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Triaxial rotor model description of quadrupole interference in collective nuclei: The P3 term
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The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the P3 term,
P3 = 〈01||T̂ (E2)||21〉〈21||T̂ (E2)||22〉〈22||T̂ (E2)||01〉, which is a standard measure of quadrupole interference in
collective nuclei. It is shown that the model naturally explains nuclei with anomalous signs for their P3 terms.
Measurements of Q(21) in multiple-step Coulomb excitation can be significantly dependent on the sign of this
term. The example of 194Pt is considered.
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Recently we have introduced a triaxial rotor model with
independent inertia and electric quadrupole tensors [1]. This
model has been applied to a detailed description of E2 matrix
elements in the osmium isotopes [2]. An important ingredient
of the model is the explicit description of interference
effects that result between the inertia tensor and the electric
quadrupole tensor. In the present study we apply the model to
the P3 term, which is a widely used [3–10] standard measure
of quadrupole interference in collective nuclei, and we show
that it provides a straightforward explanation of P3-term sign
anomalies without the need for higher order deformation terms
such as β4 used by Baker [11,12]. It is important to have
reliable knowledge of the signs of P3 terms because this
can strongly influence the extraction of Q(2+

1 ) values from
Coulomb excitation data [3,4,9,13–15].

The P3 term,

P3 = 〈01||T̂ (E2)||21〉〈21||T̂ (E2)||22〉〈22||T̂ (E2)||01〉, (1)

which is independent of the wave function phases but not the iλ

phase (i.e., iλ〈I ′||T̂ (E2)||I 〉, which is sometimes included in
the definition of E2 matrix elements [16]), is straightforwardly
calculated in any model of a nucleus exhibiting quadrupole
collectivity. Early models that addressed this included the
anharmonic vibrator model [17], the triaxial rotor model (with
irrotational flow moments of inertia) of Davydov and Filippov
[18], and the pairing-plus-quadrupole model of Kumar and
Baranger [3]: all give a negative value for the related quantity

P4 = 〈21||T̂ (E2)||21〉P3, (2)

which is independent of all phase-factor conventions for the
E2 matrix elements. The importance of this issue for extracting
Q(2+

1 ) values from Coulex data is that the direct path to the 2+
1

state, wherefrom reorientation depends on 〈21||T̂ (E2)||21〉,
is interfered with by the 01-22-21 path resulting in up to
40% uncertainties [3,4,9,13–15]. Such uncertainties can yield
ambiguities in sign changes of Q(2+

1 ) as a function of nucleon
number, which impacts the location of prolate-oblate shape
(“phase”) changes in nuclei (see, e.g., Ref. [19]).

The model [1] expressions for the matrix elements relevant
to the present investigation are

〈01||T̂ (E2)||21〉 =
√

5

16π
Q0 cos(γ + �), (3)

〈01||T̂ (E2)||22〉 =
√

5

16π
Q0 sin(γ + �), (4)

〈21||T̂ (E2)||22〉 =
√

25

56π
Q0 sin(γ − 2�), (5)

and

〈21||T̂ (E2)||21〉 = −
√

25

56π
Q0 cos(γ − 2�)

= −〈22||T̂ (E2)||22〉, (6)

where Q0 ∝ β2 is the intrinsic quadrupole deformation mea-
sured in e b, the angle γ describes the triaxiality of the electric
quadrupole tensor, and � is a mixing angle that depends on the
triaxiality of the inertia tensor. Equations (3)–(6) are usefully
depicted as shown in Fig. 1. The corresponding quadrupole
moments are

Q(2+
1 ) =

√
16π

5

1√
2Ii + 1

〈22; 20|22〉〈21||T̂ (E2)||21〉

= −2

7
Q0 cos(γ − 2�) = −Q(2+

2 ). (7)

The iλ = −1 phase [16] is not used for the matrix elements
in the present model. The convention for prolate and oblate
shapes follows that of Bohr and Mottelson [20] and of
Davydov and Filippov [21] (i.e., γ = 0◦–30◦ for prolate
shapes, γ = 30◦–60◦ for oblate shapes, and so forth by use
of the D2 symmetry group). However, in practice, fitting
oblate nuclei to Fig. 1 is done by using the γ = 0◦–30◦ range
with a negative intrinsic deformation, −|Q0| ∝ −|β2|, which
preserves the three-axis as the basis, |IK〉. From that point,
one can map to the γ = 30◦–60◦ range with +|Q0| ∝ +|β2|

5

16π 
Q 0

01 || T̂(2)|| 21

γ + Γ 

25

56π 
Q 0

γ − 2Γ 

21,2 || T̂ (2)||21,2
−+
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FIG. 1. The geometric representation of the model parameters
and I = 0, 2 subspace.
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by 60◦ − γ and −60◦ − �. The two choices for describing
oblate nuclei are equivalent except for the ordering of the axes
which is experimentally indistinguishable. Because the E2
properties of prolate and oblate nuclei are symmetric about
γ = 30◦ (except for the sign of the quadrupole moments)
[21], we confine the use of γ to the 0◦–30◦ range and use
+|Q0| ∝ +|β2| for prolate nuclei and −|Q0| ∝ −|β2| for
oblate nuclei.

From Eqs. (3)–(6), one directly obtains

P4 = 125

7168π2
Q4

0 [cos(4γ − 2�) − cos 6�] , (8)

which is zero when γ = |�|, negative when γ > |�|, and
positive when γ < |�| for the 0◦ � γ � 30◦ region. Because
P4 ∝ Q4

0 ∝ β4
2 , the sign of P4 is phase independent and,

therefore, strictly determined by the relative amount of E2
and inertial asymmetry, γ and �, respectively. In fact, the
sign of P4 can be determined from Fig. 1(a) alone [i.e., it
is the 〈01||T̂ (E2)||22〉 ∝ sin(γ + �) matrix element that is
responsible for the change in sign]. The P4 term is depicted
in Fig. 2 and the phase conventions for the present model are
given in Table I. For irrotational flow,

�irrot = −1

2
cos−1

(
cos 4γ + 2 cos 2γ√

9 − 8 sin2 3γ

)
, (9)

one obtains that P4 is always <0, as noted above.
The nuclei 192,194Pt are examples where P4 > 0 is observed

[6,8,10]. To our knowledge these are the only examples for
which an anomalous P4 > 0 is certain. Other possibilities
for P4 > 0 include 196Pt [22] and 66Zn [23], but because
〈01||T̂ (E2)||22〉 ∼ 0, the experimental errors make the sign
ambiguous. There has also been a recent study of 74,76Kr,
where P4 > 0 with respect to both 22 and 23. However, the
K assignments appear ambiguous because of strong mixing
of K = 0, 2 and of prolate/oblate shapes; shape mixing is
outside of the present description and 22 states that are K = 0
provide P4 > 0 naturally [3]. While this is the limit of our
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FIG. 2. The P4 term, without the scale factor of (125/7168π 2)Q4
0,

is shown as a function of � for different values (0◦, 5◦, 10◦, 15◦, 20◦,
25◦, 30◦) of triaxiality, γ . P4 = 0 at γ = |�|. Both prolate and oblate
nuclei are described in this 0◦ � γ � 30◦ region; see text for details.

TABLE I. The P3 and P4 sign convention for the region 0◦ �
γ � 30◦, where oblate E2 shapes are generated in this region by use
of a negative β (i.e., −β2 ∝ −Q0, which preserves the three-axis as
the basis, |IK〉).

P3 (Triaxial sign convention—no iλ = −1 phase)

γ > |�| γ < |�|
+Q0 (prolate) + −
−Q0 (oblate) − +

P4 (Triaxial sign convention—phase independent)

γ > |�| γ < |�|
+Q0 (prolate) − +
−Q0 (oblate) − +

knowledge on known examples of P4 > 0, future experiments
should especially pay attention to the possibility of P4 > 0
for the Hg isotopes, other Pt isotopes, and neutron-rich Os
isotopes.

The present investigation focuses on explaining the P4 > 0
anomaly for 194Pt, where the 22 state is spectroscopically
known to be K = 2. It has been studied by many groups
using multi-Coulex [6,10,13,19,24–30]. Multi-Coulex studies
provide the key quantity, 〈21||T̂ (E2)||21〉, in P4 and they
contribute to the values of 〈01||T̂ (E2)||21〉, 〈21||T̂ (E2)||22〉,
and 〈01||T̂ (E2)||22〉. The value used here for 〈01||T̂ (E2)||21〉
is computed from the evaluation of B(E2; 01 → 21) by Raman
et al. [31], which gives 〈01||T̂ (E2)||21〉 = 1.2819

8 e b. The mea-
surements contributing to 〈21||T̂ (E2)||22〉 and 〈01||T̂ (E2)||22〉
are given in Table II and are from γ -ray yields following
multi-Coulex [24–26,28], magnetic analysis of multi-Coulex
scattered ions [27,29], and lifetime measurements using fast
electronic timing [32]. The matrix elements 〈21||T̂ (E2)||21〉
and 〈22||T̂ (E2)||22〉 are also given in Table II and depend
entirely on multi-Coulex measurements [13,24,25,29,30].

The model parameters Q0, γ , and � can be determined for
194Pt as follows. Using the triaxial parameter space outlined
in Fig. 1 and the linearly weighted experimental E2 matrix
elements in Table II, the model parameters Q0 and γ + � can
be determined from Fig. 1(a) by

Q
′
0 = − 1

0.3154

√
(−1.281)2 + (+0.091)2

= −4.07228 e b, (10)

(γ + �)
′ = arctan

(+0.091

−1.281

)
= −4.0610 deg. (11)

The model parameters Q0 and γ − 2� can be determined from
Fig. 1(b) by

Q
′′
0 = − 1

0.3770

√
(−0.61)2 + (−1.53)2

= − 4.3714 e b, (12)
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TABLE II. Experimental E2 matrix elements, in e b, involving
the 21 and 22 states in 194Pt.

〈01||T̂ (E2)||21〉a 〈01||T̂ (E2)||22〉a 〈21||T̂ (E2)||22〉a Source

1.2819
8 [31]

0.088812
12 1.51711

18 [24]

0.0902
2 1.45525

25 [25]

0.0987
7 1.7211

11 [32,33]

0.0846
6 1.7010

10 [26]

0.0977
7 [27]

0.1059
9 [28]

(−) 1.2819 (+) 0.0912 (−) 1.535 Lin. Wt.

〈21||T̂ (E2)||21〉 〈22||T̂ (E2)||22〉 Source

+ 0.6318
18 [29]

+ 0.5910
10 [30]

+ 0.548
6 − 0.4012

5 [24]

+ 0.8421
21 − 0.838

8 [13]

− 0.6660
60 [25]

+ 0.616 − 0.6614 Lin. Wt.

aThe signs of individual off-diagonal or transitional E2 matrix ele-
ments are not observables (unlike the diagonal E2 matrix elements).
However, the sign for the product of these matrix elements, P3,
is an observable. Because the signs are arbitrary to the degree
that they give the correct P3 sign, a negative sign (−) is adopted
here for 〈01||T̂ (E2)||21〉 and 〈21||T̂ (E2)||22〉 to comply with the
convention −β2 ∝ −Q0, γ = 0◦–30◦, which forces 〈01||T̂ (E2)||22〉
to be positive (+).

(γ − 2�)
′′ = arctan

(−1.53

−0.61

)
= 68.119 deg, (13)

and

Q
′′′
0 = − 1

0.3770

√
(−0.66)2 + (−1.53)2

= −4.4119 e b, (14)

(γ − 2�)
′′′ = arctan

(−1.53

−0.66

)
= 66.746 deg. (15)

This gives the final model values Q0 = −4.15598 e b, γ =
19.8513 deg, and � = −23.9213 deg (i.e., after taking linearly
weighted averages of the redundantly obtained parameters) or,
equivalently, Q0 = +4.15598 e b, γ = 40.1513 deg, and � =
−36.0813 deg. Although only three matrix elements are needed
to obtain the model parameters, the procedure used above pro-
vides an averaged fit to the I = 0, 2 subspace using all the data
available. We note that the adopted Nuclear Data Sheets’ [33]
branching ratio, Iγ (22 → 01)/Iγ (22 → 21) = 0.136927, leads

TABLE III. The ability of the model to fit the experimental E2
matrix elements, in e b, is shown for the I = 0, 2 subspace. The
three model parameters used are Q0 = −4.15598 e b, γ = 19.8513

deg, and � = −23.9213 deg.

M.E. Exp. (e b) Theory (e b) % dev.

〈01||T̂ (E2)||21〉 (−) 1.2819 (−) 1.30731 −2.0%
〈01||T̂ (E2)||22〉 (+) 0.0912 (+) 0.092848 2.0%
〈21||T̂ (E2)||22〉 (−) 1.535 (−) 1.44934 5.1%
〈21||T̂ (E2)||21〉 + 0.616 + 0.59516 −3.1%
〈22||T̂ (E2)||22〉 − 0.6614 − 0.59516 9.6%

Exp. (e b)4 Theory (e b)4 % dev.

P4
a + 0.10911 + 0.1057 −4.3%

aThe sign of the P4 term is independent of all phase-factor
conventions for the E2 matrix elements (unlike the P3 term).

to 〈01||T̂ (E2)||22〉/〈21||T̂ (E2)||22〉 = 0.05676, cf. 0.059518

from the adopted matrix elements in Table II. Ac-
commodation of this datum in our evaluation has not
been made because some of the multi-Coulex analyses
used such a datum. Simple changes, such as “deriving”
〈01||T̂ (E2)||22〉 from 〈21||T̂ (E2)||22〉, do not change any of
the quantitative results within the quoted uncertainties, e.g.,
from 〈21||T̂ (E2)||22〉, 〈01||T̂ (E2)||22〉 = 1.535 × 0.05676 =
0.0873 changes Fig. 1(a) to yield, cf. Eq. (11), (γ + �)′ =
−3.8714 deg, whence γ = 19.9813 deg and � = −23.8513 deg.

The model and experimental E2 matrix elements are
compared in Table III. The model parameters yield P4 =
+0.1057 (e b)4; i.e., the model yields a positive value for P4

because γ < |�| (i.e., with respect to using the 0◦ � γ � 30◦
region); and, from the positive value of 〈21||T̂ (E2)||21〉, the
model yields a positive value for P3.

The present work shows that the triaxial rotor model with
independent inertia and electric quadrupole tensors [1] is
naturally able to explain P3 and P4 sign anomalies. This is
a new insight into collective behavior, namely that the inertia
and electric quadrupole tensors result in a strong interference
effect (e.g., γ + �) that is manifested in the E2 properties of
collective nuclei. Indeed, the present study reveals the need
for a better understanding of the inertia tensor in nuclei (this
is a topic for a separate investigation). The result is significant
also in that previously there was no simple model that could
explain so-called anomalous P3 and P4 values. The sign of the
P3 term can play a significant role in extracting quadrupole
moments of 2+

1 states in nuclei because it can often lead to 40%
uncertainties [3,4,9,13–15]. The present work suggests how to
arrive at the “correct” sign for P3. From a wider perspective, the
model provides a physically insightful means for systematizing
nuclear E2 data.
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