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Light nuclei in supernova envelopes: A quasiparticle gas model
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We present an equation of state and the composition of low-density supernova matter composed of light
nuclei with mass number A� 13. We work within the quasiparticle gas model, which accounts for bound states
with decay time scales larger than the relevant time scale of supernova and protoneutron star evolution. The
mean-field contribution is included in terms of Skyrme density functional. Deuterons, tritons, and 3H(e) nuclei
appear in matter in concentrations that are substantially higher than those of heavier nuclei. We calculate the
critical temperature of deuteron condensation in such matter and demonstrate that the appearance of clusters
substantially lowers the critical temperature.
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I. INTRODUCTION

A key ingredient of studies of the formation of neutrino
signal in supernova explosions and the supernova mechanism
itself is the equation of state and composition of matter at the
densities ρ � 1012 g cm−3 and within the temperature range
0 � T � 10 MeV [1]. The matter at densities below the nuclear
saturation density is composed of a mixture of nuclei and free
(unbound) nucleons with a charge neutralizing background
of electrons. The state of the art equations of state that are
routinely used in the current supernova simulations include
the nucleons, the α particles, and a heavy nucleus as the
independent degrees of freedom [2,3].

Numerical simulations of core collapse supernovas demon-
strate that about 1053 ergs of gravitational binding energy
is liberated in neutrinos of all flavors [4–6]. Over the time
scales relevant for supernovas and protoneutron stars, matter
is opaque to neutrinos above densities 1011–1012 g cm−3.
The last-scattering surface, known as the “neutrinosphere,”
generates the neutrino spectrum of the supernova, which is
potentially observable by the supernova neutrino detectors.
The signal carries an imprint of physical conditions at the
neutrinosphere and can provide information on properties of
matter under supernova conditions and dense matter in general
[7–9]. Neutrino interactions at the neutrinosphere are also of
importance for setting the initial conditions for a possible
nucleosynthesis process in supernova winds.

In this work we focus our attention primarily on the compo-
sition and the equation of state of dilute isospin symmetric and
asymmetric nuclear matter. Our goal is to introduce a simple
setup for treating increasingly complex many-body problems
related to light nuclei in supernova and protoneutron star
matter. Our motivation lies in the Bose-Einstein condensation
(BEC) of deuterons [10,11] and α particles [12,13] in nuclear
matter and under supernova conditions [14]. Furthermore,
recent computations of two- and three-body binding energies
in nuclear medium at nonzero temperature and density [11]
allow us a fully quantum mechanical assessment of these
effects beyond the occupied volume approximation. These
goals are accomplished by the Quasiparticle Gas Model
(QGM), described in the following section, which treats the
nuclei as stable (infinite lifetime) entities over the time scales

relevant for the supernova and protoneutron star evolution. Our
setup is sufficiently general to allow for resonant states (finite
lifetime effects), the degeneracy of species, and, hence, the
possibility of boson condensation and medium modifications
of bound and scattering states in a clustered environment.
The binding energies of the nuclei A � 13 can be computed
from first principles in free space, e.g., within variational
theory [15]. In this work we use the experimentally measured
binding energies of light nuclei [16]. Section IV discusses
the modifications of the binding energies of nuclei in the
medium on the example of deuterons. Our model includes the
mandatory mean-field contribution to the energy density and
the nucleon effective mass due to the momentum-dependent
mean field (self-energy).

In recent years a number of studies improved upon the
equations of state and composition of Refs. [2] and [3].
Instead of using one single heavy nucleus as a representative,
an ensemble of nuclei with A � 1000 was included in the
composition in Refs. [17] and [18], treating the nuclei as
noninteracting Boltzmann gas. These statistical ensemble
calculations predict nuclei that are smaller than those obtained
in a single (representative) nucleus approximation and they
find substantial amounts of light nuclei in the composition. The
treatment of light nuclei has been improved by including the
interactions among the nucleons and α’s on the basis of phase
shifts (virial expansion) [19]. This approach has been extended
further to include the three-body bound and scattering states
[20] and contributions of all nuclei up to A � 4 [21]. Neutrino
interactions with light nuclei [21] and the appearance of A � 4
clusters in a dynamical simulation model [22] have been
explored. The changes in the binding energies of light nuclei
within the Ritz variational theory are given in Ref. [23]. A
different view on clusterization in low-density nuclear matter
emerges from the studies of the liquid-gas instability, which
predicts clusterization of matter into fragments in the spinodal
region (Ref. [24] and references therein). The latter process is
accessible in heavy-ion experiments [25].

The implications of the rich and complex composition of
matter on the thermodynamics of matter and its effect on
neutrino transport and other aspects of supernova physics
are not yet fully understood. The purpose of this work is
to advance the study of light clusters in supernovas in the
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following directions. The composition of matter is extended
to include all stable nuclei up to A � 13, a number that
is larger than that included in studies of light clusters to
date. In doing so the quantum statistics is fully included,
i.e., the assumption of Boltzmann gas adopted, for example,
in nuclear statistical ensemble studies is relaxed. It follows
then that any possible Bose-Einstein condensation (BEC)
in clustered matter is automatically included in the theory.
Indeed, we find that there is a BEC of deuterons in the
supernova environment. The effect of isospin asymmetry on
the composition of matter containing nuclei with mass number
A � 4 is studied. The formalism to address this issue is based
on expressing the thermodynamical potential in terms of a
sum over clusters, where each term is expressed through the
spectral function of the corresponding cluster. This method
allows one to address a multitude of effects, such as finite decay
width, short-lived states, Landau-Pomeranchuk suppression in
radiation processes, etc.

To summarize, the novelty of this work lies in the following:
first, the formalism presented here has the advantage that it
represents the contribution of the clusters to the thermody-
namic potential in terms of their spectral functions. Second,
we present a complete quantum statistical treatment of clusters
up to A � 13. Most previous work treats clusters as Boltzmann
particles. Such an approach by default excludes any possible
Bose-Einstein condensation. Furthermore, the majority of the
previous works were restricted to clusters up to A � 4, whereas
we include clusters up to A = 13. Third, we demonstrate
the Bose-Einstein condensation of deuterons in supernova
matter. Fourth, we demonstrate the dependence of the A �
4 cluster abundances on arbitrary isospin asymmetry.

This article is organized as follows. In Sec. II we describe
the quasiparticle model for a mixture of light nuclei in
symmetric and asymmetric nuclear matter. In Sec. III we
present the results for the composition, equation of state, and
deuteron condensation within the QGM. Section IV studies the
effects of the in-medium modifications of the deuteron binding
energies and summarizes our results.

II. QUASIPARTICLE GAS MODEL

We consider matter composed of unbound nucleons and
light nuclei with mass numbers A � 13 in thermodynamical
equilibrium at temperature T and nucleon number density n.
Each nucleus is characterized by its mass number A and charge
Z, which we collectively denote by α = (A,Z). We expand
the thermodynamical potential of the system into a sum of
contributions of clusters,

�(µn,µp, T ) =
∑

α

�α(µα, T ), (1)

where µn and µp are the chemical potentials of neutrons and
protons and µα is the chemical potential of a nucleus, which
is completely characterized by the variable α. The chemical
equilibrium among the species (baryon number and charge
conservation) implies that

µα = (A − Z)µn + Zµp. (2)

At this stage one may either develop a direct perturbation
theory for the thermodynamic potential [26] or construct the
Green’s functions of the theory from appropriate Martin-
Schwinger hierarchy [9] and express the thermodynamical
potential in terms of densities. We follow the second path.
The Martin-Schwinger hierarchy is truncated with the help of
self-energies such that the equation of motion for a nucleus α

decouples from others. Then, the thermodynamic potential for
each species is given by

�α(µ, T ) = −V

∫ µα

−∞
dµ′

α nα(µ′
α, T ), (3)

where nα(µ′
α, T ) is the number density of a nucleus α =

(A,Z). By introducing the Fourier transform of the finite
temperature Green’s function iG<

α (x1, x2) = 〈ψα(x1)ψ†
α(x2)〉,

where ψ†
α(x1) and ψα(x1) are the creation and annihilation

operators of a nucleus α at the space-time point x1, we write
the densities of species as

nα = igα

∫
dωd3p

(2π )4
G<

α (ω, �p)

= gα

∫
dωd3p

(2π )4
Sα(ω, �p)fF/B(ω), (4)

where gα is the degeneracy factor for spin and isospin
degrees freedom and the Fermi/Bose distribution functions
fF/B(ω) account for statistical distribution of species with
half-integer/integer spin,

fF/B(ω) =
[
1 ± exp

(ω

T

)]−1
. (5)

The spectral function is given by

Sα(ω, �p) = �α(ω, �p)

[ω − Eα(ω, �p)]2 + �2
α(ω, �p)

/
4
, (6)

where the quasiparticle energy is

Eα(ω, �p) = p2

2Am
+ Bα + Re�α(ω, �p) − µα, (7)

Bα is the binding energy of the nucleus α = (A,Z), �α(ω, �p)
is its self-energy, and �α(ω, �p) = 2Im�α(ω, �p) is the spectral
width. We further assume that the nuclei under consideration
are long-lived on the relevant time scales of supernova
evolution, i.e., �α(ω, �p) = 0. We also assume that the real parts
of the self-energies are constants independent of momentum
and frequency, in which case they can be absorbed in the
chemical potential. Finally, we neglect the effects of medium
modification of binding energies; we return to this problem
in the concluding section. Under these approximations, the
spectral function is given by

Sα(ω, �p) = 2πδ

(
ω − p2

2Am
− Bα − Re�α + µα

)
, (8)

and the energy integral in Eq. (4) is straightforward. The
defining feature of our model is now transparent—the density
is the sum of contributions from infinite lifetime quasiparticles
(nuclei) characterized by the value α. All relevant thermody-
namic quantities can be computed from the thermodynamic
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potential Eq. (1); the pressure and the entropy are given by

P = −�

V
, S = −∂�

∂T
. (9)

The pressure, entropy, and other thermodynamical parameters
of the electron gas are obtained from the thermodynamic
potential

�e = −geT

∫
d3k

(2π )3
ln[f −1 (−Ee(k) + µe)], (10)

where electron degeneracy factor ge = 2, the electron energy
is Ee = √

k2 + m2
e , where me is the electron mass, and µe is

the chemical potential. The electron density ne couples to the
density of baryonic matter via the charge neutrality condition

ne −
∑

α

Znα = 0, (11)

where ne = ∂�e/∂µe. The thermodynamical potential of
positrons is obtained upon substituting µe → −µe. The
thermodynamical potential of neutrinos of a given flavor has
the same form as Eq. (10), where the neutrino mass and the
chemical potential appear instead of the electron ones and the
neutrino degeneracy factor is gν = 1. The thermodynamical
potential of antineutrinos is obtained in a similar fashion.

III. RESULTS

Under supernova conditions the electron fraction in matter
is fixed and the evolution is nearly adiabatic (constant entropy).
Here, to set the stage, we first explore the limit where the
matter is isospin symmetric and isothermal. This discussion is
followed by a study of a more general case of arbitrary isospin
asymmetries. Below, the isospin asymmetry is characterized
either by the asymmetry parameter χ = (nn − np)/n, where
nn and np are the neutron and proton number densities and
n is the total number density, or by the electron fraction
Ye = ne/n [see Eq. (11)]. Although large asymmetries are
not realized in supernovas, a rapid neutronization process
eventually equilibrates when the electron fraction reaches Ye ∼
0.05 in protoneutron stars. The specific conditions prevailing
in supernova matter, e.g., finite neutrino chemical potential,
will be considered elsewhere.

A. Density functional

We start with a brief summary of the Skyrme density
functional. We assume that the nucleons interact via the
Skyrme interaction, which is given by

V (�r1, �r2) = t0δ(�r1 − �r2) + 1
2 t1[δ(�r1 − �r2)k2 + k′2δ(�r1 − �r2)]

+ t2
←−
k

′
δ(�r1 − �r2)

−→
k + 1

6 t3ρδ(�r1 − �r2), (12)

where
−→
k = (

−→∇ 1 − −→∇ 2)/2i and
←−
k

′ = −(
←−∇ 1 − ←−∇ 2)/2i,

whereby n is the density of nuclear matter. The param-
eters t0, t1, t2, and t3 are determined phenomenologically.
We use the SkIII parametrization [27]; the parameter val-
ues are t0 = −1128.75 MeV fm3, t1 = 395 MeV fm5, t2 =
−95 MeV fm5, and t3 = 1.4 × 104 MeV fm6. The (on-shell)

quasiparticle spectrum for nucleons is given by εi(p) =
p2/2mi + Re�(εi(p), �p) − µi , which we take in the quasi-
particle approximation, i.e.,

εi(p) = p2

2m∗
i

− µ′
i (13)

where i = n, p is the isospin index (n, neutrons; p, protons),
µ′

i = µi − Re�(εi(pF,i), pF,i), where pF,i is the Fermi mo-
mentum. The effective mass of a nucleon is computed from

m∗
n/p

m
=

[
1 + mn

2
(t1 + t2) + mn

8
(t2 − t1)(1 ± χ )

]−1
, (14)

which we use as a correction for the masses of free and bound
nucleons. The explicit form of the self-energy is immaterial,
because its value at the Fermi surface can be absorbed in
the chemical potential; we drop the prime on the chemical
potentials hereafter.

B. Isospin symmetric matter (χ = 0)

Our numerical procedure uses the tabulated binding en-
ergies for nuclei with mass number A � 13 with half-decay
times that are larger than the relevant dynamical time scales
associated with supernova explosions [16]. We first compute
the effective masses of nucleons and the mean-field from the
Skyrme density functional with the SkIII parametrization.
This is followed by a computation of the partial densities
from Eq. (4) with the normalization n = ∑

α nα and constraint
(2), which provides us the chemical potentials of the species.
Finally, we compute the thermodynamical potential (1) from
which we obtain the pressure and the entropy. The effects of
mean-field and mass renormalization are small at the relevant
densities. Furthermore, the results shown below are insensitive
to the choice of Skyrme parametrization.

Figure 1 displays the abundances of light nuclei, defined as

Yα = nα

n
, (15)
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FIG. 1. (Color online) Abundances of nuclei Yα = nα/n in dilute
isospin symmetrical matter composed of nuclei with mass numbers
A� 13 as a function of matter density, in units of nuclear saturation
density n0 = 0.16 fm−3, at T = 10 MeV. The abundances of clusters
decrease with increasing mass number.
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at constant temperature T = 10 MeV as a function of density
(in units of nuclear saturation density n0 = 0.16 fm−3). At
low densities the matter is dominated by nucleons with a small
(about 10%) admixture of deuterons. At intermediate densities
the deuteron fraction becomes larger than that of the free
nucleons; even though the population of nuclei becomes more
significant, those with A � 4 contribute less than 1% percent to
the total density. Next to deuterons 3He and 3H nuclei are the
dominant species in matter. The α-particle abundance does not
exceeds 0.5% percent at any density. Medium modifications
of binding energies of nuclei shift the balance between the
abundances of nucleons and light nuclei in the high density
part of Fig. 1. Recall that as n/n0 → 1 nuclei disappear
asymptotically, leaving a continuum of nucleons. Note that
numerically the abundances of neutrons and protons in mirror
nuclei (obtained by an interchange of neutrons and protons)
differ slightly because of the differences in their masses and
binding energies; however, these differences are insignificant
on the scales of the figure.

Figure 2 shows the abundances of dominant species for two
different temperatures. Reducing the temperature from T = 10
to T = 6 MeV increases the abundances of light species, such
as deuterons, 3H and 3He, while the abundance of α particles is
suppressed (note that here we assume that Bα = const., which
is a valid assumption only in the low-density limit).

Figure 3 shows the chemical potentials of species under
the conditions discussed in Fig. 1. The relative ordering of the
chemical potentials follows from Eq. (2). Because µn � µp,
their absolute value scales as µα ∼ Aµn. The negative sign
of chemical potentials of bosonic (integer total spin) nuclei
implies that these are above their critical temperature and
density of Bose-Einstein condensation (see Fig. 4). The
condition µα(T ) = 0 at fixed density is first fulfilled for
deuterons (the critical temperature of Bose condensation scales
as Tc ∼ M−1, where M is the boson mass). The critical
temperature of BEC of deuterons as a function of density is
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FIG. 2. (Color online) Dependence of abundances of light nuclei
A � 4 on matter density, in units of n0, for two temperatures T =
10 MeV (solid lines, blue online) and 6 MeV (dashed lines, red
online). Because of isospin symmetry, the abundances of protons and
3He nuclei, which are shown by squares and triangles, respectively,
are nearly identical to those of neutrons and 3H nuclei.
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FIG. 3. (Color online) Dependence of chemical potentials of
A� 13 mass number nuclei on matter density, in units of n0 =
0.16 fm−3, at T = 10 MeV. The chemical potentials decrease with
increasing mass number.

shown in Fig. 4 in matter consisting of nucleons and deuterons
only (A � 2), nuclei with mass number A � 4, and nuclei with
mass number A � 13. It is seen that the presence of nuclei
with A > 2 reduces the critical temperature of BEC, whereby
the effect of adding the nuclei with mass number 4 < A � 13
has little effect, because their fraction is small. Physically, the
presence of heavier nuclei reduces the fraction of deuterons
in matter, i.e., the “effective” density of deuterons. Therefore,
the critical temperature Tc ∼ n

2/3
d for BEC is reduced.

Figure 5 displays the pressure and entropy as a function
of density for several constant temperatures. It is seen that
the pressure is large for large temperatures and increases
linearly with density. The entropy is largest at low densities
and decreases rapidly as the density is increased. It is seen that
it scales linearly with temperature, as one would expect for
degenerate fermionic matter. A comparison of our equation of
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FIG. 4. (Color online) Dependence of critical temperature of
Bose-Einstein condensation of deuterons on matter density for A � 2
matter (solid line, black online), A� 4 matter (dashed line, red
online), and A � 13 matter (squares).
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FIG. 5. (Color online) Dependence of pressure (upper panel) and
entropy (lower panel) on the density of matter for temperatures T =
10 MeV (solid line, black online), T = 8 MeV (dashed line, red
online), and T = 6 MeV (dashed-dotted line, blue online),

state with those of Refs. [2] and [3] shows that the differences
are small, as expected.

C. Isospin asymmetric matter (χ �= 0)

In this subsection we study light nuclei in isospin asym-
metric nuclear matter. We consider proton-deficient matter,
i.e., 0 � χ = (nn − np)/n � 1, or in terms of electron fraction
0 � Ye � 0.5, which is the relevant case in supernovas and
neutron stars. The dependence of the abundances of light nuclei
on the electron fraction Ye at fixed density n = 0.041 fm−3

and two temperatures T = 10 MeV and T = 6 MeV is
shown in Fig. 6. Consider first deuterons (the arguments
below apply equally to α particles and other nuclei with
equal numbers of protons and neutrons). Their abundance
is maximal for Ye = 0.5. Increasing asymmetry reduces the
number of protons that are available for building a deuteron;
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FIG. 6. (Color online) Dependence of abundances of nuclei in
matter with A� 4 on electron fraction Ye for fixed density n =
0.041 fm−3 and two temperatures T = 10 MeV (solid lines, blue
online) and T = 6 MeV (dashed lines, red online).
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FIG. 7. (Color online) Dependence of the chemical potentials
of nuclei in matter with A� 4 on electron fraction Ye for fixed
density n = 0.041 fm−3 and temperature T = 10 MeV (solid lines,
blue online). The deuteron chemical potential is shown also at T =
6 MeV (dashed line, red online).

consequently the number of deuterons reduces with increasing
asymmetry and in the limit Ye = 0 they are extinct. Asymmetry
breaks the degeneracy between the abundances of 3H and
3He; the abundance of 3He, which requires two protons per
neutron, decreases most rapidly. The abundance of triton (3H)
is nonmonotonic: it first increases because excess neutrons can
be easily accommodated in nuclei and then decreases because
the number of available protons vanishes. These two effects
make a compromise when Ye � 0.25, where triton abundance
is maximal. Note that the ratio of abundances of deuterons to
tritons is inverted for large asymmetries; indeed, in symmetric
nuclear matter the deuterons are the second most abundant
species, while in asymmetric matter their abundances fall
below those of tritons for large enough asymmetries. Lower
temperatures are seen to increase the proton depletion, 3He
and deuteron abundances decrease faster, and the increase in
triton abundance at Ye � 0.5 is more pronounced.
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FIG. 8. (Color online) Dependence of pressure (upper panel) and
entropy (lower panel) on electron fraction Ye at density n = 4.1 ×
10−2 fm−3 and several temperatures. kB is the Boltzmann constant.
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The dependence of chemical potentials of light nuclei
on electron fraction at fixed density n = 0.041 fm−3 and
temperature T = 10 MeV is shown in Fig. 7. The behavior of
chemical potentials is understood in analogy to the behavior
of abundances discussed above: the nuclei with equal neutron
to proton ratio, as well as those that require proton excess,
are disfavored by asymmetry and their chemical potentials are
negative and large. The chemical potentials of tritons (3H)
are nonmonotonic functions of Ye because excess neutrons
are responsible for its increase for Ye � 0.5, while the proton
extinction for Ye � 0 is responsible for its decrease.

The dependence of pressure and the entropy on the electron
fraction Ye is shown in Fig. 8. It is seen that the pressure
is lowest in the symmetric case and increases with the
asymmetry; like in the symmetric case, larger temperatures
sustain larger pressures and entropies. The entropy increases
with asymmetry starting from the neutron matter limit Ye = 0,
an increase associated with the onset of new degrees of
freedom (nuclei), which is followed by a decrease as one
approaches the isospin symmetric limit.

IV. SUMMARY AND OUTLOOK

In this article we set up a quasiparticle gas formalism to
compute the equation of state and composition of dilute isospin
symmetric and asymmetric nuclear matter for applications to
supernova physics. Our key finding is that matter is dominated
by the light nuclei, such as deuterons, tritons (3H), and 3He
isotopes of helium. The α-particles (4He) contribute less than
1% to the number density. Furthermore, we find that in a large
portion of the density and temperature diagram deuterons form
a Bose-Einstein condensate. The effect of heavier clusters is to
reduce the critical temperature of Bose-Einstein condensation
of deuterons. A novel feature of isospin asymmetric matter
is the enhancement of the abundances of neutron-rich nuclei
and the corresponding suppression of proton-rich ones. This
is clearly manifest in the enhancement of triton abundances
with increasing asymmetry, which makes tritons the most
abundant species after neutrons in asymmetric nuclear matter.
Compared to isospin symmetric matter the relative abundance
of deuterons and tritons is inverted in strongly asymmetric
matter.

The present setup is a useful platform for further extensions
of the theory, which we would like to discuss briefly. The
binding energies of light nuclei are generally functions of
density and temperature. At high densities and low temper-
atures the binding energies are reduced and at some critical
values of these parameters bound states are dissolved (see
Ref. [23] and references therein). Thus, for example, nuclei
will disappear in matter at high densities leaving behind a
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FIG. 9. (Color online) Dependence of nucleon (n and p) and
deuteron (2H) abundances on density of matter at T = 10 MeV.
Results with free space binding energies are shown by solid
lines (black online); those with medium-modified deuteron binding
energies are shown by dashed lines (blue online).

uniform nuclear fluid. The critical extinction line for deuterons
and tritons in the phase diagram of symmetric nuclear matter
was obtained recently in Ref. [11]. In Fig. 9 we show
the effect of incorporating the temperature-density-dependent
binding energies of deuterons, computed in Ref. [11], on
the composition of matter with mass numbers A � 2. It is
seen that the high-density asymptotic state of abundances
is inverted; the abundances of deuterons are larger than
the nucleonic abundances for constant, free space, binding
energies. However, their relative ratios are inverted when the
reduction of the deuteron binding energies at large densities is
taken into account. Matter effects will affect the abundances of
other light nuclei in a similar way, which will guarantee that the
high-density asymptotic state corresponding to the continuum
of nuclear fluid at saturation density is recovered.

Apart from the statistical effect of suppression of bound
state energies in matter, further aspects that should be incor-
porated in the model include (i) leptons and electromagnetic
forces (screening of nuclear charge), (ii) onset of β equilibrium
during the late time dynamics of supernovas, (iii) elastic scat-
tering among the light nuclei themselves and with nucleons,
and (iv) reactions. Of course, larger numbers of nuclei and
resonances (nuclei with short-decay times scales) can be easily
incorporated within our model.
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