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Di-neutron correlations in 7H
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We investigate the dineutron correlations in 7H. The ground state of 7H is solved by superposing many AMD
(antisymmetrized molecular dynamics) Slater determinants with various t + n + n + n + n configurations based
on AMD triple-S (AMD superposition of selected snapshots). The mixing of dineutron cluster components is
estimated by calculating the squared overlap with the wave function of the dineutron condensate, which is an
extension of the studies on the α condensate in 4N nuclei. The calculated results show significant mixing of
components of dineutron clusters (t + 2n + 2n) with a spatially extended distribution (∼70%) much larger than
that of 8He, where the core nucleus is changed from t to 4He.
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The studies of neutron-rich nuclei have attracted much
interest because they have been continually giving us new
knowledge of extreme nuclei. Among them, it is a challenging
subject to study nuclei with maximal ratios of neutron to proton
numbers, which give fundamental information for the nature
of nuclear force and nuclear matter in extreme conditions. It is
7H that has the maximal ratio (N/Z = 6) observed so far, and
the value even reaches the one for the surface of the neutron
star. Quite recently, 7H was observed with a peak structure
above the t + n + n + n + n threshold energy in the proton
transfer experiment by Caamaño et al. at GANIL [1,2]. The
resonance energy was derived as E = 0.57 MeV from the
t + n + n + n + n threshold although the number of events
was very limited. This experiment confirms the first evidence
of 7H shown by Korsheninnikov et al. in the p(8He,pp)7H
reaction at RIKEN [3].

In such weakly bound systems, the dineutron (neutron-
neutron) correlation becomes extremely important as dis-
cussed by many authors (see Refs. [4–7] and references
therein). For example, for the ground state of 6He, the 4He +
n + n three-body model calculations show the coexistence of
the dineutron (boson) and the two neutrons (fermions) in the
p-shell around the 4He core [7]. Recently, this coexistent
nature of the two neutron states has been reinterpreted in
association with the BCS-BEC crossover phenomenon [8,9].
As for the two dineutron case, a candidate is 8He (4He +
2n + 2n). Here, the separation energy of neutrons is small
as in the case of 6He and the neutrons have a spatially
extended distribution. Therefore, it is considered that the
formation of the dineutrons is favored and the 4He + 2n + 2n

(two bosons around the core) components mix significantly
to the 4He + n + n + n + n (four fermions around the core)
configurations.

Such boson-like correlations in dilute systems have been
also studied in 4N nuclei with α-cluster structures [10], e.g.,
the second 0+ state of 12C. Tohsaki et al. [10] suggest that
in light 4N nuclei some of the excited states are interpreted
as boson condensates comprising several α’s. It is rather
surprising that the second 0+ state of 12C is dominantly
described by a simple condensed-type wave function (∼90%),

which is called the THRS (Tohsaki-Horiuchi-Schuck-Röpke)
wave function [11]. To extend the discussion to the dineutron
condensate along the lines of such studies, we have studied
8He by introducing the THRS wave function around the 4He
core [12]. The calculated results show the coexistence of
dineutrons and shell-model-like structures [12,13].

It is considered that in small neutron density regions,
such a Boson-like (dineutron) cluster correlation becomes
strong. However, because there is no external field for 8He
or 6He to control the neutron density, one possible way to
prove this hypothesis is to pick up one proton from the 4He
core. This makes the core-n interaction weaker. Therefore,
here we perform the study on H isotopes from such a view
point. There are some pioneering works for 7H [14,15] but
detailed discussions have not been fully given mainly due to
the large computational time. For example, in our previous
work [14], we did not have enough computational power to
get the converged solution. Also, in the work by Timofeyuk
[15], the final result is not obtained, and she has made a
prediction for the low-lying state by a kind of extrapolation
method. Here the method and the interaction are slightly
different from ours. Although He isotopes have been studied
by many authors, the studies on H isotopes are quite few. Both
isotopes might have similarities, but they would also have
differences originating from the weaker core-n interaction and
the spin nonsaturated effect of the triton core in 7H. Thus,
the simultaneous understanding of both isotopes is desirable.
Now the new experimental results are given [1] and we have a
new theoretical framework and enough computational power
[12,16]; thus it is the time to analyze 7H again. Here, the new
concept of a dineutron condensate [8,9] is introduced to 7H.

In this study, we solve the five-body problems by using
the so-called antisymmetrized molecular dynamics (AMD)
triple-S (superposition of selected snapshots) and give an
analysis of the dineutron correlations in 7H for the first
time. We show the development of the clusterization of
dineutrons from 8He to 7H by calculating the overlap between
the solutions of five-body models and the THSR-type wave
function. We also compare the results of the similar analyses
of 6He and 5H.
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We briefly describe the present method which is called
the AMD triple-S [17]. The wave function of the present
framework is given as

�JMπ =
∑

i

ciP
J
MKP π�k, (1)

where i = {k,K}. Here, {�k} are Slater determinants (i.e.,
conventional AMD wave functions) explained below, and they
are projected onto a good angular momentum (parity) by
the projection operator P J

MK (P π ). The coefficients ci are
determined by diagonalizing the Hamiltonian matrix after
these projections; thus {�k} are regarded as basis functions.
We select the important basis functions based on the technique
of the stochastic variational method (SVM) [17–19]: we
employ only the basis functions with which we get sufficient
binding-energy gain.

Each basis function, �k , is fully antisymmetrized by the
operator A,

�k = A[(ψ1χ1)(ψ2χ2) · · · (ψAχA)]k, (2)

and ψiχi corresponds to the wave function of each nucleon
(ψ , spatial part; χi , spin-isospin part), and ψi is represented
by a Gaussian form,

ψi =
(

2ν

π

) 3
4

exp

[
−ν

(
r − Zi√

ν

)2
]

, (3)

where Zi is a Gaussian center parameter with a complex
value. The real and imaginary parts of Zi√

ν
are associated

with the position and the momentum of the single particle.
The oscillator parameter (b = 1√

2ν
) is common for all the

nucleons to exactly remove the center-of-mass kinetic energy.
We assume the presence of a triton (t) cluster by giving a
common Zi value for the three nucleons (one proton and two
neutrons). In each basis function �k , the values of Zi for
valence neutrons are randomly generated and we optimize
their imaginary parts by using the frictional cooling method of
the AMD [17].

To estimate the mixing of dineutron condensate in 7H, we
calculate the squared overlap between the AMD triple-S wave
function and the THSR wave function [12,13]. The THSR
wave function was originally proposed for the α condensate
such as the second 0+ state of 12C [10,20], and the extension of
the THSR wave function to describe the dineutron-like states
in 8He has been carried out [12,13].

In a similar way, the THSR-type wave function is intro-
duced for 7H, which describes the motion of two dineutron
clusters, �σ

1 (2n) and �σ
2 (2n), around the triton core, �(t):

�σ
THSR(7H) = A

[
�(t)�σ

1 (2n)�σ
2 (2n)

]
, (4)

�(t) = Gt (R0)χp↑n↑n↓, (5)

�σ
k (2n) =

∫
d RkG2n(Rk) exp

(
− R2

k

σ 2

)
χn↑n↓. (6)

Here, the nucleons in the same cluster have the common spatial
part of the wave function with the Gaussian form centered at
Ri (i = 0, 1, 2),G(t,2n)(Ri) ∝ 	α exp(−ν(rα − Ri)2), where
Gt (R0) and G2n(Rk) (k = 1, 2) are for the triton and dineutron
clusters and α denotes the nucleons inside each cluster. Also,

χp↑n↑n↓ and χn↑n↓ are the spin-isospin parts of the triton and
dineutron clusters.

In the present study, we replace the integration for Rk with
the summation of the many Slater determinants [21],

�σ
THSR(7H) =

Imax∑
I=1

�
I,σ
Mont(

7H), (7)

�
I,σ
Mont(

7H) = A
[
Gt (R0)G2n

(
RI

1

)
G2n(RI

2)χ
]
, (8)

where I ’s are a set of the Gaussian center parameters
Rk (k = 1, 2) for the dineutron clusters and χ is the spin
and isospin parts of the total system. The parameters RI

k(I =
1, 2, . . . , Imax) are generated by the weight function W with
a Gaussian shape [21]. With increasing the ensemble number
(Imax), the distribution approaches the Gaussian with a width
parameter of σ . Thus, it is considered that the integration
over the Gaussian center parameters in the original THSR
wave function is expressed as the superposition of the AMD
Slater determinants (i.e., Monte Carlo integration). To reduce
the number of basis functions (Imax), we numerically project
out the total angler momentum of the system. The angular
momentum is projected to 1/2+, because the intrinsic spin of
the triton and dineutron clusters are 1/2+ and 0+, respectively,
and each dineutron is in the S orbit around the triton:

�
JMπ,σ
THSR (7H) =

∑
K

P πP J
MK�σ

THSR(7H), (9)

where P π and P J
MK are the projection operator for the parity

and the angler momentum, respectively (in the present study,
π is + and J = M = K = 1

2 ).
The Hamiltonian operator (Ĥ ) has the following form:

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i>j

v̂ij , (10)

where the two-body interaction (v̂ij ) includes the central part,
the spin-orbit part, and the Coulomb part. For the central part,
the Volkov No. 2 potential is employed [22]:

Vcnt(r) = (W − MP σP τ + BP σ − HP τ )

× [
V1 exp

(−r2
/
c2

1

) + V2 exp
(−r2

/
c2

2

)]
. (11)

The original Volkov No. 2 potential (W = 1 − M,M =
0.60, B = H = 0) gives a bound state for the n-n system,
but it is eliminated by introducing B and H parameters. In this
article, we use B = H = 0.07, which reproduces the barely
unbound property of the dineutron system (Ecal = 0.05 MeV)
within the present model space (However B and H should
be ∼0.1 to get this value in the full model space). Also,
M = 0.56 (E = 1.0 MeV) is determined to be consistent with
the experimental ground state energy (Eexp. = 1.7 MeV) [23]
for 5H. For the spin-orbit term, the G3RS potential [24] is
employed as

Vls(r) = V0
{
e−d1r

2 − e−d2r
2}

P (3O) �L · �S, (12)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, V0 = 2000 MeV
[25], and P (3O) is a projection operator onto a triplet odd state.
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FIG. 1. The energy convergence of the ground state (1/2+) of
7H based on the generator coordinate method (GCM). The energy is
obtained by diagonalizing the Hamiltonian and plotted as a function
of the number of generated basis functions (Slater determinants).

The operator �L stands for the relative angular momentum and
�S is the spin ( �S1 + �S2).

In Fig. 1, the energy convergence of the ground state (1/2+)
of 7H is shown. The energy is obtained by diagonalizing
the Hamiltonian and plotted as a function of the number
of basis functions (the number of trial basis functions is
800). Here, we use a technique of SVM [19]: if a trial
basis function contributes enough to the energy decrease after
the diagonalization of the Hamiltonian, we employ it as a
basis function. The selecting condition as a basis function
is �E3 = 0.01 MeV [17], which means the decrease of the
energy sum of the three lowest 1/2+ states by more than
10 keV. The converged energy is E = −2.8 MeV. Here, the
oscillator parameter (b = 1.71 fm) is also chosen to give the
minimum energy. Because the triton is calculated as −7.0 MeV
within this model (b = 1.71 fm), the obtained state is 4.2 MeV
above the t + 4n threshold. To check the convergence, we
carried out the calculation several times with different sets of
basis functions; however, the difference in energy is of the
order of 0.01 MeV. In this calculation, we only generated the
basis functions with same number of spin-up and spin-down
neutrons, Sz = 0. This is because S = 1 components for the
valence neutrons could be already taken into account within
the Sz = 0 basis states due to the rotational symmetry of the
t core. To check it, we add 400 trial basis functions with
Sz = −1 for the neutrons. Although we have tried several
basis sets, the energy gain is always around the order of the
energy convergence (0.01 ∼ 0.02 MeV.)

In Fig. 2, the squared overlap between the obtained ground
state and the THSR wave function is shown. The solid and
dash-dotted lines correspond to the squared overlap for 7H
and 8He [12], respectively. For each dineutron cluster, we do
not solve the relative motion between two neutrons, and they
are assumed to have a locally peaked (0s1/2)2 configuration.
In the THSR picture, the distribution of the Gaussian center
parameters of these two dineutron clusters is described as the
same spatially extended S orbit around the core. For 7H, we can
see a clear peak around σ = 6 fm at which the squared overlap
is 0.69 (solid line). This large overlap (∼70%) at σ = 6 fm
means that the major part of the 7H structure is interpreted as
two dineutrons in the same (extended) S orbit or, in other
words, as the dineutron condensate. It is rather surprising
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FIG. 2. The squared overlap between the obtained ground state
and the THSR wave function: |〈�1/2+|�1/2+σ

THSR 〉|2. The solid (dotted)
line corresponds to the squared overlap for 7H with M = 0.56 (M =
0.5) and B = H = 0.07. The values (dash-dotted line) for 8He are
taken from Ref. [12]. The horizontal axis represents σ .

that the ground state has such a large overlap: although the
ground state calculated with the t + n + n + n + n model
is expected to have a shell-model-like structure with many
complex configurations, the actual state has a simple t plus
two dineutrons structure, which is mainly described by a
THSR wave function. In this article, we employ Imax = 200
in Eq. (7). This gives a numerical error of several percent for
large σ values and of <∼1% for σ = 1 fm. Therefore, the above
discussion would not be changed by the numerical uncertainty
from the Monte Carlo integration. It is important to mention
that other discretized continuum states of 7H have almost
zero overlap with the THSR wave function. Therefore, we
can easily distinguish the present state from other continuum
solutions.

It is worthwhile to compare the present results for
7H with the results of 8He in our previous article [12].
Here, we introduce a similar five-body model of 4He +
n + n + n + n. For 8He, the skin (or halo) structure of
four neutrons can be discussed in relation to the dineu-
tron correlation (e.g., Ref. [26] and references therein). In
Fig. 2, the dash-dotted line shows that the ground state of
8He has large overlaps with the THSR wave function with large
σ values, and the overlap has a peak structure there (∼60%
around σ = 3 fm). If the ground state is mainly described
by the shell-model-like wave functions, the overlap is large
around the zero limit of the σ value. Also, the overlap must
rapidly decrease with increasing σ value, because the THSR
wave functions with large σ values are significantly different
from the wave functions of the shell-model-like states. The
calculated result shows that the ground state of 8He is not the
simple shell-model picture and the dineutron-like component
is also important. However, in the case of 8He, we can
also see non-negligible squared overlap at small σ values
(∼40% around σ = 1 fm). This is due to the admixture of
shell-model-like components: the THSR wave function with
zero σ value corresponds to the lowest representation of the
Elliott SU(3) state. This situation is quite different in 7H. In
the case of 7H, the squared overlap at σ = 1 fm is only 6%.
Because the t-n(t-2n) interaction is much weaker than the
4He-n (4He-2n) interaction because of the lack of one proton
in the core nucleus, the dineutron clusters are more spatially
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FIG. 3. The squared overlap between the obtained ground state
and the THSR wave function. The solid line corresponds to the
squared overlap for 5H (M = 0.56, B = H = 0.07, b = 1.60 fm).
The dash-dotted line corresponds to 6He, where the wave function is
the same one as in Ref. [16]. The horizontal axis represents σ .

extended in 7H than in 8He, which appears as the shift of the
peak position (at 3 fm in 8He and at 6 fm in 7H). The large
overlap value at the peak position suggests a well-developed
dineutron cluster rather than a shell-model-like structure in 7H.

Furthermore, for 7H, we calculate the overlap with
stronger attractive interaction (M = 0.5, B = H = 0.07, b =
1.67 fm). The calculated energy is 3.3 MeV from the threshold.
The shape of the obtained squared overlap (dashed line in
Fig. 2) is not so much different from the M = 0.56 case even
with such a strong interaction, although it approaches the line
of the 8He result a bit as expected. Therefore, we can conclude
that the major component of the 7H wave function is described
by a simple THSR wave function with large σ value (∼70%
at σ = 6 fm) rather than by a shell-model-like wave function
(∼10% at σ = 1 fm).

Although there is only one dineutron and they are not
the dineutron condensate, it is instructive to show the similar
values for 5H and 6He. In Fig. 3, the squared overlap between

the obtained ground states and the THSR wave functions are
shown. The solid line corresponds to the squared overlap
for 5H (M = 0.56, B = H = 0.07, b = 1.60 fm), and the
dash-dotted line corresponds to the squared overlap for 6He
(M = 0.60, B = H = 0.125, b = 1.46 fm), where the wave
function is the same as the one in Ref. [16] (S2n = 1.09 MeV,
Rr.m.s. = 2.35 fm), which almost reproduces the experimental
values (S2n = 0.98 MeV [27], Rr.m.s. = 2.48 fm [28] and
2.33 fm [29]).

For 5H, the overlap reaches 75% at larger σ region
(σ ∼ 6 fm). We can interpret that the ground state of 5H has
well-developed dineutron clusters, where the main component
is described by a simple wave function (the THSR-type
wave function). By adding one proton to the triton core, the
interaction between the core and dineutron becomes much
larger. Even in such a case, the ground state of 6He has the
components of the THSR-type wave function with large σ

values by 75%. However in the case of 6He, the squared
overlap with small σ value is also large (56% at σ = 1 fm).
Therefore, the wave function of 6He has aspects of both the
shell-model-like and the dineutron-like structure.

We have investigated the dineutron correlations in 7H.
The ground state of 7H has been solved by using the AMD
triple-S with various t + n + n + n + n configurations. The
mixing of dineutron cluster components has been estimated by
calculating the squared overlap with the THSR wave function.
The calculated results show significant mixing of dineutron
(t + 2n + 2n) components, and the dineutron clusters have
a spatially extended distribution (the peak is ∼6 fm) much
lareger than that of 8He (∼3 fm), where the core nucleus is
changed from the polarized t cluster to 4He.
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