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Measuring the deviation from the Rutherford formula
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Modern experiments with heavy ion-leptons collisions open the possibility to measure the deviation of a cross
section of small angles electron(positron)-ion elastic scattering from the Rutherford formula due to multiple
virtual photons exchange. The charge asymmetry and the polarization of the scattered leptons are calculated and
numerical predictions are given. A generalization to elastic proton-nucleus scattering is discussed.
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Elastic, inelastic, and deep-inelastic lepton scattering on
hadrons is considered the most precise way to get informa-
tion about the internal structure of the hadron. An elegant
formalism has been derived for those reactions, assuming
that the interaction proceeds through the exchange of one
photon. Lowest order QED calculations are justified by the
smallness of the electromagnetic fine-structure constant, α =
e2/4π = 1/137. However, for a heavy target of charge Z, the
expansion parameter is not α, but Zα. It may be sizable and
higher orders should be taken into account. The motivation
of this Brief Report is to discuss high order corrections,
due to multiple photon exchange, to the cross section and
to polarization observables in elastic lepton-(heavy) ion
scattering. The expression of the correction to the polarization
of the scattered electron is derived. These predictions can be
experimentally tested. If deviations from the Born expectations
will be measured in dedicated experiments, care must be taken
in the interpretation of the experimental data, in particular
concerning the properties of the hadron structure.

Elastic lepton scattering in the Coulomb field of a nucleus
has been calculated by Mott [1] who showed that the amplitude
differs from the Born approximation by a phase, which
depends on the lepton charge and cancels in the cross section.
If one takes into account the hadron structure, then Coulomb
effects appear in the cross section, too. Recently this problem
has regained interest in the literature, due to the increased
precision which can be achieved in the experiments [2].

The lowest order correction to the cross section of relativis-
tic electron(positron) scattering on a heavy point-like target
of charge Z, was first derived in Ref. [3] in the middle of the
previous century. The result for the cross section has the form

dσ±

dO
= dσR

dO
[1 ± παZ sin(θ/2)],

(1)
dσR

dO
= (Zα)24E2 sin4(θ/2),
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where E is the incident energy and θ is the angle of the
scattered electron in the laboratory (Lab) system.

Two (or more) photon exchange induce a nonzero imagi-
nary part in the scattering amplitudes, therefore the scattered
electron may be polarized also in the case of unpolarized
particles collisions. Let us define �e the electron polarization
vector. In the case of high energies and small scattering angles
it can be written as

�e = 2Zαm

E
sin3 θ

2
ln sin

θ

2
�ν, (2)

where �n, �n′, �ν = �n × �n′/sin θ are the unit vectors along the
momenta of initial electron, scattered electron, and the normal
to the scattering plane, respectively (cos θ = �n · �n′), m is the
electron mass.

The contributions of higher orders of perturbation theory,
i.e., the terms of order (Zα)n, n > 2 were derived during the
years 1975–1979, in a series of papers [4–6].

In the eikonal approximation, the elastic scattering ampli-
tude of high energy electrons (positrons) in the Coulomb field
has the form [8]

f (q) = −iE

∫ ∞

0
ρdρJ0(qρ)eiκ(ρ), (3)

where ρ is the impact parameter, J0(z) is the Bessel function,
and κ(ρ) = κ0(ρ) + κ1(ρ) is the eikonal phase. In the first and
second approximation we have

κ0(ρ) =−
∫ a

−a

dtV (ρ, t); κ1(ρ) = −ρ2

E

∫ ∞

−∞
dt

∂

∂ρ2
V 2(ρ, t),

where V (ρ, t) = xe/|e|
√

ρ2 + t2, x = Zα, and a is the regu-
larizing parameter of the Coulomb potential a � ρ. Moreover,
it is implied that the energy of the electron, E, is large
compared to its mass. A straightforward calculation leads to

κ0(ρ) = 2x ln
ρ

2a
; κ1(ρ) = πx2

2ρE
. (4)
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Inserting Eq. (4) into Eq. (3), we obtain for the amplitude

f (q) = −iE

∫ ∞

0
ρdρJo(qρ)

( ρ

2a

)2ix
(

1 + i
πx2

2ρE

)
, (5)

where we took into account the smallness of the second order
eikonal phase |κ1| � |κ0|. Further integration is performed
using the relation [7]

∫ ∞

0
dxJ0(qx)xµ = 2µ(q)−µ−1 	

( 1+µ

2

)
	

( 1−µ

2

) . (6)

Using the relation q = 2E sin(θ/2), the result for the ampli-
tude is

f (q) = − xE

2q2
(aq)−2ix 	(1 + ix)

	(1 − ix)

[
1 − πx sin(θ/2)

2

(x)

]
,

(7)

with 
(x):


(x) = cos ϕ(x) + i sin ϕ(x) = 	
(

1
2 + ix

)
	(1 − ix)

	
(

1
2 − ix

)
	(1 + ix)

, (8)

x = Zα

β
, (9)

where β is the velocity v of the initial particle, in the laboratory
system, in units of c: β = v/c =

√
1 − 4m2/E.

Using the properties of Euler gamma function [7] one
obtains

ϕ(x) = −4
∞∑

n=0

(−1)n
x2n+1

2n + 1
cn,

c0 = ln 2; c1 = 3ξ3; c2 = 15ξ5, . . . , (10)

cn = (22n − 1)ξ2n+1, n � 1.

Applying the Stirling formula one can write

cos(ϕ(x))|x�1 ∼ 1

4x
. (11)

The functions cos(ϕ(x)) and sin(ϕ(x)) are shown in Fig. 1.
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FIG. 1. (Color online) Dependence of the real (black, solid line)
and imaginary (red, dashed line) part of 
(x) as a function of x

[Eq. (14)].
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FIG. 2. (Color online) Dependence of the charge asymmetry
A(θ, x) on θ , [see Eq. (13)], at E = 3 GeV, for x = 0.15 (Z = 20)
(black, solid line) and x = 0.6 (Z = 82) (red, dashed line).

The expression for the differential cross section is

dσ

d�
= dσR

d�
[1 − πx sin(θ/2) cos ϕ(x)]. (12)

Therefore, the effect of multiphoton exchange results in a
correction to the differential cross section, which can be
expressed as a multiplicative factor cos ϕ(x) in front of the
second term in square brackets of Eq. (1).

In Ref. [5] the charge asymmetry, defined as the difference
of the cross sections for the scattering of electron (µ−) and
positron (µ+) on the same target of charge Z, was derived
using the eikonal approximation:

A =
dσ e−Z

dO−
− dσ e+Z

dO+
dσ e−Z

dO−
+ dσ e+Z

dO+

= πx sin

(
θ

2

)
cos ϕ(x). (13)

The charge asymmetry is shown in Fig. 2 as a function of
the polar angle θ , for two different values of the ion charge:
Z = 20 (black, solid line) and Z = 82 (red, dashed line),
which correspond to x = 0.15 and x = 0.6, respectively. The
calculation is performed for for E = 3 GeV, but the charge
asymmetry is almost constant with energy, as long as β ∼ 1.
One can see that it increases with angle, and may reach
measurable values of a few percent. Note that the present
calculation holds for small scattering angles.

Higher order corrections induce also an effect to the
polarization vector of the scattered electron. Such effect is
taken into account by doing the following replacement in
Eq. (2):

Zα ln sin
θ

2
→ F (x, θ ) = x ln θ + 1

4
sin ϕ(x). (14)

The function F (x, θ ) is drawn in Fig. 3. The normal
component of the polarization of the outgoing electron is
drawn in Fig. 4 as a function of x [see Eqs. (14), (2)], for
two different values of θ : θ = 5◦ (black, solid line), and
θ = 10◦ (red, solid line). The corresponding dashed lines
are the result of the first order calculation. Here we consider
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FIG. 3. (Color online) Dependence of function F (θ, x) on x, [see
Eq. (14)], for two different values of θ : θ = 5◦ (black, solid line),
θ = 10◦ (red, dashed line).

E = 3 GeV and β = 1. This observable is very small and
negative (the vertical scale is multiplied by 107).

A tentative extrapolation of this formalism to hadron
scattering can be suggested. Elastic peripheral scattering
of high energy protons on nuclei can be experimentally
investigated at LHC. Relevant theoretical considerations have
not been done, at our knowledge, and must be performed in the
frame of QCD. It is tempting to obtain a realistic estimation
of these effects by the replacing

x = Zα → xc = Nαs. (15)

In the kinematical conditions when xc � 1, the small angles
corrected cross section is expected to have an universal θ

dependence as

dσ

dσR

= 1 + π

4
sin

(
θ

2

)
, θ � 1. (16)

Similarly, the asymmetry of proton and antiproton scattering
on the same target nucleus, defined as for the lepton case, is
expected to be

A(p, p̄) = A =
dσpY (N)

dOp
− dσ p̄Y (N)

dOp̄

dσpY (N)

dOp
+ dσ p̄Y (N)

dOp̄

= π

4
sin

(
θ

2

)
, θ � 1.
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FIG. 4. (Color online) Dependence of the outgoing electron
polarization on x, [see Eqs. (14), (2)], for two different values of
θ : θ = 5◦ (black, solid line), θ = 10◦ (red, solid line).

In conclusion, the nontrivial behavior of the deviation from
the Rutherford formula due to high order Zα contributions, has
not yet been experimentally observed. The charge asymmetry
contains the information on such deviation, it is sizable
and, in principle, measurable. The present Brief Report
adds new information, the contribution to the polarization
of the scattered electron. The measurement of the degree of
transverse polarization of the scattered electron (muon) gives
in principle another possibility to check the importance of
high order effects. However the present calculation predicts
very small values.

Such correction is particularly important in problems
related to beam monitoring and the calibration for small
angles lepton-nuclei scattering. It should also be considered
in other processes, as very small angle Bhabha scattering,
or lepton-nucleus scattering. This is also relevant to present
experiments of COMPASS and HERMES. An application to
hadron scattering at high energies has also been suggested.
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