. (6.21), (6.22), (6.24),
and (6.25) it is reasonably straightforward to carry out these
integrations.

The crossed potentials are given by Egs. (8.1)—(8.7).
Coupling the isospins as shown in Eq. (10.1) can be carried
out by using the identity

YD (BuilTM) (e, - Typre;

ui  u't’

/3,3/ Diir <1,3/u/l/|T M’ )

Srrdum 28" + 1) LeT (11.4)
= —O0TTOMM Ak .
This identity follows from Eq. (6.10) and the fact that the 6 — j

symbol can be expressed as a sum of products of Clebsch-
Gordon coefficients. This identity leads to the results

DO L2, ui TM)(ew - T &) - )i (1, 1/2,u/i'|T'M)
ui  u'it’

=87 8mm (—=871,12 + 2873/2), (1L.5)
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ZZ(L 1/2, ui|TM) (e, - T €% - Tyn)ii

ui  u'it’

x {1,372, u'i"|T'M")

8 5
=Srréum (\/;ST,I/Z - \/g5r,3/2) , (11.6)
ZZ 1,3/2, ui| TM)(e, - Tk s% - Tya)ic
x (1,3/2,u'i'|T'M")
1 2
=Srrdum §5T.1/2 - §8T,3/2 +drs52 ). (11.7)

In carrying out the partial wave integrations complications
arise from the matrix operators Sgg that couple the spin
states of the baryons 8 and g’. To carry out the integrals in
Egs. (10.8) and (10.9) it is convenient to reorder the matrix
operators K - Spg and K- - Sgrgw that appear in the crossed
potentials so that the k-S g operators are to the left of the K-
S g operators. This can be done by using the identity given by
Eq. (4.12) of Ref. [7], that is,

K - Sep)(k - Sp,) = (=D /2 + DA+ 1)
A

ly Al ~ ~,
X { } (k-Se)K -S;,). (11.8)
lap

Some simplifications can by carried out with the help of the
“sum rule”

1+
> @+ Dk ShOE -Sgp) =28+ D& -K)IP.
B'=11-p|

(11.9)

The action of the matrix operators on the matrix-functions,
Y 2” J(k) defined by Eq. (10.7), can then be worked out with
the help of Eqgs. (6.22) and (6.24). The results for the final
integrals that are encountered all follow from the identity

/ AR Y ) F(k, K 2)Y s, (K)

1
= 271/ dx Pr(x)F(k,K';z2),
—1

x=k-K, S=1/2,3/2. (11.10)

The N exchange potential is given by Eq. (9.1) and has the
same isospin factor as the N exchange potential, so coupling
its isospins also leads to Eq. (11.5).

The A exchange potential is given by Eq. (9.3) and coupling
its isospins leads to the result

DO (L 1/2,ui| TM)(ew - Tyae) - T

ui  u'it’

x (1,1/2,u'i'|T' M)

}LVA)ii’
4 1
= drrdmm <§3T,1/2 + 55[3/2) . (11.11)

The o exchange potential is given by Eq. (9.4) and coupling
its isospins simply leads to the factor §77/8ypr-
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The p exchange potential is given by Eq. (9,7). Its isospins
can be coupled by first using the anticommutation rules for the
components of t to derive the identity

81414’81'1"]’
(11.12)

1 1 1
[3€5 - 380 - T], = 3l(e) - Tow - D —

which in turn leads to

ZZ(I 1/2, ui|TM) Lo o le o
E) ’ 2 u 72 u i

x (1, 1/2,u'i'|T'M')

1
=Srrdum (57,1/2 — —5T,3/2> . (11.13)

2
The spin structure of the N, A, o, and p exchange poten-
tials is essentially the same as that of the crossed N exchange
potential given by Egs. (8.3) and (8.4), so the partial wave
integrations go through in the same way.

XII. SOLVING THE EQUATIONS

The function Z,y (k) is defined by Eq. (5.22) with Fyyy
given by Eq. (6.8). Z}/ﬁ (k) appears in the following combina-
tions: in Z)/y (k) 5 ith 8 any of the baryons, in Z,y (k)sz
with§ = N, A,andin Zi/l\z,(k)sﬂm and Z}T/,g(k)sﬂNN with u =
o, p. We will interpret a combination such as Z}T/A% (k)sznp as
a renormalized coupling constant g, yg, which is independent
of k. This implies that s, yg(k) = gnNﬁ/Z;/,\z,(k) depends on
k. This k dependence does not affect the Poincaré invariance
of the model, and as a practical matter we shall see that the

dependence of Z, (k) on k is very weak. A summary of the
renormalized coupling constants is given here:

g% = ZVa)sOs k), B=N.AR,D,S.S,

8nNp = nN(k)anﬁ(k), B=N,A,

12 (12.1)
urr = Zyiy (K)5yin (K),
8uNN = Z}[/[\zl(k)sll.NN(k)ﬂ w=o,p.

For any coupling constant that does not appear here we will
replace s with g, so that from now on all coupling constants
will be denoted by g’s.

We can express Z, (k) in terms of g,y rather than s, yy.
It follows from Eqgs. (5.22) and (6.8) that

Zonk) = 1= g2 yw Len(k),

_2 .
Len (k) = / @tz o)
le(k) — Exn(k, p)]?

where I, y (k) does not depend on g, yn Or sy It should be
noted that if g72r v Ixn(k) > 1 then Z}T/]\% (k) is pure imaginary,
which in turn implies that the s’s in Eqs. (12.1) are pure
imaginary. This destroys the hermiticity of the mass operator
and thereby leads to unphysical results. Fortunately this does
not turn out to be the case here.

We now consider the singularities that appear in the
kernels of our integral equations (5.48)—(5.50), (10.4)—
(10.6), and (10.10)—-(10.12). There are two sources of these

(12.2)
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singularities. They appear in the meson-baryon propaga-
tors, d x(q,2),d A(q, L,z), and [z — Wyn(g)]™', and in
the crossed potentials, By 4. The propagator d_ i(q, L,z7)
appears in ['(n,n’;q, z), which is defined by Eq. (6.39).
The crossed potentials, which are given by Egs. (8.3)—(8.7),
contribute to the potentials B 2p.=p (K @;2) that appear in
Egs. (10.4) and (10.5) and are deﬁned by Egs. (5.40) and
(10.1).

The pion-nucleon propagator, d_ Zi,(q,z), is given by
Eq. (5.23) and has singularities resulting from the vanishing
of z — Wyn(g) and z — Wy, n(q, p), which appears in the
integral over p. If we write

z2=W4ie=Wynk)+ie,

where ¢ is an infinitesimal positive parameter and k' is the
momentum of the incident pion, we can easily show that there
is a simple pole in the 7 N propagator at g = k' + in, where n
is an infinitesimal positive parameter.

The vanishing of z — W, y(g, p) leads to a branch cut in

(12.3)

q. Writing
Warn(q. p) = &(q) + Exn(q. p)
=o@+ [+ W2y@]"”,  (124)
we can easily solve the equation z — Wy, n(g, p) = 0 to show
that
w(q) = &= Wanlo) +my (12.5)

2z
Letting z = W + ie, and expanding to first order in ¢, we find

W2 — W2, (p) +m2 o W2+ W2, (p) —

(@) = 2W 1%
(12.6)
Since W, n(p) = w(p) + €(p) = m, + my we have
W2 _ W2 2
TG Sy (12.7)
where
W2 —2m my — mj
Wmax = NN N . (128)

2w

Using Eq. (12.8) in Eq. (12.6) we find that the branch cut
in the w plane is given by

ngN(:O) — (my + mN)2
2W

We see that the branch cut in the w plane begins at the branch

point wm,x and runs to the left just above the the real axis. In

the g plane the branch point is at kp,x, which is defined by

W(kmax) = ®Wmax and is given by

)1/2[

+in. (12.9)

w(q) = Omax —

(w2 - 2= @ A my)*1

2w

In the g plane the branch cut starts at k,,x and runs just above
the real axis until £ = 0, at which point it continues along the
positive imaginary axis.

The interpretation of wmax and knax 1S quite simple. Since
Wezn(q, p)is the c.m. energy of two pions and a nucleon, and

(12.10)

kmax =

PHYSICAL REVIEW C 80, 024002 (2009)

since w(q) solves the equation W,y (g, p) = W, then wpax
and kp,x are the maximum energy and momentum a pion can
have in the c.m. frame of the 77w N system, given that the
total c.m. energy of the system is W. Of course for the nw N
system we must have W > 2m, + my, which is reflected in
the formula for kp,x.

To determine the location of the pole in
to the branch cut we need to solve

W = Won(k') = wk’) + k) (12.11)
for w(’) or k'. If we define k = (w(k’), k), ky =
(e(k"), —K'), and &/, = (w(k) + (k’), 0), then using the triv-

ial identity k. - k.., = [(kl, + ki) + (k,, — k\)]1 - k. /2 leads
to the result

d-\(q, 2) relative

2 2 2
W= +m;, —my

kK = 12.12
(k') W ( )
From here and Eq. (12.8) we find
2my, 2
a)(k’) _ w(kmax) — w (12‘13)

2w

Therefore k’ > kpn,x, and the pole does not lie on the cut. We
note that Eq. (12.12) can be solved for k' to give

[W? — (my 4+ my)*]' P [W? —
2w

(my —my)*1'?

kK =

(12.14)

The 7 A propagator, d A(q L, ), defined by Egs. (6.32)
and (6.27), does not have a simple pole just above the real ¢ axis
resulting from the vanishing of d; (g, L, z), but it does have
the branch cut given by Eq. (12.9). The nN propagator, [z —

W,n(g)]1~!, does have a simple pole just above the real g axis
resulting from the vanishing of z — W, x(g) when W >m,, +
my.

According to Egs. (8.3), (8.5), and (8.7) the singularities in
8 arise when

W — k) —e(—k — q) —wo(q) =0.

BC

nB,m

(12.15)

For now we ignore the ie term in z = W + ie. We note that
according to the interpretation of wp,x given here that for real
momenta we must have w(q) < wnmax if Eq. (12.15) is to be
satisfied. As a result of this the Born or inhomogeneous terms
in Eqgs. (10.4) and (10.5) do not suffer from the singularities
given by Eq. (12.15), since in those terms ¢ = k’ and k’ > kpy.
These singularities only play arole in the kernels of the integral
equations.

Solving Eq. (12.15) for g comes down to solving a quadratic
equation to show that

gulhox, Wy = XL W) E W — 0] gk, x, W)

dk,x, W)
(12.16)
where
fle, W) = W2 —2Wa(k) +2m2 —m3,  (12.17a)
dk,x, W) = 2{[W — w(k)]* — k*x?}, (12.17b)
gk, x, W) = {[W? —2Wao(k) — m} ]
—4m2[m3 + K1 =D (a2.17¢)
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Instead of solving Eq. (12.15) for g it is possible to solve it
for w(q) to obtain
[W—w()] fk, W) £ kxg(k,x,W)

wik, x, W)= A x )

(12.18)

‘We note that gz(k, x, W) can be positive or negative; therefore
g can be real or pure imaginary, respectively. For fixed k and
W the minimum value of gz(k, x, W) occurs when x = 0. We
can find the values of w(k) at which this minimum value is
zero by solving

(W? —2Wao —m3)? — 4m2 (m3, —m? + ) = 0. (12.19)

The results are

W2 £2Wmy, + 2m%: — m?,
2(W £ my)

which can be solved for k4 to yield

w(ky) =

. (1220

ki

_ w W x2m, Fmy
T W+m,

With the roots of Eq. (12.29) in hand we can rewrite g(k, x, W)
as

172
kmax- (12.21
W F 2m, :FmN> max- ( )

gk, x, W) = 2{(W? — m3)[w(ks) — 0 (k)]
x [o(k-) — wk)] +m2k2x*} 2. (12.22)
It is of interest to compare w(ky) and w(k_) with each other

and with oy, which is given by Eq. (12.8). Straightforward
algebra shows that

2W(W —my)
My

= W2 = 2(my +my)W + myQmy, + my).

[WOmax — w(k_)]

(12.23)

The right-hand side of this equation is a monotonically in-
creasing function of W for W > m, + my. Since this equation
is meaningful for W > 2m, + my we see that the minimum
value of the right-hand side occurs when W = 2m, + my,
which yields the value 0; therefore wpnax — w(k—) > 0. Straight-
forward algebra also shows that

[w(ky) — Wmax]

= W2+ 2(my +mnW +myQ@my +my) > 0. (12.24)
Therefore w(ky) — wmax > 0. Summarizing we have

o(k-) < Omax < (ky), (12.25a)
ko < kmax < kg (12.25b)
According to Egs. (12.22) and (12.25) g*(k,x, W)>0 for

0 <k <k_, so the branch cuts given by Eq. (12.16) lie near
the real ¢ axis. An example of this is given in Fig. 1.

w=2m,+mn+0.5m,, k=k_/2
Im(q)
=8 -04 -02 d 02 04 06

Re(q)

FIG. 1. wxr N branch cuts for W = 1288 MeV and k = 71 MeV/c.
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W=2m,+muy+0.5m,, k=(K_+Knax)/2
Im(q)

e 010 015 "e@

FIG. 2. & N branch cuts for W = 1288 MeV and k = 142 MeV/c.

For k_<k<kmsx we have [w(ks)— w(k)][w(k-)—
w(k)] <0, so gz(k, x, W)<0forx2 < xg, where

x5 = (W? = m3) k) — ok)]
x [w(k) — o(k_)]/ (m2k?),

Under these conditions the branch cuts appear as in Fig. 2.

In our integral equations the integration path runs along
the positive, real ¢ axis. As a result of this the pole in the 7 N
propagator at g = k' + i1, the pole in the n N propagator when
W +ie — Wyn(g) =0, the 7 N and 7w A propagators’ branch
cuts, given by Eq. (12.9), and the cuts given by Eq. (12.16), lead
to singular integrals. To deal with the singularities we deform
the contour of integration. In a very abbreviated notation our
integral equations are given by [see Eqgs. (10.10)—-(10.12)]

ko <k <kma. (12.26)

o0
Xaak K32 = Bk K2+ Y [ Bunthg52)
b 0

2
q-dq
X ————
dp(q, 2)
where a, a’, and b are cover indices for particle names and
angular momentum quantum numbers. We deform the g
integration path from the positive, real ¢ axis to a path such as
that shown in Fig. 3. Our deformed contour is given by

(12.28)

Xpa(q, k'3 2), (12.27)

¢(q) = q — isq exp(—q/qo)-

The slope of the contour at ¢ =0 is —s, whereas the
minimum value of Im[¢(g)] occurs at g = go. Having let
qg — ¢(q) in Eq. (12.27) we see that we need to determine
our unknown amplitudes, X, (g, k'; z), along the deformed
contour. To deal with this we let k — ¢(k) in Eq. (12.27),
which gives us integral equations along the deformed contour.
Of course we must verify that these “deformed” integral equa-
tions are nonsingular. Straightforward numerical calculations
show that the new locations for the branch cuts are not near
the integration path shown in Fig. 3. The poles in the w N and

in@

5 10 15 o Re@

FIG. 3. Deformed integration contour.
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TABLE IV. Baryon and meson masses in MeV.

my = 938.92 ma = 1232.0 my = 1440.0
mp = 1520.0 ms = 1535.0 mg = 1620.0
my, = 139.57 m, = 418.12 m, = 547.51
m, =769.0

nN propagators and the w N and 7 A propagators’ branch cuts
are just above the positive, real g axis, so these singularities
are also not near the integration path.

The physical amplitudes for elastic, w N scattering are given
by the on-shell amplitude X;I{,,HN[k’, k', L;Wyn(K +ig)].
According to Eq. (12.27) calculating this amplitude entails
evaluating B, (k’, ¢;z) with g on the deformed contour. It is
straightforward to show that the branch cuts in B,,(k’, ¢;2)
are far removed from the deformed contour, so there is no
problem.

The integral equations are solved numerically by replacing
the integrations by quadrature rules, which transforms the
equations into linear matrix equations. Such equations can
readily be solved by using standard matrix routines. The
quadrature rules we use are obtained by mapping the standard
Gauss-Legendre quadrature rules on the —1 < x < 1 interval
to the 0 < g < oo interval by means of the mapping

14+ x
1—x

(12.29)

qg=c , —1l<x<l.
In general we have chosen ¢ = 0.5.

In Sec. XIII we present the results obtained using the just
described method for solving our singular integral equations.

XIII. RESULTS

Our model contains a number of parameters that at the
present time can only be obtained by fitting the model
to the data. These parameters consist of the coupling
constants and cutoff masses associated with the various
vertices, the bare masses associated with the direct inter-
actions, as well as the mass of the o meson. The data
on the pion-nucleon system are available from the Cen-
ter for Nuclear Studies (CNS), which is associated with
George Washington University (GWU). The Web address for
CNS is http://www.gwu.edu/~cns/; the information on the

PHYSICAL REVIEW C 80, 024002 (2009)

TABLE VI. Vertex parameters. The particles are desig-
nated according to P;(938) — N, P33(1232) — A, P;(1440) —
R, D3(1520) — D, S;(1535) — S, and S5,(1620) — §'.

Vertices Parameters (masses m and cutoff masses A in MeV)

N & N g%, =29985 AU, =950.15, m}) =1087.2
aN & A g%, =17965, AV, =1585.9, m}{ =1311.8
aN &R g% =77777, A, = 40415, mY = 1562.0,

TA & R g0k =2.1530, A\, = 17328
N & D g9, =97987, AV, =25852, m{) = 10284,
TA & D e, = —6.9157, AV), =4831.4

aN &S g9 =096627, A5 =6096.0, m§ =2572.7,
nN & S givs = 3.3981, ALY =2816.3
aN &S g9 =13707, A, =2248.0, m{) = 1550.0,

NS —
TA & S g0y =74364, A\ = 11563

pion-nucleon system that is of direct interest to us is located at
http://gwdac.phys.gwu.edu/analysis/pin_analysis.html. A re-
cent paper by the group that maintains the data on the 7 N
system is available [35].

For the function V3 (k) that appears in the A propagator [see
Eq. (6.30)] we considered two choices, V (k) = 0 and V (k)
given by (6.44). The results reported here are for V{ (k) = 0.
Using the other choice leads to only small changes in the
parameters.

The masses of our baryons and mesons are given in
Table IV. Only m, was obtained by adjusting to the 7 N
data. Table V gives the parameters for the interactions from
N,N,A,o,and p exchange.

The vertex parameters are given in Table VI. These
parameters occur in the vertex functions U,gg (k) defined in
Sec. VIL. In the cutoff functions defined by Eq. (7.2) we chose
nfgﬂ, = 10.

As was pointed out in Sec. VII, the parameters g,yn
and A,yy must be such that Z, y(k), defined by Eq. (12.2),
satisfies Z, (k) > 0. Table VII gives values of Z, y (k) over a
wide range of values of k. We see that the constraint is satisfied
and that Z, y (k) varies very slowly.

The coupling constants, cutoff masses, bare masses, and
the o mass given in Tables IV-VI were determined by fitting
to the GWU partial wave analysis. A partial wave amplitude

TABLE V. Exchange potential parameters.

Exchange potentials

Parameters (cutoff masses A in MeV)

N exchange, tN & N
N exchange, 7N < w A

gewy = 13490, A,yy = 842.24
8xNN = 13490, AﬂNN = 842.24

guna = 1.1828, A ya = 1858.5

N exchange, TA & A
N exchange, 7N & N
A exchange, N < N
o exchange, tN < 7N
p exchange, TN < N

8xNA = 11828, AnNA = 1858.5
geny = 13.490, A,yy = 842.24
8xNA = 11828, AnAN = 1455.0
Gonn 8oy = —17.658, Agnn = 2515.6, Apny = 2600.5
Spun 8onn = 58.961, K, =7.1693,

Aprn = 34363, A,yy = 5885.7
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TABLE VIL Values of Z, y(k).

k (fm™") Zan(k)
0.0 0.906
1.0 0.905
2.0 0.905
3.0 0.905
4.0 0.905
5.0 0.905
6.0 0.904
7.0 0.904
8.0 0.904
9.0 0.904

10.0 0.903

can be parametrized in terms of a phase shift 8[1 and an

inelasticity 7} /. The dependence of a partial wave amplitude

on these parameters is determined by unitarity considerations.

By following the development in Sec. XIII of Ref. [27]

it can be shown that our amplitudes satisfy three-particle

unitarity exactly. From Eq. (8.10) of Ref. [27] it follows

that our elastic scattering amplitude satisfies the unitarity
constraint

Im{ X2 ylk, k, L; Wy (k) +ic]}

= -k SOy

Wan (k) ’

Xmy+my < Wyyk) <2my; +my.

2

k]

nlk k, Ly Won(k) +ie]

(13.1)
This constraint is satisfied by the form

XY onlk &y Ly Woy (k) + ie]
Wi n (k)

= ~Srikeedo 1L ©exp[2is (0] 1}, (1322)

! (k)

=1, my+my < Wynk) <2m; +my. (13.2b)

The partial wave S-matrix element is now given by
w(k)e(k)
W (k)
= n; (k) exp|2i8]’ (k)].

We see that 28[1 (k) is the phase of the S-matrix element and
n{’ (k) is its modulus.

Our fits to the GWU partial wave analysis are shown in
Figs. 4-17. Partial waves are designated by X,7,;, where X
is the spectroscopic symbol for the relative w N orbital angular
momentum L, and 7 and J are the total isotopic spin and total
angular momentum, respectively.

S (k) =1—2mik X2 anlk b, Ly Wan (k) + ie]

(13.3)

XIV. SUMMARY AND DISCUSSION

Our existing model gives reasonably good fits to the 7 N
phase shifts and inelasticities from the elastic threshold at W =
my +my = 1078.5MeVupto W = 1550 MeV, which is well
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FIG. 4. §;; phase shifts. The solid line is theory. Points with error
bars are from the CNS analysis.

above the threshold for single pion production at W = 2m, +
my = 1218.1 MeV. The threshold for double pion production
is at W =3m, +my = 1357.6 MeV, so our energy range
goes above this threshold. The cross sections for double pion
production are known to be small [35], and our results bear
this out, since our model does not include www N states. The
one place where our model does poorly is in its description
of the S3; inelasticity. This might indicate that there are other
interactions that need to be included.

Extensions of the model that are being considered involve
including o N and pN channels coupled to the 7 N channel.
Since the o and p mesons are essentially 7 7w resonances these
channels will contribute to the wzr N final state through the
processes tN = oN = naNandnN = pN = nnN.

The model of Matsuyama, Sato, and Lee [36] does contain
the o N and pN channels. Their model is based on a
Hamiltonian that was partially constructed from a set of
effective Lagrangians using a unitary transformation method
[37] somewhat similar to the Okubo method [34]. Unlike here,
they did not construct the direct interactions involving the
baryon resonances from effective Lagrangians, but rather they
assume plausible resonance amplitudes, similar to the Breit-
Wigner form. Their treatment of the 7 N and w A propagators
is also quite different from ours. Our propagators involve
the complete dressing of the N and A due to the vertices,
N & N and A & 7N, in the presence of a spectator pion.
As a result of this our w A propagator, in particular, is much
more complicated than theirs. Also, our model places much
more emphasis on Poincaré invariance than they do in that
we explicitly construct a Poincaré invariant mass operator.
Since they work with an energy-independent Hamiltonian in
the c.m. frame it could probably be established that their
model is also Poincaré invariant. We have also been more
careful in establishing that two- and three-particle unitarity
is satisfied [27]. They assume that since they work with an
energy-independent Hamiltonian the standard results of formal
scattering theory guarantee that unitarity is satisfied. We feel
that since both of our models involve particle production
and absorption, unitarity really has to be established through
a “model-dependent” proof, as we have done in Ref. [27].
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A shortcoming of our model is that it does not satisfy
the clustering requirement exactly [4,8—14]. If it did the
renormalization parameter Z,y(k) would not depend on k.
According to Table VII the dependence on k is very weak,
which suggests that the neglect of the clustering requirement
is a reasonable approximation. At present we are investigating
an approach for satisfy the clustering requirement that deals
with the square roots of operators. For example, the interaction
between particles 1 and 2 in the presence of a spectator particle
is taken to be

Vigs = \/Ki + (Myp)* — \/Kg + (M?2)2~

(14.1)

Here M ?2 and M, are the noninteracting and interacting mass
operators, respectively, for the isolated (12)-system, and K3 is
the three-momentum operator for particle 3, the spectator. Our
preliminary results indicate that this approach is tractable.
Even within the framework of the present model there
are other things that need to be done. In particular the
cross sections for the inelastic processes, 7N = nN and
7N = nn N, should be calculated. The cross section for
the process mN = nN can be calculated from the am-
plitude [see Eq. (10.6)] X,llfvz’mv[k, K'; W.y(k') +ig], and
pion production can be calculated from the amplitudes [see
Eqgs. (10.4) and (10.5)] X;N,UN[k, K'; Wyn(k') +ie] and
X;A’HN[k, K'; Won(k')+ic]. In our framework the reac-
tion mN = an N proceeds through the processes 7 N =
nN = nnN and 7N = w A = nnw N. Here the processes

PHYSICAL REVIEW C 80, 024002 (2009)

7N = nNand 7 N = 7 A are off-shell, that is, non-energy-
conserving processes, followed by the propagation of aw N or
7 A state, respectively. These states then transition to the mw N
final state through the processes N = n N and A = 7 N.

One of the shortcomings of our model is the use of
interactions derived from a combination of effective hadronic
Lagrangians and purely phenomenological cutoff functions.
The cutoff functions are needed to account for the nonelemen-
tary nature of the hadrons involved and to provide convergence
of the integrals and integral equations. Ideally the interactions
should be derived from QCD, but at the present time this is a
challenging problem. An alternative approach is to attempt to
derive the interactions from the constituent quark model. In the
usual constituent quark model calculations of baryon structure
the spectrum is obtained from a three-body calculation with
some assumed quark-quark interaction, and the coupling of
a baryon B to a meson-baryon channel pB’ is calculated
by assuming a strong interaction transition operator T, and
evaluating the matrix element (uB'|Ty|B). In general the
baryon state vectors are taken from the three-quark calculation,
whereas the treatment of the meson depends on the nature of
the assumed transition operator. In one class of models, the
so-called elementary emission models, the mesons, u, are
treated as elementary particles, and the transition operator
describes a ¢ < ¢’ + p coupling, where the ¢’s are quarks
[38—40]. This approach can be thought of as originating
from an effective theory of hadrons discussed by Manohar
and Georgi [41] in which a Lagrangian is constructed that
describes the coupling of constituent quarks, gluons, and
Goldstone bosons. Another type of model is the so-called pair
creation model [42-51]. In such a model both the baryons
and the mesons are described by constituent quark models,
and the transition 8 < up’ is brought about by the creation
of a quark-antiquark pair from vacuum. A comparison of the
various approaches is given in a review article by Capstick and
Roberts [52].

Clearly, the quark wave functions should provide the shapes
of our cutoff functions, and the transition operators should
determine the strengths of the 8 < up’ vertices. Also the
baryon mass eigenvalues obtained by solving the quark model
without coupling to the strong decay channels should provide

the bare baryon masses, ml(go), that appear in our equations.
Hopefully, this program is tractable and will at least move the
phenomenology down to the quark level.

[1] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[2] B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).

[3] T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

[4] B. D. Keister and W. N. Polyzou, in Advances in Nuclear
Physics, edited by J. W. Negele and E. Vogt (Plenum,
New York, 1991), Vol. 20, p. 225.

[5] Michael G. Fuda, Phys. Rev. C 52, 2875 (1995).

[6] Y. Elmessiri and Michael G. Fuda, Phys. Rev. C 57,2149 (1998).

[7]1 Y. Elmessiri and Michael G. Fuda, Phys. Rev. C 60, 044001
(1999).

[8] S. N. Sokolov, Dokl. Akad. Nauk USSR 233, 575 (1977) [Sov.
Phys. Dokl. 22, 198 (1977)]; Teor. Mat. Fiz. 36, 193 (1978).

[9] S. N. Sokolov and A. N. Shatnii, Teor. Mat. Fiz. 37,291 (1978).

[10] F. Coester and W. N. Polyzou, Phys. Rev. D 26, 1348
(1982).

[11] F. Coester, Helv. Phys. Acta 38, 7 (1965).

[12] U. Mutze, J. Math. Phys. 19, 231 (1978).

[13] E. M. Lev, Fortschr. Phys. 31, 75 (1983).

[14] B. L. G. Bakker, L. A. Kondratyuk, and M. V. Terent’ev, Nucl.
Phys. B158, 497 (1979).

[15] M. Betz and F. Coester, Phys. Rev. C 21, 2505 (1980).

[16] M. Betz and T.-S. H. Lee, Phys. Rev. C 23, 375 (1981).

[17] W. Glockle, T.-S. H. Lee, and F. Coester, Phys. Rev. C 33, 709
(1986).

[18] T. Lin, Ch. Elster, W. N. Polyzou, and W. Glockle, Phys.
Rev. C 76, 014010 (2007); Phys. Lett. B660, 345 (2008);

024002-25



MICHAEL G. FUDA AND FATIH BULUT

H. Witala, J. Golak, R. Skibiriski, W. Glockle, W. N. Polyzou,
and H. Kamada, Phys. Rev. C 77, 034004 (2008); T. Lin, Ch.
Elster, W. N. Polyzou, H. Witala, and W. Glockle, ibid. 78,
024002 (2008).

[19] Z.-J. Cao and B. D. Keister, Phys. Rev. C 42, 2295 (1990).

[20] A. Szczepaniak, C.-R. Ji, and S. R. Cotanch, Phys. Rev. C 52,
2738 (1995).

[21] N. Isgur and G. Karl, Phys. Lett. B72, 109 (1977); B74, 353
(1978); Phys. Rev. D 18, 4187 (1978); 19, 2653 (1979); 20,
1191 (1979).

[22] N. Isgur, G. Karl, and R. Koniuk, Phys. Rev. Lett. 41, 1269
(1978).

[23] F. Coester and D. O. Riska, Few-Body Syst. 25, 29 (1998);
F. Coester, K. Dannbom, and D. O. Riska, Nucl. Phys. A634,
335 (1998).

[24] M. A. Pichowsky, A. Szczepaniak, and J. T. Londergan, Phys.
Rev. D 64, 036009 (2001).

[25] W. H. Klink, Nucl. Phys. A716, 123 (2003).

[26] A. Krassnigg, W. Schweiger, and W. H. Klink, Phys. Rev. C 67,
064003 (2003).

[27] Michael G. Fuda, Phys. Rev. C 72, 064001 (2005).

[28] Michael G. Fuda, Int. J. Mod. Phys. E 17, 895 (2008).

[29] R. Fong and J. Sucher, J. Math. Phys. §, 456 (1964).

[30] S. N. Sokolov, Theor. Math. Phys. 23, 567 (1975).

[31] Michael G. Fuda, Phys. Rev. C 64, 027001 (2001).

[32] Michael G. Fuda, Phys. Rev. C 31, 1365 (1985); 32,2024 (1985).

[33] B. C. Pearce and 1. R. Afnan, Phys. Rev. C 34, 991 (1986).

[34] S. Okubo, Prog. Theor. Phys. 12, 603 (1954).

[35] R. A. Arndt, W. J. Briscoe, L. I. Strakovsky, and R. L. Workman,
Phys. Rev. C 74, 045205 (2006).

PHYSICAL REVIEW C 80, 024002 (2009)

[36] A. Matsuyama, T. Sato, and T.-S. H. Lee, Phys. Rep. 439, 193
(2007).

[37] T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996);
M. Kobayashi, T. Sato, and H. Ohtsubo, Prog. Theor. Phys.
98, 927 (1997).

[38] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).

[39] R. Bijker, F. Iachello, and A. Leviatan, Phys. Rev. D 55, 2862
(1997).

[40] T. Yoshimoto, T. Sato, M. Arima, and T.-S. H. Lee, Phys. Rev.
C 61, 065203 (2000).

[41] A. Manohar and H. Georgi, Nucl. Phys. B234, 189
(1984).

[42] A. LeYaouanc, L. Oliver, O. Péne, and J.-C. Raynal, Hadron
Transitions in the Quark Model (Gordon and Breach, New York,
1988).

[43] S. Capstick and W. Roberts, Phys. Rev. D 47, 1994 (1993).

[44] S. Capstick and W. Roberts, Phys. Rev. D 49, 4570 (1994).

[45] S. Capstick and W. Roberts, Phys. Rev. D 57, 4301 (1998).

[46] J. W. Alcock, M. J. Burfitt, and W. N. Cottingham, Z. Phys. C
25,161 (1984).

[47] H. G. Dosch and D. Gromes, Phys. Rev. D 33, 1378 (1986).

[48] N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985).

[49] R. Kokoski and N. Isgur, Phys. Rev. D 35, 907 (1987).

[50] S. Kumano and V. R. Pandharipande, Phys. Rev. D 38, 146
(1988).

[51] Fl. Stancu and P. Stassart, Phys. Rev. D 38, 233 (1988); 39, 343
(1989); 41, 916 (1990); P. Stassart and Fl. Stancu, ibid. 42, 1521
(1990).

[52] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45, S241
(2000).

024002-26



