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Ab initio computation of neutron-rich oxygen isotopes
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We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and
chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain
rather well-converged results in model spaces consisting of up to 21 oscillator shells. For interactions with a
momentum cutoff of 500 MeV, we find that 28O is stable with respect to 24O, while calculations with a momentum
cutoff of 600 MeV result in a slightly unbound 28O. The theoretical error estimates due to the omission of the
three-nucleon forces and the truncation of excitations beyond three-particle–three-hole clusters indicate that the
stability of 28O cannot be ruled out from ab initio calculations, and that three-nucleon forces and continuum
effects play the dominant role in deciding this question.
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Introduction. The neutron drip line marks the limits of
stability of neutron-rich isotopes. At present, this line is well
established only in the lightest elements, as the cross section
for the production of extremely neutron-rich nuclei decreases
dramatically as one moves away from nuclei in the valley of
β stability (for a recent review, see, for example, Ref. [1]).
At present, 24O is the “last” known stable neutron-rich oxygen
(Z = 8) isotope, and 25O is known to decay under the emission
of one neutron [2]. The “next” neutron-rich oxygen isotope 26O
has not been observed experimentally [3,4], and systematics
for its production cross section suggest that it should have
been seen if it were a stable nucleus. Similar estimates suggest
that the isotope 28O is unstable [5]. Thus, experiments puts
the neutron drip line at 24O. This is remarkable, since 31F
is the most neutron-rich fluorine (Z = 9) isotope [6]. Thus,
the addition of a single proton apparently shifts the drip line
by six neutrons.

The theoretical determination of the neutron drip line is
a challenging task as well. Near the neutron drip line, small
uncertainties in the nuclear interaction are enhanced due to the
extreme isospin and the proximity of the continuum. Several
theoretical studies have addressed the structure of neutron-rich
oxygen and fluorine isotopes. The employed methods and
theoretical predictions differ considerably. The sd shell model,
based on the Brown-Wildenthal USD interaction and the finite-
range droplet model, predicts that 26O is stable [7]. Within
the sd-pf shell model, the present experimental situation of
an unstable 26O can be reproduced after a modification of
the interaction [8]. Within this model, 28O is unbound by
about 1 MeV. Within the same model space, but a different
interaction, Poves and Retamosa [9] obtained a stable 31F
and a stable 28O. Shell-model descriptions of neutron-rich
oxygen isotopes, including the coupling to the continuum,
were given in Refs. [10–12]. Within the latter approach [12],
two slightly different phenomenological sd-shell interactions
are employed for oxygen isotopes close to and far away from
the valley of β stability. This leads to the result that 26O is
unstable with respect to 24O, while 28O is unstable with respect

to the emission of two and four neutrons. Clearly, the present
theoretical situation does not have the desired predictive power,
and calculations suffer from uncertainties in the knowledge of
the interaction and from the difficulty to quantify how these
uncertainties propagate in the quantum many-body problem.
This is an opportunity for ab initio calculations to address
these challenges.

Ab initio calculations have been very successful in light
nuclei [13–18] and have recently also been extended to
unbound [19–21] and medium-mass isotopes [22]. In this
paper, we present ab initio calculations for the neutron-
rich oxygen isotopes 22,24,28O, and employ nucleon-nucleon
interactions from chiral effective field theory (EFT) [23–27].
These interactions are rooted in QCD and include pion
exchange and zero-range forces. The power counting, i.e., the
systematic expansion of the interaction in terms of ratios of the
probed momentum scale Q over the cutoff �χ , is an important
asset. In finite nuclei, Q is about 200 MeV [22], while the
cutoffs we employ are �χ = 500 and �χ = 600 MeV. The
variation of our results with the cutoff allows us to quantify
uncertainties that are due to the omission of (short-ranged)
three-nucleon forces (3NFs). We employ the coupled-cluster
method [28–33] for the solution of the quantum many-body
problem. This method scales gently with the system size and
can accurately compute the binding energies of nuclei with
closed subshells. In particular, the possibility to employ large
model spaces avoids the need for a secondary renormalization
of the chiral interactions from EFT for nuclei such as oxygen
and calcium isotopes [22].

This paper is organized as follows. We briefly introduce
the interactions and methods we employ and then present the
results of our calculations.

Interaction, model space, and coupled-cluster method. We
employ the chiral nucleon-nucleon interaction by Entem
and Machleidt [26] at next-to-next-to-next-to-leading order
(N3LO). This includes terms up to order (Q/�χ )4 in the
power counting of the nucleon-nucleon interaction. The
interaction has a high-momentum cutoff of �χ = 500 MeV,
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and a version with cutoff �χ = 600 MeV is also available
[34]. The low-energy constants of the chiral potentials were
determined by fits to the two-nucleon system. We neglect
3NFs that already appear at next-to-next-to-leading order and
thereby introduce uncertainties of the order (Q/�χ )3. As
physics must be independent of the cutoff (or renormalization
scale), any cutoff dependence in our results quantifies the
uncertainty due to omitted contributions of short-ranged
3NFs and forces of higher rank. The intrinsic Hamiltonian
Ĥ = T̂ − T̂cm + V̂ (�χ ) is translationally invariant and does
not depend on the center-of-mass coordinate. Here T̂ , T̂c.m.,
and V̂ (�χ ) denote the kinetic energy of the A-body system,
the kinetic energy of the center-of-mass coordinate, and the
chiral nucleon-nucleon interaction with momentum cutoff �χ ,
respectively. We express the Hamiltonian in a single-particle
basis of the spherical harmonic oscillator. Our model-space
parameters are the oscillator spacing h̄ω of our single-particle
basis and the maximal excitation energy (N + 3/2)h̄ω of
a single-particle state, i.e., the number of major oscillator
shell is N + 1. As a first step toward the solution of the
many-body problem, we solve the spherical Hartree-Fock
equations and transform the Hamiltonian to this basis. In
drip-line nuclei, the outermost nucleons move in orbitals
close to the scattering threshold, making the nuclear wave
function exhibit halo-like structures and sometimes even
ground states embedded in the continuum. The presence of
the scattering continuum in such exotic nuclei makes the
use of the oscillator basis not ideal. The unrealistic Gaussian
falloff of the oscillator wave functions makes convergence
slow for nuclei with dilute matter distributions. However, the
Gamow-Hartree-Fock (see, e.g., Ref. [19]) yields occupied
single-particle states with nonphysical positive imaginary
parts. This difficulty is due to the relatively “hard” interaction
we employ. To avoid this problem, we choose to stay within
the oscillator basis but employ very large model spaces
for an improved description of the tails of the radial wave
function.

The nuclear many-body problem is solved with the coupled-
cluster method [28–33,35–38]. This approach is based on
the similarity transformation of the normal-ordered intrinsic
Hamiltonian ĤN ,

H = e−T̂ ĤNeT̂ . (1)

Here, the Hamiltonian is normal-ordered with respect to a
product state |ψ〉 which serves as a reference. The particle-hole
cluster operator

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂A (2)

is defined with respect to this reference state. It is a sum of the
k-particle–k-hole (kp-kh) cluster operators

T̂k = 1

(k!)2

∑

i1,...,ik ;a1,...,ak

t
a1...ak

i1...ik
â†

a1
. . . â†

ak
âik . . . âi1 . (3)

We use the convention that i, j, k, . . . label the occupied
single-particle orbitals, while a, b, c, . . . label the unoccupied
orbitals. We truncate the cluster operator beyond the T̂2 level
and employ �CCSD(T) [39,40] as an approximation for the
T̂3 clusters. The unknown cluster amplitudes tai and tab

ij in

Eq. (2) are determined from the solution of the coupled-cluster
equations

0 = 〈
ψa

i

∣∣H |ψ〉, 0 = 〈
ψab

ij

∣∣H |ψ〉. (4)

Here |ψa
i 〉 = â

†
aâi |φ〉 and |ψab

ij 〉 = â
†
aâ

†
bâj âi |ψ〉 are 1p-1h and

2p-2h excitation of the reference state, respectively.
The nonlinear coupled-cluster equations (4) are solved

iteratively, and the correlation energy of the ground state is
computed from

�ECCSD = 〈ψ |H |ψ〉. (5)

We employ a spherical formulation of coupled-cluster
theory in which the cluster operator T̂ is a scalar under rotations
[22]. This formulation reduces considerably the number of
unknowns and permits us to explore model spaces exceeding
20 major oscillator shells.

Let us briefly summarize the essential properties of the
coupled-cluster method. First, the method fulfills Goldstone’s
linked cluster theorem and therefore yields size-extensive
results; i.e., the error due to the truncation is linear in
the mass number A. Size extensivity is an important issue
when approximate solutions to all but the lightest nuclei
are sought [33,41]. Second, the computational effort scales
gently (i.e., polynomial) with the system size. The method
has met benchmarks in light nuclei [42,43]. We neglect 3NFs
since their application within the coupled-cluster method is
presently limited to smaller model spaces [44].

For a more precise computation of the correlation energy,
we consider corrections due to triples excitations T̂3 within the
�CCSD(T) approximation. For this purpose, we solve the left
eigenvalue problem

〈ψ |�̂H = E〈ψ |�̂ (6)

of the similarity-transformed Hamiltonian H . Here, �̂ denotes
the deexcitation cluster operator

�̂ = 1 + �̂1 + �̂2, (7)

and

�̂1 =
∑

i,a

λi
aâaâ

†
i , �̂2 = 1

4

∑

i,j,a,b

λ
ij

abâbâaâ
†
i â

†
j . (8)

The unknowns λi
a and λ

ij

ab result from the ground-state solution
of the left eigenvalue problem (6). They are utilized together
with the cluster amplitudes tai and tab

ij to compute the energy
correction due to triples clusters as

�E3 = 1

(3!)2

∑

ijkabc

〈ψ |�̂(F̂hp + V̂ )N
∣∣ψabc

ijk

〉

× 1

εabc
ijk

〈
ψabc

ijk

∣∣(V̂N T̂2)C |ψ〉. (9)

Here, F̂hp denotes the part of the normal-ordered one-
body Hamiltonian that annihilates particles and creates holes,
while εabc

ijk ≡ fii + fjj + fkk − faa − fbb − fcc is expressed
in terms of the diagonal matrix elements of the normal-
ordered one-body Hamiltonian F̂ . The subscript C denotes the
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FIG. 1. (Color online) Binding energy [within �CCSD(T)] for
24O from a chiral NN potential at order N3LO with high-momentum
cutoffs �χ = 500 MeV as a function of the oscillator spacing h̄ω and
the size of the model space.

connected part of the operator, and |ψabc
ijk 〉 is a 3p-3h excitation

of the reference state.
Results. We considered the nuclei 16,22,24,28O and com-

puted their ground-state energies within the �CCSD(T)
approximation for chiral interactions with cutoffs of �χ = 500
and �χ = 600 MeV. Figures 1 and 2 show the results as a
function of the oscillator spacing h̄ω of the single-particle
basis and parametrized by the number of major oscillator shells
N + 1 for 24O, and 28O with two chiral cutoffs �χ , respec-
tively. Note that the results are reasonably well converged
with respect to the size of the model space. Note also that
the “harder” interaction with cutoff �χ = 600 MeV requires
a larger model space to reach an acceptable convergence.
The results for 16O and 22O are of similar quality. Very
recently, Hagen, Papenbrock, and Dean demonstrated that
the coupled-cluster wave function is approximately a product
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FIG. 2. (Color online) Same as Fig. 1, except for 28O and a chiral
cutoff �χ = 600 MeV.

TABLE I. Contributions to the binding energy E (in MeV) in
neutron-rich oxygen isotopes from chiral interactions with high-
momentum cutoff �χ . The contributions E0, �ECCSD, and �E3

denote the Hartree-Fock energy, the correlation energy within the
CCSD approximation, and the energy due to the employed triples
correction, respectively. For 16O and �χ = 500 MeV, the results
were taken in 19 major oscillator shells and at the energy minimum
h̄ω = 40 MeV. For all other cases, the results were obtained in the
largest model spaces at fixed h̄ω = 28 MeV.

Energies 16O 22O 24O 28O

(�χ = 500 MeV)
E0 25.946 46.52 50.74 63.85
�ECCSD −133.53 −171.31 −185.17 −200.63
�E3 −13.31 −19.61 −19.91 −20.23
E −120.89 −144.40 −154.34 −157.01

(�χ = 600 MeV)
E0 22.08 46.33 52.94 68.57
�ECCSD −119.04 −156.51 −168.49 −182.42
�E3 −14.95 −20.71 −22.49 −22.86
E −111.91 −130.89 −138.04 −136.71
Experiment −127.62 −162.03 −168.38

of a translationally invariant wave function and a Gaussian
for the center-of-mass coordinate [45]. Thus, we do not
worry about spurious contributions to the coupled-cluster wave
function.

Let us estimate the precision of our results. There are three
sources of systematic errors, namely, the truncation level of
the coupled-cluster method, the finite size of the model space,
and the error due to omitted contributions in the interaction.
First, within the �CCSD(T) approximation, 3p-3h clusters are
treated approximately, and all excitation clusters of higher rank
are neglected. Table I shows the different contributions to the
binding energy of neutron-rich oxygen isotopes. Comparison
of the CCSD correlation energy and the energy due to triples
corrections shows that the latter account for 10% (13%) of
the former at a cutoff �χ = 500 (600) MeV. These ratios
are found in similar coupled-cluster calculations of atoms
and molecules, and experience in quantum chemistry (see,
for example, Ref. [33]) suggests that the truncation of the
cluster amplitudes beyond the triples corrections introduces
an error of a few percent corresponding to an uncertainty of
approximately 5 MeV. Second, we cannot treat an infinite
model space, and (as shown in Figs. 1 and 2) the convergence
with respect to an increased size of the model space is at
the level of a couple of MeV. Thus, the convergence with
respect to the size of the model space introduces an error
that does not exceed error estimates due to the truncation of
the cluster amplitudes. Third, by far the largest uncertainty
is due to omissions in the nuclear interaction, as can be seen
from a comparison of the results obtained with two different
cutoffs. This uncertainty is of the order of 10–20 MeV, and
increases with increasing mass number. Note that the deviation
from the experimental results is consistent with our error
estimates. Overall, we are missing binding energy compared
to experiment. Thus, the net effect of the 3NF is expected to be
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TABLE II. Root-mean-square point matter radii (in
fm) for neutron-rich oxygen isotopes from the chiral
interaction with high-momentum cutoff �χ = 500 MeV.
Oscillator frequencies as in Table I. Experimental data
from Ref. [46].

16O 22O 24O 28O

〈r2〉1/2 2.296 2.405 2.658 2.825
Expt. 2.54(2) 2.88(6) 3.19(13)

attractive for both cutoffs. Table II gives the rms point matter
radii using the chiral interaction with the high-momentum
cutoff �χ = 500 MeV.

Radii were calculated using the Helmann-Feynman the-
orem within the �CCSD(T) approximation in 19 major
oscillator shells. We compare them with the effective point
matter radii extracted from interaction cross sections using the
Glauber model in the optical limit approximation [46]. Our
calculated matter radii are smaller than those extracted from
experiment. In our calculated radii, we estimate an uncertainty
at the order of ∼0.1 fm from the model-space dependence.
The combination of too small radii and underbinding suggests
that 3NFs should play a nontrivial role in the structure of these
nuclei.

Let us also check whether our error estimates are consistent
with the power-counting estimates from chiral EFT. Nogga
confirmed that these estimates hold in light nuclei [47].
The omitted 3NFs are of the order 〈V̂ 〉(Q/�χ )3, where Q

is the typical momentum scale and 〈V̂ 〉 is the expectation
value of the two-body interaction. For nuclei in this mass
region and a cutoff �χ = 500 MeV, we have Q ≈ 200 MeV
and 〈V̂ 〉 ≈ 33 ± 3 MeV/nucleon (taken from the expectation
values of the kinetic and potential energies in Ref. [22],
respectively). This puts power-counting estimates from chiral
EFT at about 2 MeV/nucleon, and our results are well
within this estimate. While the absolute uncertainty on
the binding energy is thus considerable, the differences in
the binding energies of the considered isotopes (at fixed
chiral cutoff �χ ) are much closer to the experimental
results.

Let us focus on the binding energy of 28O with respect to
24O. While it would certainly be interesting to include 26O
in this comparison, we cannot address this nucleus within
the spherical coupled-cluster method because of its open-shell
character. Recall, however, the experimental evidence [3,4]
against the stability of 26O. This makes the comparison of 28O
and the last known stable isotope 24O particularly interesting.
Figure 3 shows that the ground-state energies relative to 22O
change little as one goes from 24O to 28O. This is a remarkable
result of our ab initio calculations. In shell-model calculations
with an 16O core, the ground-state energies typically increase
strongly (in absolute value) as more neutrons are added,
and an adjustment of the interaction is necessary [12]. We
study this phenomenon further by employing a similarity
renormalization group (SRG) transformation [48] of the
Hamiltonian with cutoff �χ = 500 MeV. As we lower the
smooth SRG momentum cutoff from 4.1 to 3.5 fm−1, we find
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FIG. 3. (Color online) Ground-state energies of neutron-rich
oxygen isotopes AO relative to 22O for chiral interactions with two
different cutoffs �χ .

that the ground-state energy of 28O decreases farther relative
to 24O. Thus, a softening of the nucleon-nucleon interaction
has to be compensated for by 3NFs that yield less attraction
(or even repulsion) in 28O than in 24O. There is no cutoff in
this range that simultaneously would reproduce the experi-
mental binding of 22O and 24O. Note also that the expected
contributions of 3NFs become repulsive for very low cutoffs
to compensate for the overbinding of the soft nucleon-nucleon
interactions.

At a cutoff �χ = 500 MeV, we find that 28O is bound by
about 2.7 MeV with respect to 24O. However, the situation is
reversed at the higher cutoff �χ = 600 MeV, and the difference
is about −1.3 MeV. Given the uncertainties of our calculation
as discussed in the preceding paragraph, it is presently not
possible to reach a conclusion regarding the existence of
28O. However, the preceding discussion also makes it clear
that—within interactions from chiral EFT—the stability of
28O depends mainly on the contributions of the three-nucleon
force, and that even small contributions can tip the balance
in either direction. This is the main result of this paper.
Our ab initio calculations also suggest that the recent results
from phenomenological shell-model approaches regarding the
unbound character of 28O might be viewed with caution. The
combination of 3NFs, the proximity of the continuum, and
the isospin dependence pose a challenge for reliable theoretical
predictions.

In summary, we performed ab initio calculations for
neutron-rich oxygen isotopes employing chiral nucleon-
nucleon interactions at order N3LO. We probed the effects
of missing physics (such as three-nucleon forces) by studying
the cutoff dependence of our results, and we estimated the
uncertainties due to the finite size of the model space and
the truncation of the cluster operator. Our results show that
the absolute binding energies have considerable uncertainties.
However, the differences in binding energies are much closer to
experiment. We find a small difference in the binding energies
of 24O and 28O. Thus, our results cannot rule out a stable 28O
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with respect to 24O. The cutoff dependence of the results shows
that three-nucleon forces are the dominant contributions that
tip the balance.
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