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Relativistic calculation of the pion loop correlation energy in nuclear matter in a
theory including confinement
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We present a relativistic calculation of the saturation properties of nuclear matter which contains the correlation
energy. Pion loops are incorporated on top of a relativistic Hartree-Fock (RHF) approach based on a chiral theory.
It includes the effect of nucleon structure through its response to the background chiral invariant scalar field. All
the parameters which enter the RHF calculation are fixed or strongly constrained by hadron phenomenology or
lattice data. The new input for the correlation energy is the Landau-Migdal parameter g′ governing the short-range
part of the spin-isospin interaction. We find that the inclusion of the correlation energy improves the description
of the saturation properties of nuclear matter.
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I. INTRODUCTION

In a set of recent papers [1–3] we proposed a relativistic
description of nuclear matter where the nuclear binding is
obtained with a chiral invariant background field governing
the medium modifications of the nonpionic piece of the chiral
condensate. As a starting point we take the point of view that
the effective theory has to be formulated in terms of the fields
associated with the fluctuations of the chiral quark condensate
parametrized in a matrix form, W = σ + i �τ · �π . The dynamics
of these fields is governed by an effective potential V (σ, �π )
having a typical mexican hat shape reflecting a broken (chiral)
symmetry of the QCD vacuum. Such an effective theory
can be seen as emerging from a low (space-like) momentum
expansion of a bozonized Nambu-Jona-Lasinio action and the
connection of the scalar “sigma” field σ with physical scalar
mesons is not necessarily implied [4]. Explicit application to
the description of nuclear matter of such a NJL model has been
performed in Ref. [5].

As proposed in a previous paper [6] an alternative and
very convenient formulation of the resulting sigma model is
obtained by going from cartesian to polar coordinates, i.e.,
going from a linear to a nonlinear representation, according to
W = σ + i �τ · �π = S U = (fπ + s) exp(i �τ · �ϕπ/fπ ). The new
pion field �ϕπ corresponds to an orthoradial soft mode which
is automatically massless (in the absence of explicit chiral
symmetry breaking) since it is associated with rotations on
the chiral circle without cost of energy. The new sigma meson
field S, which is a chiral invariant, describes a radial mode
associated with the fluctuations of the “chiral radius” around
its vacuum expectation value fπ . This expectation value plays
the role of a chiral order parameter around the minimum of
the effective potential and the medium can be seen as a shifted
vacuum. With increasing density, its fluctuation s = S − fπ

governs the progressive shrinking of the chiral circle and the
evolution of the nucleon mass. Our main physical assump-
tion proposed in Ref. [6] consists in identifying this chiral
invariant s field with the sigma meson of nuclear physics and
relativistic theories of the Walecka type, or, said differently,
with the background attractive scalar field at the origin of
the nuclear binding. This also gives a plausible answer to the

longstanding problem of the chiral status of Walecka theories
[7].

It is nevertheless well known that in such chiral theories,
independently of the details of the modeling, tadpole diagrams
associated with the Mexican hat potential automatically gener-
ate attractive three-body forces destroying saturation [5,8]. The
origin of this failure can be attributed to the neglect of the effect
of nucleon substructure linked to the confinement mechanism
as already pointed out in some of our previous works [1,2,9]. It
was demonstrated that nuclear matter stability can be restored
once the scalar response of the nucleon depending on the
quark confinement mechanism is properly incorporated in
a way inspired from the QMC model [10]. In particular it
was shown that a sufficiently large scalar nucleon response
supported by lattice data [11] is able to generate three-body
repulsive forces overcompensating the attractive ones coming
from chiral tadpoles [9]. This theoretical framework has
been implemented in nuclear matter calculation at the Hartee
level [1]. In a subsequent work [2] we also incorporated
non relativistically the pion loop correlation energy. A full
relativistic Hartree-Fock (RHF) calculation was then done
in [3] allowing to reproduce also the asymmetry properties
of nuclear matter. The aim of this paper is to combine these
results and to provide a fully relativistic calculation of the pion
loop correlation energy on top of the RHF calculation.

Our article is organized as follows. The second section
is a brief summary of our previous works and gives the
main results of the RHF approach. Section III is devoted
to the formalism that we utilized for the calculation of
the polarization propagators entering the correlation energy.
Finally in Sec. IV we make the connection of the present work
with our previous non relativistic calculation of the pion loop
energy and numerical results are given and discussed.

II. SUMMARY OF THE RHF APPROACH

In our previous paper [3] we used the following Lagrangian
which includes the effect of the scalar field s, omega, rho, and
pion exchanges:

L = �̄ iγ µ∂µ� + Ls + Lω + Lρ + Lπ (1)

0556-2813/2009/80(1)/015202(10) 015202-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.015202


É. MASSOT AND G. CHANFRAY PHYSICAL REVIEW C 80, 015202 (2009)

with

Ls = −MN (s)�̄� − V (s) + 1

2
∂µs∂µs,

Lω = −gω ωµ �̄γ µ� + 1

2
m2

ω ωµωµ − 1

4
FµνFµν,

Lρ = −gρ ρaµ �̄γ µτa� + gρ

κρ

2 MN

∂νρaµ �σ̄µντa�

+ 1

2
m2

ρ ρaµρµ
a − 1

4
Gµν

a Gaµν,

Lπ = gA

2 fπ

∂µϕaπ�̄γ µγ 5τa� − 1

2
m2

πϕ2
aπ + 1

2
∂µϕaπ∂µϕaπ .

(2)

The form of MN (s)

MN (s) = MN + gS s + 1

2
κNS

(
s2 + s3

3 fπ

)
(3)

reflects the internal nucleon structure through the presence
of the scalar response of the nucleon, κNS , which can be
constrained by lattice data analysis [2]. According to this anal-
ysis we obtained an estimate of the dimensionless parameter:
C = (f 2

π /2 MN )κNS � 1.25. This parameter governs the s2

contribution to the in-medium nucleon mass and generates
three-body repulsive forces which are necessary to get nuclear
matter stability and saturation. The scalar mass parameter
mσ = 800 MeV is also taken from the lattice data analysis.
In addition the nucleon mass may very well have higher order
derivatives with respect to the scalar field. In practice, as in our
previous works [1,2], we also introduce a cubic term. Hence
the scalar susceptibility becomes density dependent:

κ̃NS(s) = ∂2MN

∂s2
= κNS

(
1 + s

fπ

)
(4)

and vanishes at full restoration, s̄ = −fπ , where s̄ is the ex-
pectation value of the s field. Hidden in the above Lagrangian
is the explicit chiral symmetry breaking piece

LχSB = c σ = − c

2
Tr(fπ + s) exp(i �τ · �ϕπ/fπ )

� c s − c

2 fπ

ϕ2
π (5)

which generates the pion mass term with the identification
c = fπ m2

π . It is thus implicit that neglecting the higher order
terms in the exponent, the self-interactions of the pions are
omitted. Notice that the only meson having a self-interacting
potential V (s) is the scalar meson s. We take it in practice as in
the linear sigma model with the inclusion of the explicit chiral
symmetry breaking piece:

V (s) = λ

4
((fπ + s)2 − v2)2 − fπm2

π s

≡ m2
σ

2
s2 + m2

σ − m2
π

2 fπ

s3 + m2
σ − m2

π

8 f 2
π

s4. (6)

The other parameters (gω, gρ, κρ, gA and the known me-
son masses) will be fixed as most as possible by hadron
phenomenology. In particular we use the vector dominance
picture (VDM) which implies the identification of κρ with
the anomalous part of the isovector magnetic moment of the

nucleon, i.e., κρ = 3.7. The omega meson should also possess
a tensor coupling but, according to VDM the corresponding
anomalous isoscalar magnetic moment is κω = 0.13. Since it
is very small we neglect it here.

The energy density of symmetric nuclear matter is written

ε = εkin+Hartree + εFock (7)

with

εkin+Hartree =
∫

4 d3k
(2π )3

(
k · k∗

E∗ + MN (s̄)
M∗

E∗

)

+V (s̄) + 1

2

(
gω

mω

)2

ρ2. (8)

The equation of motion for the classical scalar field s̄ is

−∇2s̄ + V ′(s̄) = −g∗
S ρS

with

g∗
S = ∂MN (s̄)

∂s̄
= gS + κNS s̄ + · · · . (9)

The effective nucleon mass M∗ and the effective momentum
k∗ come from the Hartree-Fock equations. As discussed in
Ref. [3] in the nonrelativistic limit the orbital wave functions
are imposed: these are simply nonrelativistic plane waves.
Consequently if the system is not too relativistic, the results
of the calculations should not depend very much on the
choice of the wave functions. Said differently, the results
obtained with another basis than the fully self-consistent
Hartree-Fock (HF) basis would deviate from the HF results
only by tiny relativistic effects as shown in [3]. For this reason
we introduce the Hartree basis which ignores the Fock term
in the nucleon self-energy. In that case the effective mass M∗
coincides with MN (s̄), the effective momentum k∗ coincides
with the normal momentum k and the effective nucleon energy

becomes E∗
p(s̄) =

√
p2 + M2

N (s̄). One advantage will be the
strong simplification of the calculation of the polarization
propagator entering the calculation of the pion loop correlation
energy.

The Fock contribution from scalar exchange is given by

ε
(s)
Fock = g∗2

S

2

∫
d3k

(2π )3

d3k′

(2π )3

1

(k − k′)2 + m∗2
σ

×
(

1 + M2
N (s̄)

E∗
k E∗

k′
− k · k

′

E∗
k E

′∗
k′

)
Nk Nk′ , (10)

where m∗2
σ = V ′′(s̄) + κ̃NS ρS is the effective scalar mass

governing the propagation of the scalar fluctuating field. The
other Fock term contributions (omega, rho, and pion) to the
energy density are listed in Appendix B of Ref. [3].

III. FORMALISM FOR THE CORRELATION ENERGY

For the calculation of the pion loop correlation energy we
generalize to the relativistic case the approach used in [2]. The
correlation energy associated with pion loops is calculated
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using the well-known charging formula method:

Eloop
a ≡ V εloop = 3 V

∫ +∞

−∞

i dω

2π

×
∫

dq
(2π )3

∫ 1

0

dλ

λ
Va;µν(ω, q; λ)

× (
�µν

a (ω, q; λ) − �
µν

0a (ω, q; λ)
)
. (11)

Va;µν(ω, q; λ) is the residual interaction in the axial-vector
channel which contains together with the pion exchange po-
tential the effect of Migdal short-range correlations (Landau-
Migdal parameter g′) taken in a covariant form (q2 = ω2 − q2)
according to [12,13]:

V µν
a (ω, q; λ) = λ2

(
gA

2 fπ

)2 (
qµqν

q2 − m2
π

− g′ gµν

)
v2(q).

In our calculation we will choose a dipole form factor v(q) with
a cutoff � = 0.98 GeV, such that the resulting contribution
to the free nucleon sigma term, σ

(π)
N , is σ

(π)
N = 21.5 MeV,

in agreement with previous determinations [14–16]. In the
charging formula all the coupling constants at the interaction
vertices are systematically weighted with a λ factor. This is the
origin of the λ2 appearing explicitly in the residual interaction.
�

µν
a (ω, q; λ) is the full polarization propagator in the axial-

vector channel in presence of the interactions weighted by λ.
It is defined according to

�µν
a (q) = 1

V

∫
d(t − t ′) dr dr′ ei q·(x−x ′)

×〈0|(−i) T ((ψ̄γ µγ 5ψ)(x), (ψ̄γ νγ 5ψ)(x ′))|0〉.
(12)

Notice that we are actually dealing with correlators in an
isovector channel. We omit for simplicity the isospin Pauli
matrices τj since the only effect in symmetric nuclear matter is
to multiply at the very end the result for the correlation energy
by a factor three. To get the genuine correlation energy, the
first order term, i.e., the mean field one, has to be subtracted
since it is already incorporated as the Fock pion exchange
term in presence of short range correlations [3]. The explicit
expression for these mean-field �0 polarization propagators
will be given below.

In the nonrelativistic limit this correlation energy involves
polarization propagators (or interactions) only in the spin-
isospin channel: the pion exchange interaction is of pure longi-
tudinal spin-isospin nature whereas the short-range interaction
contains both longitudinal and transverse pieces [2]. However,
nonrelativistically, the transverse spin-isospin polarization
propagator is also affected by rho meson exchange. Hence
to keep this connection with the nonrelativistic case [2], we
also incorporate the rho meson exchange which is already
present in our previous RHF calculation. The rho exchange
contributes to the correlation energy according to

Eloop
ρ ≡ V εloop = 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

×
∫ 1

0

dλ

λ
Vρ;µν(ω, q; λ)

× (
�µν

ρ (ω, q; λ) − �
µν

0ρ (ω, q; λ)
)
. (13)

Vρ;µν(ω, q; λ) is the rho meson exchange interaction:

V µν
ρ (ω, q; λ) = − λ2 g2

ρ

gνν

q2 − m2
ρ

v2(q).

For the vector coupling constant we take as in our previous
paper the VDM value: gρ = 2.65. The rho meson propagator
should also contain a qµqν term but it can be omitted since
current conservation implies qµ�µν

ρ = 0. Notice that we take
for simplicity the same form factor, i.e., the same momentum
cutoff, as in the pion exchange. We will discuss this point at the
end of the paper and show that taking a harder form factor does
not significantly alter the conclusions. The vector-isovector
polarization propagator is defined (omitting again the isospin
Pauli matrices) according to

�µν
ρ (q) = 1

V

∫
d(t − t ′) dr dr′ ei q·(x−x ′)

×〈0|(−i) T ((ψ̄�µ(q)ψ)(x), (ψ̄�†ν(q)ψ)(x ′))|0〉.
(14)

The ρNN vertices are given by

�µ
ρ (q) = γ µ − i

κρ

2MN

σµαqα, �†ν
ρ (q) = γ ν + i

κρ

2MN

σνβqβ.

For the tensor coupling we again take the VDM value,
κρ = 3.7. As previously discussed the axial and vector meson
correlators mix (in the non relativistic limit they both contain
a transverse spin-isospin piece). Furthermore we also have to
incorporate the mixed polarization propagators:

�µν
ρa (q) = 1

V

∫
d(t − t ′) dr dr′ ei q·(x−x ′)

×〈0|(−i) T ((ψ̄�µ(q)ψ)(x), (ψ̄γ νγ 5ψ)(x ′))|0〉,
(15)

�µν
aρ (q) = 1

V

∫
d(t − t ′) dr dr′ ei q·(x−x ′)

×〈0|(−i) T ((ψ̄γ µγ 5ψ)(x), (ψ̄�†ν(q)ψ)(x ′))|0〉.
(16)

The polarization propagators are calculated using a RPA
scheme. They are solution of the coupled Dyson equations:

�µν
a (q) = �

µν

0a (q) + �
µα

0a (q)Va;αβ (q)�βν
a (q)

+�
µα

0aρ(q)Vρ;αβ (q)�βν
ρa(q),

�µν
ρa (q) = �

µν

0ρa(q) + �
µα

0ρa(q)Va;αβ (q)�βν
a (q)

+�
µα

0ρ (q)Vρ;αβ (q)�βν
ρa(q),

(17)
�µν

ρ (q) = �
µν

0ρ (q) + �
µα

0ρ (q)Vρ;αβ (q)�βν
ρ (q)

+�
µα

0ρa(q)Va;αβ (q)�βν
aρ (q),

�µν
aρ (q) = �

µν

0aρ(q) + �
µα

0aρ(q)Vρ;αβ (q)�βν
ρ (q)

+�
µα

0a (q)Va;αβ (q)�βν
aρ (q),

where the λ dependence in the arguments have been omitted for
simplicity. The mean-field polarization propagators entering
the above Dyson equations are

�
µν

0a (q) = −2
∫

id4p

(2π )4
trD[G(p)γ µγ 5 G(p + q) γ νγ 5], (18)
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�
µν

0ρa(q) = −2
∫

id4p

(2π )4
trD

[
G(p) �µ

ρ G(p + q) γ νγ 5
]
, (19)

�
µν

0aρ(q) = −2
∫

id4p

(2π )4
trD

[
G(p) γ µγ 5G(p + q) �†ν

ρ

]
, (20)

�
µν

0ρ (q) = −2
∫

id4p

(2π )4
trD

[
G(p) �µ

ρ G(p + q) �†ν
ρ

]
. (21)

The mean-field nucleon propagator has the form

G(p) = (p/ + M∗)
[ 1

p2 − M∗2 + iη

+ 2iπNpδ(p2 − M∗2)�(p0)
]
, (22)

where Np is the occupation number and it is understood that the
pure vacuum piece of the mean-field polarization propagators
is dropped.

To solve the RPA problem and to get a compact form for
the correlation energy, we will use a projector technics [13,17].
For this purpose we introduce the following four-vectors and
tensors:

ηµ = (1, 0), η̂µ = ηµ − η · q

q2
qµ, η̂2 = −q2

q2
, (23)

Lµν = qµqν

q2
, Rµν = η̂µη̂ν

η̂2
,

(24)
T µν = gµν − Lµν − Rµν.

The tensors L,R, and T satisfy projector properties and are
mutually orthogonal. In addition they also satisfy the normal-
ization conditions, LµνLµν = RµνRµν = 1 and T µνTµν = 2.
The residual interaction can be decomposed on these covariant
tensors:

V µν
a (q) = λ2

(
gA

2 fπ

)2

v2(q)

× [(q2Dπ (q) − g′) Lµν − g′ T µν − g′Rµν]

≡ VaL Lµν + VaT T µν + VaR Rµν,

V µν
ρ (q) = −λ2 g2

ρ v2(q)
1

q2 − m2
ρ

(Lµν + T µν + Rµν)

≡ Vρ(Lµν + T µν + Rµν). (25)

The polarization propagators entering the expression of the
correlation energy are actually the various projections on the
above tensors, namely,

�aL(q) = Lµν �µν
a (q), �aT (q) = 1

2Tµν �
µν
a (q),

�aR(q) = Rµν �µν
a (q),

(26)
�ρL(q) = Lµν �µν

ρ (q), �ρT (q) = 1
2Tµν �µν

ρ (q),

�ρR(q) = Rµν �µν
ρ (q).

The mean-field polarization bubbles have similar projections
which means that they can be decomposed according to

�
µν

0a (q) = Lµν �0aL(q) + T µν �0aL(q) + Rµν �0aR(q),

(27)
�

µν

0ρ (q) = T µν �0ρL(q) + Rµν �0ρR(q).

We see on these expressions that the rho channel polarization
propagator has no projection on the longitudinal channel which
remains true for the full propagator. There is an additional
mean-field bubble which mixes the axial and rho channels. It
has the following tensorial structure:

�
µν

0ρa(q) = �
µν

0aρ(q) = T
µν

6 �06(q)

with

T
µν

6 = i

|q|ε
µνρσ η̂ρqσ , (28)

T6µνT
6νµ = 2, T

µα

6 T6αν = T µ
ν , T

µα

6 T ν
α = T

µν

6 .

The antisymmetric T6 tensor is actually orthogonal to the L

and R tensors. Consequently the mixing between the axial
and rho channel proceeds only through the transverse channel
associated with the tensor T . We also introduce the full axial-
rho polarization propagators projected on the T6 tensor

�ρa(q) = 1
2T

µν

6 �ρa;µν(q),
(29)

�aρ(q) = 1
2T

µν

6 �aρ;µν(q).

The correlation energy can be expressed in terms of the
projected polarization propagators:

Eloop = E
loop
aL + E

loop
T + E

loop
aR + E

loop
ρR ,

E
loop
aL = 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

∫ 1

0

dλ

λ
VaL(ω, q; λ)

× (�aL(ω, q; λ) − �0aL(ω, q; λ)),

E
loop
T = 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

∫ 1

0

dλ

λ
2 VaT (ω, q; λ)

× (�aT (ω, q; λ) − �0aT (ω, q; λ))

+ 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

∫ 1

0

dλ

λ
2 VρT (ω, q; λ)

× (�ρT (ω, q; λ) − �0ρT (ω, q; λ)),

E
loop
aR = 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

∫ 1

0

dλ

λ
VaR(ω, q; λ)

× (�aR(ω, q; λ) − �0aR(ω, q; λ)),

E
loop
ρR = 3 V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

∫ 1

0

dλ

λ
VρR(ω, q; λ)

× (�ρR(ω, q; λ) − �0ρR(ω, q; λ)). (30)

The Dyson equations for the projected polarization propa-
gators can be obtained from the original ones [Eq. (17)] by
projecting them on the various channels L, T , or R. After
straightforward algebraic manipulations one obtains

�aL = �0aL + �0aL VaL �aL,

�aR = �0aR + �0aR VaR �aR,

�aT = �0aT + �0aT VaT �aT + �06 Vρ �ρaT ,

�ρaT = �06 + �06 VaT �aT + �0ρT Vρ �ρaT , (31)

�ρT = �0ρT + �ρ Vρ �ρT + �06 VaT �aρT ,

�aρT = �06 + �06 Vρ �ρT + �0aT VaT �aρT ,

�ρR = �0ρR + �0ρR Vρ �ρR.
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From the solution we get the particular combinations entering
the expression of the correlation energy:

VaL �aL = VaL �0aL

1 − VaL �0aL

,

VaR �aR = VaR �0aR

1 − VaR �0aR

,

(32)

VaT �aT + Vρ�ρT = VaT �0aT + Vρ�0ρT + 2 VaT Vρ

(
�2

06 − �0aT �0ρT

)
(1 − VaT �0aT )(1 − Vρ �0ρT ) − VaT Vρ �2

06

,

Vρ �ρR = Vρ �0ρ

1 − Vρ �0ρR

.

The integration over the varying coupling constant λ is
immediate and we get the final expression for the various
contributions to the correlation energy:

Eloop = E
loop
aL + E

loop
T + E

loop
aR + E

loop
ρR ,

E
loop
aL = −3V

2

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [ln(1 − VaL �0aL) + VaL �0aL](ω, q),

E
loop
T = −3V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [ln[(1 − �0ρT Vρ) (1 − �0aT VaT )

−VaT �06Vρ�06] + �0ρT Vρ + �0aT VaT ](ω, q),

E
loop
aR = − 3V

2

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [ln(1 − VaR �0aR) + VaR �0aR](ω, q),

E
loop
ρR = − 3V

2

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [ln(1 − VρR �0ρR) + VρR �0ρR](ω, q). (33)

The leading term is obtained by expanding the log to second
order in V �0 which yields the result of second order perturba-
tion theory which is always negative according to a basic result
of quantum mechanics. In particular the second order pion
loop is embedded in the axial-longitudinal contribution to the
correlation energy. It can be directly compared with the iterated
pion exchange (the so-called planar diagram) appearing in
medium chiral perturbation theory. If the chiral perturbation
theory calculation is regularized with a cutoff [18], a negative
result is also obtained but much larger than in our approach
where the pion exchange is strongly screened by short-range
correlations.

The analytical structure of the polarization propagators
considered as a function of ω is such that it has a cut on
the real axis and these propagators are analytic in the first
and third quadrants. In other words the continuous set of
poles lies below the real axis for ω positive and above the
real axis for ω negative, the same as for the pion and rho
propagators. For this reason the (practical) calculation can be
done using a Wick rotation. Each four-momentum integral will

be calculated according to∫ +∞

−∞

i dω

(2π )

∫
dq

(2π )3
F (ω, q)

→ −
∫ +∞

−∞

dz

(2π )

∫
dq

(2π )3
F (ω = iz, q). (34)

In practice as an input of the calculation all what we need is
the real part of the bare polarization propagators to make an
analytical continuation to ω = iz. The explicit form of these
polarization propagators are given in the Appendix.

IV. DISCUSSION AND NUMERICAL RESULTS

A. First order polarization propagators and nonrelativistic limit

The various mean-field projected propagators can be
written generically as

�0j (q) = −
∫

4 dp
(2π )3

(
Np

Ep

Kj (q; p)

q2 + 2 p · q + iη
+ (q → −q)

)

−
∫

4 dp
(2π )3

2iπ
Np Np+q

Ep

Kj (q; p)

× δ(q2 + 2 p · q)�(Ep + ω) (35)

with

K0aL(q; p) = 2 M∗2,

K0aT (q; p) = 2 M∗2 + p · q + p2
T ,

K0aR(q; p) = −2 p2
T ,

K06(q; p) = 1 + κ∗
ρ

2M∗ 2M∗(|q| Ep − ω p · q̂),

K0ρT (q; p) = −
(

1 + κ∗
ρ

2M∗

)2

q2 2 M∗2 (36)

+p · q + q2

2
+ p2

T

(
1 −

(
κ∗

ρ

2M∗

)2

q2

)
,

K0ρR(q; p) = −2 M∗2 +
(

κ∗
ρ

2M∗

)2

q2
(
p · q + 2p2

T

)
− 2 p2

T + κ∗
ρ q2,
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where κ∗
ρ = κρ(M∗/MN ) appears as an in-medium modified

rho tensor coupling constant and pT = p − p · q̂q̂, with p2
T =

p2 − (p · q̂)2, is the transverse component of the nucleon
momentum.

The difference between relativistic and non relativistic
calculations has essentially three distinct origins: the first is the
incorporation of nucleon-antinucleon excitations, the second
originates from the use of Dirac spinors which translates
into the structure of the Kj functions and the third is pure
kinematics (for instance Ep replaced by M∗ + p2/2M∗). To
appreciate the role of the N̄N excitations we rewrite the
denominator appearing in Eq. (35) as

Kj (q)

Ep

1

q2 + 2 p · q + iη

= Kj (q)

2 Ep Ep+q

(
1

ω − Ep+q + Ep + iη

− 1

ω + Ep+q + Ep − iη

)
. (37)

The first term represents the forward going p-h bubble and the
second term represents the backward going N̄N bubble. For
the energy denominator associated with q changed in −q, we
write similarly

Kj (−q)

Ep

1

q2 − 2 p · q + iη

= − Kj (−q)

2 Ep Ep−q

(
1

ω + Ep−q − Ep − iη

− 1

ω − Ep−q − Ep + iη

)
. (38)

The first term represents the backward going p-h bubble and
the second term represents the forward going N̄N bubble. The
inclusion of antinucleons is at best questionable since there are
many excitations far below the N̄N threshold which should
be incorporated before. In addition the internal consistency
would require to take into account vacuum polarization effects
but the restructuring of the QCD vacuum has probably little to
do with virtual N̄N excitations. However at the formal level
they are essential to maintain the covariance of the calculation
and the simple tensorial structure and symmetry properties
(qµ�µν

ρ = 0). For that reason we decided to keep them in our
calculation as many authors [17,19]. Moreover their practical
effect is a small O(1/MN ) relativistic correction.

We now come to the various Kj functions [Eq. (36)].
The axial longitudinal bubble �0aL (pion channel) is actually
combined with VaL which contains the pion exchange with an
explicit −q2 = q2 − ω2 factor. This is a potentially important
difference with the non relativistic approach where the pion
coupling contains only q2 (pure p-wave coupling). However
since the dominant energy range is ω ∼ q2/2M∗ (quasi-elastic
peak) the relativistic correction induced at the level of the
vertex is of order O(1/M2

N ). The conventional nonrelativistic
limit is obtained by ignoring the antinucleon terms and by
replacing 1/2Ep Ep+q by 1/2M∗2 so that Kj (q)/Ep Ep+q ∼ 1

with the result

�NR
0aL = −�0(ω, q)

≡ −
∫

4 dp
(2π )3

Np Pp+q

(
1

ω − Ep+q + Ep + iη

− 1

ω + Ep+q − Ep − iη

)
. (39)

We also see that the K functions for the transverse axial
channel and the rho-R channel are governed by the dominant
nonrelativistic term (±2 M∗2), the terms in p2

T and q2 being of
O(1/M2

N ) order. The term involving p · q = Ep ω − p · q can
also be seen of second order since ω ∼ q2/2M∗. The analysis
of the rho transverse channel is a little particular since the first
term is proportional to q2 and apparently of order O(1/M2

N ).
However the factor 1 + κ∗

ρ is about 5. Hence for typical
momentum |q| ∼ 300 MeV the factor (1 + κ∗

ρ )|q|/2M∗ turns
out to be of order unity such that the transverse rho and
axial-rho bubbles survive in the nonrelativistic limit. We thus
conclude this discussion by summarizing the bare bubbles
surviving in the nonrelativistic limit:

−�NR
0aL = −�NR

0aT = �NR
0ρR = �0,

�NR
0ρT = −

(
1 + κ∗

ρ

2M∗

)2

|q|2 �0, (40)

�NR
06 = −1 + κ∗

ρ

2M∗ |q| �0.

In the nonrelativistic limit, Eqs. (32) reduce to

(VaL �aL)NR = V NR
L �0

1 − V NR
L �0

,

(VaT �aT + Vρ �ρT )NR = V NR
T �0

1 − V NR
T �0

, (41)

(Vρ �ρR)NR = Vρ �0

1 − Vρ�0
,

where the nonrelativistic longitudinal and transverse spin-
isospin interactions are given by

V NR
L =

(
gA

2 fπ

)2

(q2 Dπ + g′) v2(q),

V NR
T =

(
gA

2 fπ

)2

(Cρ q2 Dρ + g′) v2(q) (42)

with
Cρ = g2

ρ

(
gA

2 fπ

)−2 (
1 + κ∗

ρ

2M∗

)2

� 1.

Consequently, in this limit the correlation energy is written

Eloop,NR = −3V

2

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [
ln

(
1 − V NR

L �0
) + V NR

L �0
]
(ω, q)

− 3V

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [
ln

(
1 − V NR

T �0
) + V NR

T �0
]
(ω, q)

− 3V

2

∫ +∞

−∞

i dω

2π

∫
dq

(2π )3

× [ln(1 − Vρ �0) + Vρ �0](ω, q). (43)
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The first two terms represent the longitudinal and transverse
spin-isospin contributions as in Ref. [2]. The last term has
nothing to do with spin-isospin physics but corresponds
to the contribution of the time component of the vector
interaction which is anyway very small (−0.65 MeV at normal
nuclear matter density). As a byproduct we can estimate the
contribution to the correlation energy of sigma and omega
exchanges that we have not considered explicitly in this paper.
This omission can be justified with the following argument.
In the nonrelativistic limit there is no difference between the
scalar density and the vector density. The relevant interaction
appearing in the RPA summation for the σ + ω channel
is

Vσ+ω = g∗2
S

q2 − m∗2
σ

− g2
ω

q2 − m2
ω

.

Since the sigma, rho, and omega have very similar masses
around 800 MeV and since the leading term to the corre-
lation energy involves two meson exchange lines, one can
estimate

E
loop
σ+ω ∼ 1

3

(
g2

ω − g∗2
S

g2
ρ

)2

E
loop
ρR ,

where the 1/3 is a trivial isospin factor. Taking gω = 8.1, g∗
S =

6, one obtains E
loop
σ+ω ∼ −0.8 MeV which is also very small and

hence justifies the use of the mean-field approximation for the
omega and sigma exchanges.

B. Numerical results and discussion

As explained before the spirit of the approach is to study
nuclear matter properties with various parameters fixed as
much as possible by hadron phenomenology and lattice data.
We only allow a fine tuning for the ωNN coupling constant, gω,
around the VDM/quark model value, 3 gρ = 7.95 and for the
nucleon scalar response parameter around the value estimated
from the lattice, Clatt � 1.25. The only nuclear physics input
is the Landau-Migdal parameter for which we first take the
vastly used value g′ = 0.7 compatible with the most recent data
analysis [20]. For gω = 7.6 and C = 1.14 we obtain and excel-
lent reproduction of nuclear saturation properties as shown in
Fig. 1. As compared with our previous pure Hartree-Fock work
[3] the C parameter is reduced. Another satisfactory result is
the value of the compressibility modulus K = 9ρ2∂2ε/∂ρ2 =
250 MeV, smaller than our previous values and very close to
the accepted value around 240 MeV. This can be understood by
looking at Fig. 1 (corresponding to the first column of Table I)
where the mean-field and the correlation energy contributions
to the binding energy per nucleon are separately shown.
The important point is that the correlation energy displays
a nonlinear behavior with density which helps saturation to
occur: a smaller scalar response parameter is needed hence
reducing the incompressibility. It is also interesting to examine
the various pieces contributing to the correlation energy. We
see on the last column of Table II that, with the chosen
value of g′, there is an almost complete screening of the
pion exchange and the correlation energy is dominated by
the transverse channel. At the saturation point we find for

TABLE I. Values of the parameters and coordinates
of the saturation point when the correlation energy is
included on top of the RHF calculation.

g′ 0.7 0.5

gω 7.6 7.3
C 1.14 1.3
ρ/ρ0 1.00 1.00

E/A (MeV) −15.97 −15.87
K (MeV) 250 270

the longitudinal axial piece E
loop
aL = −0.6 MeV whereas the

dominant transverse piece is E
loop
T = −5.5 MeV. We also

see that the axial R channel which is a pure relativistic
correction is negligible: E

loop
aR = −0.04 MeV. Finally the

relativistic correction to the rho exchange energy which is
not of spin-isospin nature is E

loop
ρL = −0.65 MeV.

It is also interesting to discuss the influence of some inputs
of the calculation although they are constrained by accepted
phenomenology. If the g′ parameter is decreased to the value
g′ = 0.5 the saturation properties can be also reproduced
(see Fig. 2) but the compressibility modulus is larger: K =
270 MeV (see Table I). In that case the screening of the
pion exchange is less pronounced E

loop
aL = −2.4 MeV but the

transverse piece is reduced E
loop
T = −2.1 MeV. Actually this

transverse contribution exhibits a minimum around g′ = 0.2
which corresponds to the strongest compensation between
attractive rho exchange and the contact interaction. This can
be seen on Table II where the various contributions to the
correlation energy are given at the normal nuclear matter
density for various values of g′. An important point is that
decreasing g′ brings nuclear matter close to pion condensation
[21]. The onset of pion condensation corresponds to a pole at

0 0.5 1 1.5 2
ρ/ρ 0

-20

-10

0

10

20

E
/A

 [
M

eV
]

FIG. 1. (Color online) Binding energy of nuclear matter with g′ =
0.7. The values of the parameters and the coordinates of the saturation
point are given in Table I. The full line corresponds to the full result,
the dotted line to the mean-field (RHF) contribution and the dashed
line to the correlation energy.
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TABLE II. The various contributions (MeV) to the correlation energy at normal nuclear matter density for
various values of g′ with C = 1.14 and gω = 7.6. The cross for the longitudinal contribution for the g′ = 0
case means that pion condensation occurs.

g′ = 0 g′ = 0.1 g′ = 0.2 g′ = 0.3 g′ = 0.4 g′ = 0.5 g′ = 0.6 g′ = 0.7

E
loop
aL x −12.5 −8.8 −6.0 −4.0 −2.4 −1.3 −0.6

E
loop
T −2.6 −1.5 −0.9 −0.9 −1.4 −2.1 −3.7 −5.5

E
loop
aL −0.00 −0.00 −0.00 −0.01 −0.01 −0.02 −0.03 −0.04

E
loop
ρR −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.65

0 0.5 1 1.5 2 2.5
ρ/ρ 0

-20

-10

0

10

20

E
/A

 [
M

eV
]

FIG. 2. (Color online) Same as Fig. 1 but for g′ = 0.5. The values
of the parameters and the coordinates of the saturation point are given
in Table I.

zero energy in the pion propagator or in the axial longitudinal
polarization propagator at some critical momentum qc, namely
(1 − VaL �0aL)(ω = 0, qc) = 0. This is illustrated on the left
panel of Fig. 3 where E

loop
aL is displayed for various values of

g′. For the case g′ = 0.15 the calculation ends at a density
ρ = 1.8 ρ0 which is the critical density for pion condensation.
It turns out that the relativistic calculation disfavors pion
condensation as compared with the nonrelativistic one. For
instance in the nonrelativistic calculation pion condensation
occurs at ρ = 2.2 ρ0 for g′ = 0.3 whereas it is beyond
3 ρ0 in the relativistic case. Close to pion condensation the
longitudinal correlation energy strongly increases which is
reminiscent of a critical opalescence phenomena [22].

The magnitude of the correlation energy is controlled by
the cutoffs entering the form factors. For the πN form factor,
it is fixed by the pion cloud contribution to the pion-nucleon
sigma term. However there is no real reason to keep for the rho
exchange contribution the same form factor. Therefore we have
changed the cutoff entering the ρN form factor from �π =
980 MeV to �ρ = 1500 MeV. It turns out that the transverse

0 0.5 1 1.5 2 2.5 3
ρ/ρ0

-20

-15

-10

-5

0

E
aL

  [
M

eV
]

0 0.5 1 1.5 2 2.5 3
ρ/ρ0

-20

-15

-10

-5

0

E
co

rr
  [

M
eV

]

FIG. 3. (Color online) Longitudinal axial contribution to the correlation energy (left panel) and total correlation energy (right panel) as
a function of density for various values of g′. Solid curves: g′ = 0.7; dashed curves: g′ = 0.5; dotted curves: g′ = 0.3; dot-dashed curves:
g′ = 0.15.
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TABLE III. Dependence of the correlation energy with the cutoff
entering the ρN form factor. The first column corresponds to the
original calculation with g′ = 0.7 and the second column gives the
modification of the correlation energy when changing the cutoff.
The last column shows the new parameters when the saturation point
is readjusted.

�ρ [MeV] 980 1500 1500

gω 7.6 7.6 7.8
C 1.14 1.14 1.15
K [MeV] 250 270

E
loop
T [MeV] −6.8 −9.4 −9.4

E
loop
ρR [MeV] −0.6 −1.6 −1.6

contribution is not much increased and the saturation curve
can be obtained with only a tiny change of the C and gω

parameters, the main effect being the increase by a factor three
of the relativistic correction, Eloop

ρR , to the rho meson exchange.
This is illustrated in Table III.

However even if this form factor may seem to be quite soft
we also have to keep in mind that a more careful treatment of
short-range correlations generates a momentum dependence
of the g′ parameter together with a tensor h′ parameter in
such a way that the residual interactions in both channels
vanish at high momentum (Beg-Agassi-Gal theorem) hence
accelerating the convergence of the momentum integration
[23]. Another point is the neglect of delta-hole bubbles which
contribute significantly to the correlation energy according to
our previous nonrelativistic calculation [2]. However we found
in [2] that it gives a contribution almost exactly linear in density
which is phenomenologically undistinguishable from omega
exchange. In practice a very small increase of gω is expected
to simulate this delta-hole bubble contribution.

V. CONCLUSION

In this work we have developed a fully relativistic RPA
framework for the calculation of the correlation energy. We
have included the effect of pion loops, as well as the rho ones,
on top of a RHF calculation. Our description of saturation
properties is almost parameter free. The nuclear binding is
ensured by a background chiral invariant scalar field associated
with the radial fluctuations of the quark condensate. In order
to reach saturation we have incorporated the response of the
embedded nucleon to the background scalar field. It generates
three-body repulsive forces which allows saturation to occur.
All the parameters entering the Hartree-Fock description,
including the scalar nucleon response, have been fixed or
constrained by hadron or QCD phenomenology.

The Landau-Migdal parameter g′ entering the correlation
energy is taken from the phenomenology of spin-isospin
physics. We have found that the magnitude of this correlation
energy is moderate, of the order −10 MeV per nucleon, due
to the strong screening of the pion exchange by short range
correlations. Even though this contribution is not very large its
nonlinear behavior with density improves the result of the RHF
mean-field calculation for the description of bulk properties of

nuclear matter. This confirms our previous conclusion obtained
in a nonrelativistic evaluation of the correlation effects [2].
This result seems to be robust in the sense that this conclusion
is not altered if we vary the ρN form factor or the g′ parameter
around g′ = 0.7, the standard value.
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APPENDIX: EXPLICIT FORM OF THE BARE
POLOARIZATION PROPAGATORS AFTER WICK

ROTATION

In this appendix we give the expressions for the various
mean-field polarization propagators once the integration over
the angle between the transferred moment q and the nucleon
momentum p has been performed. They are given after the
Wick rotation [Eq. (34)] which is used to perform the practical
calculation of the correlation energy. We use the following tool
functions inspired from [24]:

ln1(z, |q|) = ln

(
(q2 − 2|p||q)2 + 4z2E2

p

(q2 + 2|p||q|)2 + 4z2E2
p

)
,

z ln2(z, |q|) = −2 z atan

(
8|p||q|zEp

(q2)2 − 4p2q2 + 4z2E2
p

)
.

The expressions of the various propagators are

�0aT = − 1

8π2

q2

|q|3
∫

p dp

Ep

×
{(

4E4
p − z2 + |q|2 − 4

|q|2
q2

M∗2

)
ln1(z, |q|)

+ 8|p||q|−z2 + |q|2
q2

+ 4Epz ln2(z, |q|)
}

,

�0aR = 1

4π2

1

|q|3
∫

p dp

Ep

{(−4M∗2z2 + 4|p|2q2 + (q2)2)

× ln1(z, |q|) + 8|p||q|q2 + 4Epz ln2(z, |q|)},

�0aL = 1

4π2

1

|q|
∫

p dp

Ep

4M∗2 ln1(z, |q|),

�0ρT = 1

4π2

q2

|q|3
∫

p dp

Ep

×
[
−1

2

{(
4E2

p − z2 + |q|2 + 4
|q|2
q2

M∗2

)
ln1(z, |q|)

+ 8|p||q|−z2 + |q|2
q2

+ 4Epz ln2(z, |q|)
}
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− κ∗
ρ |q|2 ln1(z, |q|) + 1

2

(
κρ

2MN

)2

× {( − 4M∗2|q|2 + 4E2
pq2 + (q2)2

)
ln1(z, |q|)

+ 8|p||q|q2 + 4Epz ln2(z, |q|)}],

�0ρR = 1

4π2

q2

|q|3
∫

p dp

Ep

[{(
4E2

p + q2

)
ln1(z, |q|)8|p||q|

+ 4Epz ln2(z, |q|)
}

− 2κ∗
ρ |q|2 ln1(z, |q|)

+
(

κρ

2MN

)2{(
z2|q|2 + 4p2q2 + 4E2

pz2
)

ln1(z, |q|)

+ 8|p||q|z2 − 4q2Epz ln2(z, |q|)}],

�06 = κ∗
ρ

4π2

q2

|q|2
∫

p dp

Ep

{2Ep ln1(z, |q|) + z ln2(z, |q|)}.
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