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Two-potential formula and its application to proton-proton scattering
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Within the framework of potential scattering theory we derive an analytical two-potential formula for the
on-shell partial wave scattering amplitude. This formula embodies a large number of possible applications,
including long range Coulomb forces as well as short distance singular potentials. As an example illustrating
the use of the formula we analyze the determination of the strong proton-proton scattering s-wave phase shift
from the experimentally determined Coulomb phase when the one-pion exchange and two-pion exchange chiral
potentials are taken into account and analyze the relevant scales of the problem.
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I. INTRODUCTION

The two-potential formalism, developed in the fifties by
Watson [1] and Gell-Mann and Goldberger [2], relates the
scattering due to the sum of two different potentials and has
a widespread use in scattering theory. The usual example is
the treatment of Coulomb distortion for strongly interacting
particles. The problem is to determine the total scattering
amplitude T from a potential constructed as the sum of two
potentials V = VS + VL in terms of the scattering amplitude
TS due only to the potential VS . The result can be found
in a straightforward manner using the Lippmann-Schwinger
equation

T = V + V G0T , (1)

with V being the potential operator and G0 = (E − H0)−1

the resolvent of the free Hamiltonian. The outgoing boundary
condition corresponds to E → E + i0+. The T matrix can
then be expressed as1

T = TS + (1 + TSG0) T̂L (G0TS + 1), (2)

where TS is the short distance T matrix, and T̂L is the long
distance one distorted by short range effects,

TS = VS + VSG0TS, (3)

T̂L = VL + VLGST̂L, (4)

with GS = G0 + G0VSGS being the full propagator for VS .
While the result above solves the problem, it does not

explicitly relate the on-shell scattering amplitudes of the
full and short distance potentials. The reason is that the
Lippmann-Schwinger equation involves the off-shell behavior
of the potentials, which allows one to treat nonlocal potentials
quite straightforwardly, but precisely because of this it is hard
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1We have chosen this particular formulation of the two-potential

trick to have a more consistent notation throughout the article.
Normally it is written in terms of the distorted short range T matrix
and the undistorted long range T matrix, but in either case the resulting
T matrix is the same.

to profit specifically from the simplifying features that arise
in the interesting and quite frequent case of local potentials
arising, e.g., in a particle exchange picture. For the local case,
a coordinate space formulation of the scattering problem is
more convenient (an effective field theory example is provided
by Ref. [3]).

In this article we derive a two-potential formula, which
relates the phase shifts (i.e. the on-shell scattering matrix) of
the full and short range potentials V and VS , and which is based
on two assumptions: (i) the potentials are local and (ii) the
short range potential dominates at short distances. Our result
will be amenable to rather detailed analytical study, hence
enlarging the class of situations one may cover. The connection
to momentum space renormalization with counterterms of
the Lippmann-Schwinger equation is also analyzed. This is
particularly enlightening in the case of singular potentials
and their renormalization, a subject of recent interest (see,
e.g., Ref. [3]). As an illustrative application we show how
our two-potential formula may be used to deduce the strong
proton-proton phase shifts from the experimentally measured
ones when long distance corrections coming from one- and
two-pion exchange contributions are taken into account.

II. TWO-POTENTIAL FORMULA

We consider the nonrelativistic scattering of two particles
by a spherically symmetric potential V that can be decomposed
into the following two pieces:

V (r) = VL(r) + VS(r), (5)

where VL and VS , respectively, represent the long and short
distance components of the interaction. We assume that the
short range potential VS dominates at short distances r = rc,
i.e.,

VS(rc) � VL(rc), (6)

for rc small enough. The system can be described by solving
the reduced Schrödinger equation (for simplicity, we only
consider here the s-wave case)

−u′′
k + 2µ [VL(r) + VS(r)] uk(r) = k2uk(r), (7)
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with uk(r) being the reduced wave function, µ the reduced
mass of the two-body system, and k the center-of-mass
momentum. The phase shift can then be obtained by matching
the reduced wave function uk to the usual asymptotic boundary
condition for r → ∞,

uk(r) → cot δ sin kr + cos kr, (8)

where we have assumed that the long range potential VL decays
faster than 1/r2 at large distances; therefore, phase shifts are
well defined. We also consider the corresponding scattering
problem for which only the short range potential VS is present.
In such a case, the reduced Schrödinger equations reads

−uS
k

′′ + 2µVS(r) uS
k (r) = k2uS

k (r), (9)

with uS
k being the short reduced wave function. The phase shift

can be extracted from the asymptotic behavior of uS
k ,

uS
k (r) → cot δS sin kr + cos kr, (10)

for r → ∞.
The problem is to relate the full phase shift δ(k) with the

short phase shift δS(k). For that purpose, we assume that at
short enough distances r = rc the full and short reduced wave
function uk and uS

k are approximately equal, uk(rc) � uS
k (rc).

The previous approximation can be restated in terms of the
logarithmic derivatives of the reduced wave functions,2

u′
k(rc)

uk(rc)
= uS

k

′
(rc)

uS
k (rc)

. (11)

This expression will hold true when the condition expressed
in Eq. (6) is fulfilled. We now make use of the superposition
principle to represent the full solution as the following linear
combination:

uk(r) = cot δ Jk(r) − Yk(r), (12)

where Jk and Yk are solutions of Eq. (7), subjected to the
asymptotic conditions

Jk(r) → sin kr, (13)

Yk(r) → −cos kr. (14)

Analogously, we write the short range solution as

uS
k (r) = cot δS J S

k (r) − Y S
k (r), (15)

with J S
k and Y S

k being solutions of Eq. (9), such that

J S
k (r) → sin kr, (16)

Y S
k (r) → −cos kr, (17)

for r → ∞. By matching the logarithmic derivatives we arrive
at our final expression

cot δ(k) = A(k, rc) cot δS(k) − B(k, rc)

C(k, rc) cot δS(k) − D(k, rc)
, (18)

2We are not necessarily assuming a regular solution of the
Schrödinger equation; i.e., VS can contain zero-range pieces.

where A,B, C, and D are defined as

A(k, rc) = W
(
J S

k , Yk

)∣∣
r=rc

(19)

B(k, rc) = W
(
Y S

k , Yk

)∣∣
r=rc

(20)

C(k, rc) = W
(
J S

k , Jk

)∣∣
r=rc

(21)

D(k, rc) = W
(
Y S

k , Jk

)∣∣
r=rc

, (22)

with W (f, g)|r=rc
= f (rc)g′(rc) − f ′(rc)g(rc) being the

Wronskian between different wave functions evaluated at the
cutoff radius r = rc. The bilinear structure is reminiscent of
the Moebius transformation invariance discussed at length in
Ref. [4] in the context of the renormalization group analysis
with boundary conditions. It should be noted that although the
matching of log-derivatives to obtain long range correlations
is not new, one nice example being the Landau-Smorodinsky
derivation of the effective range expansion [5], or the treatment
of hadronic atoms in Ref. [6], its use in combination with the
superposition principle to derive direct relations between phase
shifts is less common, and it has only been partially exploited
in some effective field theory r-space computations [7–9].

In passing we also note that Eq. (18) cannot be derived
from the Lippmann-Schwinger equation. The reason is that
the two-potential formula depends on the explicit formulation
of the following: (i) the superposition principle via Eqs. (12)
and (15), and (ii) the short distance boundary condition for
the Schrödinger equation, Eq. (11). These two conditions are
included in the Lippmann-Schwinger equation, but implicitly,
in a way that they cannot be directly handled, impeding the
derivation of the previous formula [but allowing the derivations
of formulas relating the full off-shell scattering amplitudes,
like the two-potential trick, Eq. (2)].

The two-potential formula also holds in certain cases for
nonlocal potentials. The necessary condition for its application
is that the nonlocal potential does not involve derivatives of
order higher than two, e.g., potentials of the type

V NL
S = {∇2, fS(r)}, (23)

where {, } represents the anticommutator. In such a case
the short distance boundary condition for the Schrödinger
equation can be expressed as the log-derivative of the wave
function, Eq. (11). For nonlocal potentials involving higher
derivatives, the two-potential formula can still be applied
when the cutoff radius rc is larger than the range at which
the nonlocalities appear.

III. COULOMB SCATTERING

The case where the long range potential is of Coulomb
type requires a special treatment because the usual asymptotic
behavior described in Eq. (8) does not apply. For definiteness,
we analyze here the Coulomb repulsion between two unit
charge particles in the s wave. The full system is now described
by the following equation,

−uC
k

′′ + 2µ
[
VS(r) + α

r

]
uC

k (r) = k2uC
k (r), (24)

where we have added the C superscript for labeling the
Coulomb solution and α represents the fine structure constant.
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The correct asymptotics for uC
k is given by

uC
k (r) → cot δC F0(η, ρ) + G0(η, ρ), (25)

with δC being the Coulomb modified phase shift and F0(η, ρ)
and G0(η, ρ) the usual s-wave Coulomb wave functions (see,
for example, Ref. [10]), which depend on the parameters η =
1/(kaB ) and ρ = kr, aB = 1/(µα) is the Bohr radius of the
two-particle system. F0 and G0 are solutions of the reduced
Schrödinger equation for the Coulomb potential VC(r) = α/r ,
with the asymptotic behavior

F0(η, ρ) → sin (kr − η log 2kr + σ0), (26)

G0(η, ρ) → cos (kr − η log 2kr + σ0), (27)

where σ0 is a phase shift defined as σ0 = arg �(1 + iη). As in
the previous case, we can use the superposition principle to
rewrite the full solution

uC
k (r) = cot δC FC

k (r) − GC
k (r), (28)

with Fk(r) and Gk(r) being solutions of Eq. (24) subjected to
the asymptotic boundary conditions

FC
k (r) → F0(η, ρ), (29)

GC
k (r) → −G0(η, ρ). (30)

The short range system is described by Eq. (9), and the short
range wave function uS

k is again parametrized by Eq. (15).
After matching logarithmic derivatives we find

cot δC(k) = A(k, rc) cot δS(k) − B(k, rc)

C(k, rc) cot δS(k) − D(k, rc)
, (31)

where A,B, C, and D are now defined as

A(k, rc) = W
(
J S

k ,GC
k

)∣∣
r=rc

(32)

B(k, rc) = W
(
Y S

k ,GC
k

)∣∣
r=rc

(33)

C(k, rc) = W
(
J S

k , FC
k

)∣∣
r=rc

(34)

D(k, rc) = W
(
Y S

k , FC
k

)∣∣
r=rc

, (35)

in complete analogy with Eq. (18). Previous relationships
between Coulomb and short distance scattering can be found
for some specific cases in Refs. [11–13].

A. Contact short range potential

A simple application of the previous formula corresponds to
a situation where the short range potential is zero for distances
greater than the cutoff radius rc,

VS(r) = 0 for r > rc, (36)

while, for distances shorter than rc, the potential is very
strong. The previous potential corresponds to a δ-type contact
interaction regularized at the length scale rc. In such a case, the
FC

k (r) and GC
k (r) wave functions are equal to their asymptotic

behavior for r � rc, and by taking into account their behavior

at small radii

FC
k (r) → k C(η)

[
r + r2

aB

+ O(r3)

]
, (37)

GC
k (r) → − 1

C(η)

[
1 + 2r

aB

(
log

2r

aB

+ 2 γE − 1 + h(η)

)

+ O(r2)

]
, (38)

with γE the Euler-Mascheroni constant, and C(η) and h(η)
defined as

C2(η) = 2πη

e2πη − 1
, (39)

h(η) = η2
∞∑

n=1

1

n(n2 + η2)
− log η − γE, (40)

the relationship given by Eq. (31) can be evaluated explicitly,
yielding

k cot δS(k) = C2(η)k cot δC(k) + 2
h(η)

aB

− 2

aB

[
log

aB

2rc

− 2γE

]
+ O(rc), (41)

where terms linear in the cutoff radius and higher powers of rc

have been ignored. As can be seen the previous expression is
logarithmic divergent with respect to rc, but can be regularized
if we take into account the corresponding expression for k = 0,
which is similar to the well-known relationship between strong
and Coulomb scattering length from Blatt and Jackson [14,15],

− 1

αS

= − 1

αC

− 2

aB

[
log

aB

2rc

− 2 γE

]
+ O(rc). (42)

The expression above diverges in exactly the same way as
Eq. (41). Subtracting the k = 0 expression to Eq. (41), and
taking the rc → 0 limit, we arrive at the following expression,

k cot δS(k) + 1

αS

= C2(η)k cot δC(k) + 2
h(η)

aB

+ 1

αC

. (43)

The expected error of this formula can be estimated by
reintroducing the cutoff rc and interpreting it as the neglected
range RS of the short range potential VS , yielding a relative
error of O(rc/aB) = O(RS/aB).

The corresponding formula for attractive Coulomb interac-
tion may be of interest for the treatment of pionic atoms and
can be obtained by taking η = −1/(kaB) negative and making
the following substitution,

h(η) → Re[ψ(iη) − log (−iη)], (44)

with ψ being the digamma function.
Finally, the corresponding formula for p-wave repulsive

Coulomb interaction can be worked out analogously to the
s-wave case. The treatment of the divergences is nonetheless
more involved: there is an additional logarithmic divergence
proportional to k2, due to the interplay between the Coulomb
potential and the centrifugal barrier. The outcome is that two
subtractions are needed to have finite results in the rc → 0
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limit. The final formula is rather simple to summarize:

k3 cot δS
1 (k) + 1

α1,S

− 1

2
r1,Sk

2

= C2
1 (η) k3 cot δC

1 (k) + k3 (1 + η2) 2 η h(η)

+ 1

α1,C

− 1

2
r1,Ck2, (45)

where C2
1 (η) = (1 + η2)C2(η), α1,S and α1,C are the p-wave

short and Coulomb scattering volumes, and r1,S and r1,C are
the p-wave short and Coulomb effective ranges. The previous
formula has less predictive power than the corresponding one
for s waves as a consequence of the extra subtraction needed
to regularize it. A possible application is nucleon-α scattering
[16].

IV. APPLICATION TO PROTON-PROTON SCATTERING

Now we apply the previous results for Coulomb scattering
to the specific case of proton-proton (pp) scattering in
s-waves. We consider the strong pp interaction as the short
range potential VS , while the Coulomb repulsion between the
protons plays the role of the long range potential VL.

A. Pionless theory

We first consider the simplifying case in which the pion
exchange interactions between the protons are neglected and
the pp potential consists of contact interactions only, i.e., the
pionless theory, characterized by a short distance boundary
condition. In such a case the two-potential formula given by
Eq. (43) applies. The previously mentioned relationship can be
better understood by noticing the relationship with the strong
and Coulomb effective range expansions [17], i.e.,

k cot δS = − 1

aS

+ 1

2
rS k2 +

∞∑
n=2

vn,S k2n, (46)

k cot δC C2(η) + 2
h(η)

aB

= − 1

aC

+ 1

2
rC k2 +

∞∑
n=2

vn,C k2n,

(47)

meaning that, with the exception of the scattering length, which
explicitly depends on the regularization scale rc [see Eq. (42)],
the strong and Coulomb effective range parameters for pp

scattering are equal in the present approximation,

rS = rC and vn,S = vn,C for n � 2, (48)

where rS(C) is the effective range, v2,S(C) the shape parameter,
etc. If we compare the previous results with the parameters
obtained with the Nijmegen II potential [18], we observe a
small discrepancy,3

rS = 2.84 fm, rC = 2.76 fm, (49)

giving a 3% relative difference between the strong and
Coulomb parameters. According to the error estimation of
the previous section, we should expect a relative error of
RS/aB , with RS being the range of the strong pp interaction,
given by one-pion exchange, RS = Rπ0 = 1/mπ0 , where
mπ0 is the neutral pion mass, yielding the result Rπ0/aB =
Mp α/2mπ0 ∼ 2.5% (Mp is the proton mass) in agreement
with the previous discrepancy.4

The corresponding results for the strong pp phase shifts,
obtained from the Coulomb pp ones for the Nijmegen II
potential [18] by means of Eq. (43), are shown in Fig. 1.
The agreement between the strong pp Nijmegen II phase

3Instead of the Nijmegen II values, it is also possible to use the well-
established experimental value for the Coulomb pp effective range
rC = 2.794(14) fm and the model-dependent strong pp one rS =
2.84(4) fm (see Ref. [19]), although the conclusions do not change
appreciably.

4The contributions to the strong-Coulomb effective range difference
from vacuum polarization [20], or from the modified Coulomb
potential of Ref. [21], are expected to be much smaller than the
strong (pionic) corrections. The magnetic moment interaction [22]
does not contribute to s-wave proton-proton scattering.

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80

 0  50  100  150  200  250  300  350  400

δ S
 [d

eg
] 

kc.m. [MeV] 

1S0 (pp strong)

Nijm2
Pionless

OPE
TPE

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

∆δ
S
 [d

eg
] 

kc.m. [MeV] 

1S0 (pp)

Pionless
OPE
TPE

FIG. 1. (Left panel) Strong pp phase shifts computed from the Coulomb pp phase shifts (Nijmegen II potential [18]) by using the zero-range
strong-Coulomb correlation of Eq. (43) and its corresponding extensions when including the one-pion exchange (OPE) and chiral two-pion
exchange (TPE) (N2LO) potentials with a cutoff radius of rc = 0.1 fm. (Right panel) Difference between the Nijmegen phase shifts and those
obtained with the strong-Coulomb correlations.
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shifts and the expected ones computed from the contact
theory correlation (43) is quite good, never exceeding a 1.5◦
difference, as expected from the relative error estimation.

B. Comparison with other approaches

The above result may be relevant to the effective field
theory (EFT) formulation of low-energy pp scattering done
by Kong and Ravndal [23,24] based on the power divergence
subtraction (PDS) regularization scheme of Refs. [25,26].
The admitted intricacy of the momentum space formalism in
those works contrasts with the much shorter and transparent
discussion of the coordinate space renormalization presented
above. In particular, Eq. (43) implies that there are no
Coulomb corrections to the effective range once the cutoff
is removed, which is in agreement with the next-to-leading
order calculation of Kong and Ravndal [24], but disagrees
with the next-to-next-to-leading order results of Ref. [27]. It
is also implied in our treatment that the pionless treatment of
pp scattering can be made almost scale independent if, apart
from the usual counterterms C0 + C2(p2 + p′2) + O(p4), a
counterterm contribution proportional to α is included in
the computations, i.e., α De2 . This observation is closely
related with the results of Ref. [28], where the necessity of a
strong and Coulomb version of C0 is discussed. The previous
De2 counterterm fixes the difference between the strong and
Coulomb scattering length, so the price to pay to remove
the log scale dependence in Eq. (42) is the impossibility to
relate the two, because both scattering lengths become input
parameters. This seems to be in contradiction with Kong
and Ravndal [23,24], who argue that the C2 counterterm
stabilizes the scattering length (see also related discussions
in Refs. [27,29,30]). This counterterm is analogous to the
m2

π D2 counterterm needed to renormalize Weinberg power
counting at leading order [31,32]. They are both due to the
similar behavior of the Coulomb and Yukawa potential at short
distances.

Of course, these conclusions are based on our coordinate
space analysis with cutoff regularization. Dimensional regu-
larization with PDS yields different results [27], as Coulomb
corrections to the effective range appear at next-to-next-
to-leading order. These corrections depend on the off-shell
behavior of the O(p4) counterterms, which in the cutoff
approach seems to be under control as long as nonlocalities
and off-shell ambiguities happen below rc. A more pessimistic
view is presented by Gegelia in Ref. [28], where it is argued
from the renormalization group behavior of the counterterms
in PDS that it needs to be a strong and Coulomb version of
each counterterm (to absorb the log-divergences), meaning
that in the end it is impossible to relate strong and Coulomb
observables. On the contrary, the renormalization group
analysis with cutoff regularization of Barford and Birse [33]
seems to support the idea that the Coulomb log-divergences
can be absorbed in just one counterterm.5 The observations
of Gegelia [28] can be considered as an extension to any

5The results of Ref. [33] do not exclude the existence of Coulomb
corrections to all counterterms, and neither do our results if supple-

scattering observable of the results of Refs. [34,35] about
the difficulty of obtaining model-independent strong scattering
lengths from Coulomb ones because of short range ambiguities
of the wave function. The previous seem to be in contradiction
with the usual requirement of short distance independence of
physical results in effective field theory. In fact, as was shown
in Ref. [36], further constraints on the short range ambiguities
not considered in Refs. [34,35] can noticeably reduce the
model dependence of strong parameters, in better agreement
with EFT expectations. Finally, we should also stress that we
are only trying to separate strong from Coulomb corrections in
nonrelativistic quantum mechanics. A complete formulation
on the separation of strong and electromagnetic effects is only
possible in the context of quantum field theory, see Ref. [37]
for a modern discussion on the subject.

We should nonetheless remember that cutoff regularization
is a physical regularization, in the sense that the cutoff rc can
be interpreted as a physical scale. From this point of view,
the meaning of the log-divergence in the relationship between
the strong and Coulomb scattering length is straightforward:
it represents the expected error of the strong scattering length
in the pionless approximation, which scales as log(RS/aB )
(instead of RS/aB , as in the other parameters), yielding a very
large, ∼350%, expected relative error (to be compared with the
one for the effective range, ∼2.5%). One can also argue that
the extra counterterm De2 is not needed, because the inclusion
of the higher order components of the potential will reduce the
scale dependence.

C. Strong-Coulomb correlations with chiral TPE potentials

The two-potential formula makes it possible to obtain the
(experimentally inaccessible) strong pp phase shifts from the
(experimentally accessible) Coulomb ones. While a complete
analysis should of course include vacuum polarization [20],
modifications to the Coulomb potential [21], and even 2πγ

exchange [38–40], the interesting issue is that one can obtain
model-independent strong phase shifts, provided that we
employ a model-independent strong pp potential VS and
model-independent Coulomb phase shifts. Here, we do so with
an eye to the relevant scales in the problem, an aspect that our
two-potential treatment can address in a rather clean way.

For the previous purpose we use the potentials of chiral
perturbation theory [41] as the short distance potential VS of
Eq. (31). These potentials include TPE effects and can be
expressed as an expansion in powers of Q,

VS(r) = V (0)
χ (r) + V (2)

χ (r) + V (3)
χ (r) + O(Q4), (50)

where Q represents either the pion mass or the momentum of
the protons. We also use the Nijmegen PWA [42], which is
a model-independent extraction of the pp s-wave Coulomb6

mented by additional subtractions. It is just that they are not needed
to have scale independent results.

6It is important to notice that the pp phase shifts in the Nijmegen
PWA are not Coulomb phase shifts, but electromagnetic phase shifts.
By that it is meant that the pp phase shifts are defined with respect to
the asymptotic solutions of the full electromagnetic potential used
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phase shifts from a large proton-proton scattering database.
With that information, we can obtain the strong pp phase shift
and its error from the PWA by

δC
PWA(k) ± �δC

PWA → (Vχ, rc) → δS(k) ± �δS (51)

and analyze the resulting cutoff dependence, which is an
important issue, because for large coordinate space cutoffs
the higher order pieces of the chiral potential are not resolved.

It should be noted here that a complete model-independent
separation between strong and electromagnetic contributions is
not always possible, specially if short distance electromagnetic
effects are included. One example is the inclusion of nucleon
form factor corrections to the magnetic moment interaction
in the proton-proton PWA of Ref. [43]. Another example is
proton finite size corrections to the Coulomb potential. The
formalism presented here clearly separates between what we
define as the strong and the electromagnetic potentials. That
does not necessarily mean that exact model independence
has been achieved, especially if corrections like the ones
mentioned above are added, or that strong and electromagnetic
effects have been actually separated, especially as electromag-
netic corrections to the proton mass or to the coupling constants
have not been included.

The specific procedure we apply is analogous to the
one followed in the pionless case; i.e., we do not directly
use the strong-Coulomb two-potential formula, Eq. (31), but
rather perform a subtraction of the equivalent two-potential
formula for the scattering lengths and then check for cutoff
independence of the results. This choice also allows for a
better comparison between the pionless correlation given in
Eq. (43) and the corresponding improvements when the strong
physics are included explicitly.

in their analysis, which consists of improved Coulomb, vacuum
polarization, and the magnetic moment interaction (see Ref. [42]
for details). Because our current analysis is not intended to be
complete, we ignore most of these details and simply assume that
the long range potential is the usual Coulomb potential and that the
full electromagnetic phase shifts roughly coincide with the Coulomb
ones, δEM

PWA � δC
PWA.

In the present calculation we are only going to consider
the chiral potentials up to the Q3 order, i.e., next-to-next-to-
leading-order (N2LO). At this order the finite range piece of the
chiral potential consists of one-pion exchange and chiral two-
pion exchange. An interesting feature of the chiral two-pion
exchange potentials is that they are highly singular, diverging
as ∼ 1/r6 at N2LO.7 In harmony with previous findings
[7–9], this divergence will become rather unimportant: the
two-potential formula shows a smooth cutoff dependence for
singular chiral potentials.8 In any case, we stress that our main
concern is to analyze the minimal short distance cutoff rc for
which higher order effects can be distinguished from lower
order ones, rather than the specific cutoff dependence of the
results.

The results for Elab = 50 MeV and Elab = 200 MeV can
be seen in Fig. 2. By TPE we refer to the N2LO chiral
potential, and for compactness we skip the NLO results,
which lie between the LO (OPE) and the N2LO results.
The bands represent the error coming from the original pp

Coulomb phase shift in the PWA of Ref. [42]. For the strong
and Coulomb scattering lengths, which are needed for the
subtractions, we take the values corresponding to the Nijmegen
II potential [18], i.e., αC = −7.81 fm and αS = −17.25 fm.
The actual expressions for the chiral pp potential are taken
from Ref. [41]. Only the long range piece of the chiral
potentials is considered, and the corresponding counterterms
are ignored: they are equivalent to a boundary condition for

7The most singular (noncontact) piece of V (ν)
χ will behave as 1/r3+ν

in coordinate space and as |	q|νf (|	q|/mπ ) in momentum space, 	q
being the momentum exchanged between the nucleons and f a non-
polynomial function.

8In fact, the singular chiral two-pion exchange potentials yield
smoother results than the OPE potential. In the current regularization
scheme, OPE shows a mild log-divergence at distances of 10−3 fm.
This divergence can be eliminated by using a different, and more
complex, subtraction prescription, but for the purposes of the present
discussion it is not particularly important what happens at such small
scales.
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FIG. 2. (Color online) Strong pp s-wave phase shifts at Elab = 50 MeV and Elab = 200 MeV as a function of the cutoff rc, computed from
the Coulomb pp phase shifts (Nijmegen PWA [42]) by using the chiral potential truncated at different orders in the chiral expansion (pionless
means no potential, OPE is the leading order potential, and TPE the full N2LO chiral potential). The strong and Coulomb phase shifts have
been related by making use of Eq. (31) with one subtraction at k = 0, to have finite results when the cutoff is removed.
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the Schrödinger equation [44,45] and are therefore already
implicitly included in the two-potential formula. We take
gA = 1.29,mπ0 = 134.98 MeV, and fπ = 92.4 MeV, which
according to the definitions of Ref. [42] gives an f 2

ppπ0 =
0.0755 for the scaling mass ms = mπ± = 139.57 MeV.
The previous chiral pp potential explicitly depends on three
chiral couplings, c1, c3, and c4, which appear at O(Q3) in the
expansion of the potential, and which relate nucleon-nucleon
and nucleon-pion scattering. We take for these chiral couplings
the values obtained in Ref. [46] from analyzing the pp data
alone, i.e., c1 = −0.76(7) GeV−1, c3 = −4.78(11) GeV−1,
and c4 = 3.92(52) GeV−1. As can be seen, for a cutoff above
rc = 1.2 fm, one cannot distinguish, within uncertainties,
between lower and higher order computations; i.e., it does
not matter whether pions are included in VS or not. Actually
cutoffs below rc = 0.8 fm are needed to fully distinguish the
chiral two-pion exchange contributions within the accuracy of
the phase shifts. This result is not entirely surprising as it could
be anticipated from considering the two-pion exchange related
Compton wavelength scale λ2π = 1/2mπ ∼ 0.7 fm. A more
complete analysis should include vacuum polarization, 2πγ

and γ γ exchange effects, which will affect the the precise
values of the strong phase shifts but will hardly change the
observation on the relevant scales. The same remarks also
apply to the error analysis, which should include the error in
the subtracted strong and Coulomb scattering lengths and the
theoretical uncertainties in the chiral potential itself, like, for
example, the error in the determination of the chiral couplings.

We can also compare the extracted strong effective ranges
for the different cases considered. In this case, the Coulomb
pp phase shift from the Nijmegen II potential is used as input
for the two-potential formula and the resulting strong phase
shifts are shown in Fig. 1. For the regularization scale rc =
0.1 fm, we obtain

rS,contact = 2.78 fm, (52)

rS,OPE = 2.63 fm, (53)

rS,TPE = 2.87 fm, (54)

to be compared with the Nijmegen II result, rS = 2.84 fm.
The pionless value differs from the one given in Sec. IV A
due to finite cutoff effects, while OPE surprisingly contributes
in the wrong direction. The TPE result reproduces the
Nijmegen II one within a 1% accuracy level and agrees
within error estimations with the extraction of Ref. [19], rS =
2.84(4) fm, where the error accounts for different sources of
model dependence.

Finally, we note that despite that the TPE potential becomes
highly singular at short distances, diverging as ∼ 1/r6,
nothing dramatic happens, making the limit rc → 0 innocuous
precisely when the TPE effects become visible, i.e., for
rc � 0.8 fm.9 This particular feature is a specific merit of our
two-potential formula that provides a clean separation between
scales and implements in an extended distorted wave fashion

9Actually, despite Eq. (6) being fulfilled to the extreme, the TPE
correction is small because the typical minimal wavelength is still not
comparable to the range where the TPE correction takes over.

the renormalization program carried out in previous works
(see, e.g., Refs. [3,4]).

V. CONCLUSIONS

The two-potential formalism provides a framework where
forces of different origin and ranges may be disentangled rather
explicitly. We have proposed a coordinate space formulation
that restates the result in a rather transparent way and
fully exploits the boundary value character as well as the
superposition principle of the scattering problem. Our result
allows for a detailed investigation of the relevant scales
built into the problem. This is particularly enlightening in
the case of singular potentials and their renormalization, a
subject of recent interest. We have exemplified our approach
by discussing its consequences for the proton-proton system,
where the electromagnetic and strong forces contribute to the
scattering process, as a method to extract the strong phase
shifts in a model-independent fashion. We have only discussed
s-waves [with the exception of Eq. (45)] and single channel
scattering. The extension to higher partial waves, as well as
coupled channels, is straightforward but cumbersome (see
the Appendix). Such an extended formalism might allow a
discussion of further interesting applications of the present
ideas to similar problems where a scale separation of different
forces would be necessary.
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APPENDIX: EXTENSION TO HIGHER PARTIAL
WAVES AND COUPLED CHANNELS

A. Higher partial waves

The extension of our two-potential formula to higher
partial waves is straightforward. The full two-body system is
described by the corresponding reduced Schrödinger equation
for the l wave,

−u′′
k,l +

[
2µ (VL(r) + VS(r)) + l(l + 1)

r2

]
uk,l(r)

= k2uk,l(r),

(A1)
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where uk,l(r) is the l-wave reduced wave function, µ the
reduced mass, and k the center-of-mass momentum. The
asymptotics of uk,l for r → ∞ is given by

uk,l(r) → cot δl ĵl(kr) − ŷl(kr), (A2)

where ĵl and yl(kr) are the reduced spherical Bessel functions,
defined as ĵl(x) = x jl(x) and ŷl(x) = x yl(x). We only con-
sider here the case of a long range potential VL decaying
faster than 1/r2 at large distances. By making use of the
superposition principle we rewrite the full solution as

uk,l(r) = cot δl Jk,l(r) − Yk,l(r), (A3)

where Jk,l and Yk,l are solutions of Eq. (A1) subjected
to the asymptotic boundary conditions Jk,l(r) → ĵl(kr) and
Yk,l(r) → ŷl(kr) for r → ∞. The corresponding scattering
problem for which only the short range potential VS is present
is described by the reduced Schrödinger equation

−uS ′′
k,l +

[
2µVS(r) + l(l + 1)

r2

]
uS

k,l(r) = k2uS
k,l(r), (A4)

with uS
k,l the short l-wave reduced wave function. The short

distance phase shift is obtained from the asymptotic behavior
of uS

k,l ,

uS
k,l(r) → cot δS

l ĵl(kr) − ŷl(kr), (A5)

for r → ∞. We rewrite uS
k,l as

uS
k,l(r) = cot δl J

S
k,l(r) − Y S

k,l(r), (A6)

with J S
k,l and Y S

k,l being solutions of Eq. (A4) obeying the
asymptotic boundary conditions J S

k,l(r) → ĵl(kr) and Y S
k,l(r)

→ ŷl(kr).
As usual we match the logarithmic derivatives of uk,l(r)

and uS
k,l(r) at the cutoff radius r = rc, yielding

cot δl(k) = Al(k, rc) cot δS
l (k) − Bl(k, rc)

Cl(k, rc) cot δS
l (k) − Dl(k, rc)

, (A7)

where Al ,Bl , Cl , and Dl are defined as

Al(k, rc) = W
(
J S

k,l, Yk,l

)∣∣
r=rc

, (A8)

Bl(k, rc) = W
(
Y S

k,l, Yk,l

)∣∣
r=rc

, (A9)

Cl(k, rc) = W
(
J S

k,l, Jk,l

)∣∣
r=rc

, (A10)

Dl(k, rc) = W
(
Y S

k,l, Jk,l

)∣∣
r=rc

, (A11)

in analogy with the s-wave case. In principle the use of the
previous formula is straightforward as long as a finite cutoff
is employed in the computation. On the contrary, if one tries
to remove the cutoff, some divergences may appear, mostly
related to the centrifugal barrier. Therefore a detailed analytical
or numerical study of the divergences will be necessary to
obtain a finite result in the rc → 0 limit.

B. Coupled channels

The extension to the coupled channel case is direct to obtain
if an adequate notation is used. We consider the general case of

N coupled channels. They can be described by the following
Schrödinger equation, which in compact notation reads

−u′′
k +

[
2µ(VL(r) + VS(r)) + L2

r2

]
uk(r) = k2uk(r), (A12)

where the wave function uk is now an N × N matrix, each
column representing a linearly independent solution. The long
and short range potentials VL and VS are also N × N matrices
(the nondiagonal terms relating the different channels), and L2

is the angular momentum matrix, which is diagonal and given
by

L2 = diag(l1(l1 + 1), l2(l2 + 1), . . . , lN (lN + 1)), (A13)

l1, l2,..., lN being the orbital angular momentum of each
channel. In principle there are 2N linearly independent
solutions (two per channel), but regularity conditions at the
origin reduce this number to N . This is why the wave function
can be represented by an N × N matrix. We have also added
the simplifying assumption that there are no inelasticities,
meaning that in Eq. (A12) the source of the coupling is either
tensor forces or dipole-dipole interactions.

The asymptotic behavior of the wave function matrix uk is
given by the expression

uk(r) → j(kr) M(k) − y(kr), (A14)

for r → ∞, where j and y are diagonal matrices given by

j(kr) = diag(ĵl1 (kr), ĵl2 (kr), . . . , ĵlN (kr)), (A15)

y(kr) = diag(ŷl1 (kr), ŷl2 (kr), . . . , ŷlN (kr)), (A16)

with ĵl and ŷl being the reduced spherical Bessel functions as
defined in the previous section. The matrix M(k) is analogous
to cot δ for coupled channels and is related to the S matrix
by M(k) = i (S(k) + 1)/(S(k) − 1) with 1 being the identity
matrix. It is a symmetric matrix and contains N (N + 1)/2
independent scattering parameters or phase shifts. By making
use of the superposition principle, we can rewrite the wave
function matrix as10

uk(r) = Jk(r) M(k) − Yk(r), (A17)

where Jk and Yk are solutions of Eq. (A12) that asymptotically
behave as Jk(r) → j(kr) and Yk(r) → y(kr).

The corresponding Schrödinger equation for the short wave
function is

−uS
k

′′ +
[

2µ VS(r) + L2

r2

]
uS

k (r) = k2uS
k (r), (A18)

where, in analogy to the full case, the short wave function
matrix can be written as

uS
k (r) = JS

k (r) MS(k) − YS
k (r), (A19)

with JS
k and YS

k being solutions of Eq. (A18) subjected to the
asymptotic boundary conditions JS

k (r) → j(kr) and YS
k (r) →

y(kr) for r → ∞.

10The reason why we write Jk(r) M(k) instead of M(k) Jk(r) in
Eq. (A17) is because if uk is a solution of the Schrödinger equation
(A12) and A a constant N × N matrix, then uk A is also a solution
(but this is not the case for A uk).
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To obtain the corresponding two-potential formula one
needs to match the logarithmic derivatives of the wave
functions, which for the coupled channel case means

u′
k(rc)(uk(rc))−1 = uS

k

′
(rc)

(
uS

k (rc)
)−1

. (A20)

Using the Wronskian relation

uT
k (rc)u′

k(rc) = uT
k

′
(rc)uk(rc), (A21)

where the T superscript denotes the transpose, the boundary
condition given by Eq. (A20) can be rewritten as

uT
k (rc) uS

k

′
(rc) = uT

k

′
(rc) uS

k (rc), (A22)

an expression which does not involve the inverse of the wave
functions. If we rewrite uk and uS

k in terms of Eqs. (A17) and

(A19), we arrive at our final expression

M(k) = [A(k, rc) MS(k) − B(k, rc)]

× [C(k, rc) MS(k) − D(k, rc)]
−1

, (A23)

with A,B, C, and D defined as

A(k, rc) = −W
(
YT

k , JS
k

)∣∣
r=rc

, (A24)

B(k, rc) = −W
(
YT

k , YS
k

)∣∣
r=rc

, (A25)

C(k, rc) = −W
(
JT

k , JS
k

)∣∣
r=rc

, (A26)

D(k, rc) = −W
(
JT

k , YS
k

)∣∣
r=rc

, (A27)

where the Wronskian is given by W (F, G)|r=rc
=

F(rc)G′(rc) − F′(rc)G(rc).
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