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By considering the effect of shear viscosity we have investigated the evolution of a chemically equilibrating
quark-gluon plasma at finite baryon density. Based on the evolution of the system we have performed a complete
calculation for the dilepton production from the following processes: qq̄→ll̄, qq̄→gll̄, Compton-like scattering
(qg→qll̄, q̄g→q̄ll̄), gluon fusion (gḡ→cc̄), annihilation (qq̄→cc̄), as well as the multiple scattering of quarks.
We have found that quark-antiquark annihilation, Compton-like scatterring, gluon fusion, and multiple scattering
of quarks give important contributions. Moreover, we have also found that the dilepton yield is an increasing
function of the initial quark chemical potential, and the increase of the quark phase lifetime because of the
viscosity also obviously raises the dilepton yield.

DOI: 10.1103/PhysRevC.80.014908 PACS number(s): 12.38.Mh, 25.75.−q, 24.10.Nz

I. INTRODUCTION

The Relativistic Heavy-Ion Collider (RHIC) at the
Brookhaven National Laboratory and the Large Hadron
Collider (LHC) being built at CERN will provide the best
opportunity to study the formation and evolution of quark-
gluon plasma (QGP). Dileptons have large mean free paths
owing to the small cross section for electromagnetic interaction
in the plasma; they therefore can provide an ideal probe for
the detection and study of the plasma.

Many authors [1–3], by considering the created QGP in
collisions to be a thermodynamic equilibrium system, have
studied dilepton production. Recently, photon and dilepton
production was studied based on the evolution model of
chemically equilibrating QGP, established by Shuryak, Biró,
and co-workers [4–6], and studies of their production in plasma
at finite baryon density were also performed [7,8]. However,
in most previous work the partonic plasma was assumed to be
ideal (i.e., without any viscous effect). In principle, viscous
effects in fluid hydrodynamics should not be neglected in
a realistic scenario since the dimension of the plasma is
comparable to the mean free path of the partons. The viscous
coefficient in the framework of hydrodynamics is composed
of bulk and shear viscosity, but the bulk viscosity vanishes
for a quark-gluon plasma [9]. In this work, we mainly discuss
the effect of the shear viscosity, which have attracted many
authors to investigate its influences on the formation and
evolution of the QGP system. The authors of Ref. [9] have
studied the viscous corrections to the hydrodynamic equations
describing the evolution of the QGP at finite baryon density and
investigated the effect of viscosity on chemical equilibration
of the system. They have found that because of the viscosity
the lifetime of the plasma increases, the temperature evolution
of the system becomes slower, and the chemical equilibration
of the system becomes faster, thereby increasing the reaction
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rate. However, we should point out that in previous work many
authors have regarded the viscous coefficients as adjustable
parameters [9–12]. Indeed, they should be directly obtained
from the thermodynamic quantities of the system. However,
the viscous coefficients derived by Danielewicz and Gyulassy
[13] based on QCD phenomenology for a baryon-free plasma
and by Hou and Li [14] considering Debye screening and
the damping rate of gluons for a baryon-rich plasma using
finite-temperature QCD are so large that the temperature of
the plasma would be abnormally raised.

In early calculations, one mainly considered the dilep-
ton production from the process qq̄→ll̄. In recent years,
possible sources of dileptons, such as qq̄→ll̄ annihilation,
qg→qll̄ Compton-like scattering, and qg→qgll̄ fusion, were
investigated [15,16]. In addition, the contributions of gluon
fusion (gg→cc̄), quark-antiquark annihilation (qq̄→cc̄), and
multiple scattering of quarks to dileptons have also been
studied [17].

In this work, starting from the shear viscous coefficient
given by relativistic kinetic theory for a massless QGP under
the relaxation time approximation, we first estimate the mean
free paths of partons in a chemically equilibrating QGP at
finite baryon density, then combined with the parton energy
densities, we calculate the shear viscous coefficient of the
QGP. Subsequently, based on our evolution model including
the viscosity, we perform a complete calculation for the
dilepton production from the processes qq̄→ll̄, qq̄→gll̄,
Compton-like scattering (qg→qll̄, q̄g→q̄ll̄), gluon fu-
sion (gḡ→cc̄), annihilation (qq̄→cc̄), as well as multi-
ple scattering of quarks, to predict the contributions of
these reaction processes and reveal the effect of the fi-
nite baryon density and viscous phenomena on dilepton
production.

The rest of the paper is organized as follows:
Sec. II describes the evolution of the dissipative QGP sys-
tem. In Sec. III, we discuss the yields of dileptons of the
system. We give our results and present a discussion in
Sec. IV. Finally, in Sec. V, we offer a brief summary and
conclusions.
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II. EVOLUTION OF THE DISSIPATIVE QGP SYSTEM

In this work, we describe the distribution func-
tions of partons with Jüttner distributions fq(q̄) =
λq(q̄)/(e(p∓µq )/T + λq(q̄)) for quarks (antiquarks) and fg =
λg/(ep/T − λg) for gluons, where fugacity λi(�1) of the parton
of type i is used to characterize the nonequilibrium of the
system. Based on these distribution functions, we first derive
the thermodynamic relations of the chemically equilibrating
QGP system at finite baryon density. Expanding densities of
quarks (antiquarks),

nq(q̄) = gq(q̄)

2π2
λq(q̄)

∫
p2dp

λq(q̄) + e(p∓µq )/T
, (1)

over quark chemical potential µq , we get the baryon density
of the system [18],

nb,q = gq

6π2

[
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and the corresponding energy density
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where gq(q̄) and gg are degeneracy factors of quarks (anti-
quarks) and gluons, respectively. Since the convergence of the
integral factors

Gn
m =

∫
ZndZ

(eZ − λg)m
, Qn

m =
∫

ZndZ

(eZ + λq)m
,

(4)
Q̄n

m =
∫

ZndZ

(eZ + λq̄)m

appearing in the expansion is very rapid, it is easy to calculate
these integrals numerically [18].

We consider the reactions leading to chemical equilibrium:
gg ⇀↽ ggg and gg ⇀↽ qq̄. By assuming that elastic parton
scatterings are sufficiently rapid to maintain local thermal
equilibrium, the evolutions of gluon and quark densities can be
given by the master equations, respectively. We first extend the
master equations to include the viscosity as done in Ref. [9].
Similarly, the evolution of baryon density can be described by
a corrected conservation equation of baryon number including
a viscous term. In addition, because of viscosity, a viscous
term would be contained in the conservation equation of
the energy-momentum, too. Combining the master equations
together with the equation of baryon number conservation
and equation of energy-momentum conservation including
viscous corrections, for longitudinal scaling expansion of the
system, one can get a set of coupled relaxation equations (CRE)

describing the evolution of the temperature T , quark chemical
potential µq , and fugacities λq for quarks and λg for gluons
on the basis of the thermodynamic relations of the chemically
equilibrating QGP system at finite baryon density [9,18]:
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where n̄q(q̄) is the value of nq(q̄) at λq(q̄) = 1, n0
q =

nq/(gq/2π2), n0
g = ng/(gg/2π2), ξ (3) = 1.20206, and η is

the shear viscous coefficient. The gluon and quark pro-
duction rates R3/T and R2/T are, respectively, given by
[6,18–20]
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R2/T = gg

24π

G12
1

G2
1

Nf α2
s λg ln

(
1.65

αsλg

)
, (10)
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M2
D = 3g2T 2

π2

[
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1λg + 2Nf Q1
1λq
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(µq

T

)2
(

λq
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)]
, (11)

where M2
D is the Debye screening mass, g2 = 4παs , and

I (λg, λq, T , µq ) is the function of λg, λq, T , and µq , as used in
Refs. [5,6]. We here take the quark flavor Nf = 2.5 [8,19,20].
Solving the set of evolution equations (5)–(8) under given
initial values obtained from the Hijing model, we can obtain
the evolution of temperature T , quark chemical potential µq ,
and fugacities λq for quarks and λg for gluons.

To discuss the effects of the shear viscous coefficient, we
have quoted two different expressions of it. The coefficients
η1 and η2 are taken from Refs. [9,13], respectively:

η1 = η0
εQGP

T
, (12)

η2 = T

ση

[
ng

9
4ng + nq

+ nq

4
9nq + ng

]
, (13)

where η0 is treated as a constant [9] and ση is the transport
cross section [13].

Now, we discuss the calculation of the viscous coefficient η

in our work. According to Refs. [13,14,21], the shear viscous
coefficient using the relativistic kinetic theory for a massless
QGP in the relaxation time approximation is written as

ηi = 4
15εiλi, (14)

where λi is the mean free path of particle of type i in QGP,
which in a chemically equilibrating QGP for the gluon is given
by

λg = 4

9ng

1

2παs
2

M2
D

(
M2

D + 9T 2
/

2
)

9T 2/2
(15)

and for quark by
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2
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where M2
D is the Debye screening mass, which is given by

Eq. (11). Thus, we can directly calculate the viscous coeffi-
cients ηg and ηq and their total η from the thermodynamic
quantities of the QGP system.

III. DILEPTON PRODUCTION

Based on the evolution of the QGP system, we first consider
dilepton production from quark annihilation qq̄→gll̄ and
Compton scatterings qg→qll̄ and q̄g→q̄ll̄. Their production
rates can be calculated by [16]

E
dR

d3p
= 1

2(2π )8

∫
d3p1

2E1

d3p2

2E2

d3p3

2E3
f1(E1)f2(E2)

× [1 ± f3(E3)] · δ4(P1 + P2 − P3 − K)
∑

|M|2,
(17)

where f (E) is the Jüttner distribution function of partons and∑ | M |2 is the square of the matrix element for reaction
processes summed over spins, colors, and flavors. The plus
sign is for the annihilation process and the minus sign for
the two Compton processes. According to Ref. [22], these
equation can be rewritten as
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for the annihilation process and
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for Compton scattering, where P (E1, E2) = −[tE1 + (s +
t)E2]2 + 2Es[(s + t)E2 − tE1] − s2E2 + s2t + st2, θ is the
step function, α is the fine-structure constant, and αs is
the running coupling constant. The minus sign is for the
Compton process qg→qll̄ and the plus sign for q̄g→q̄ll̄.
The letters s, t , and u are the Mandelstam variables. The
integrations are performed over −(s − M2) + k2

c � t � − k2
c

and M2 + 2k2
c � s < ∞ [16]. The cutoff k2

c is replaced by the
thermal quark mass 2m2

q [22]. For a chemically equilibrating
QGP system at finite baryon density m2

q is given by

m2
q = 4αs

3π
T 2

[
2
(
G1

1λg + Q1
1λq

) +
(µq

T

)2 λq

λq + 1

]
, (20)

where integral factors G1
1 and Q1

1 have been given in the
previous section.

Obviously, these calculations give up the infrared contribu-
tion because of the introduction of the infrared cutoff k2

c . The
authors of Ref. [22] have discussed the infrared contribution
to photon production. Following their calculation, in this
work, we have given an assessment of the contribution from
the infrared part to the dilepton produnction. The dilepton
production rate with total energy E and total momentum p can
be calculated by [22,23]

dR

dEd3p
= α

12π4

1

P 2

1

eE/T − 1
Im

µ

R,µ, (21)

where 
µν

R is the retarded photon self-energy. The infrared
divergence mentioned here is caused by propagation of soft
momenta. To resolve the problem it is necessary to dress one
of the quark propagators (as done in Fig. 3 of Ref. [22]). Then
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the retarded photon self-energy can be written as [22]

µν(p)

= −5

3
e2T

∑
k0

∫
d3k

(2π )3
Tr[S∗(k)γ µS(p − k)γ ν], (22)

where S∗(k) is the dressed propagator for a quark with four-
momentum k and S(q) is the bara propagator for a quark
with four-momentum q = p − k. Following Ref. [22], after
performing some calculations and applying the elegant method
developed by Braaten, Pisarski, and Yuan [23], one can finally
obtain a simplified expression of the imaginary part of the
retarded photon self-energy,

Im
µ

R,µ = 5e2

6π
(eE/T − 1)

∫ kc

0
dk

∫ k

−k

dωf (ω)f (E − ω)

× (k − ω)β+(ω, k), (23)

where f is the Jüttner distribution function of partons and

β+(ω, k)

=
1
2m2

q(k − ω){
k(ω − k) − m2

q[Q0(z) − Q1(z)]
}2 + [

1
2πm2

q(1 − z)
]2 ,

(24)

where z = ω/k [24] and Q0 and Q1 are the Legendre functions
of the second kind. After integrating over the dilepton energy
(E � M) one can obtain the dilepton production rate over the
square invariant mass of dileptons, dR/dM2.

Similar to the preceding treatment, the production rate of
quark-antiquark annihilation qq̄→ll̄ can be given by [25]

dR

dM2
= 5

24π4
M2σll̄(M

2)

×
∫ ∞

0
dp1fq(p1)

∫ ∞

M2/4p1

dp2fq(p2), (25)

where σll̄(M
2) = 20

3 4πα2/3M2 is the quark annihilation cross
section.

Aurenche, Gelis, and their co-workers have studied dilepton
production from bremsstrahlung and off-shell annihilation
where the quark undergoes multiple scattering in the medium,
as shown in Fig. 1 of Ref. [26]. Their calculation includes
the Landau-Pomeranchuk-Migdal effect and they concluded
that this contribution is important. According to these authors’
approach, the imaginary part of the retarded current-current
correlator 

µ

R,µ(P ) in Eq. (21) can be computed by

Im
µ

R,µ ≈ 5

6π

∫ +∞

−∞
dq0[f (k0) − f (q0)]

× Re
∫

d2q⊥
(2π )2

[
q2

0 + k2
0

2(q0k0)2
q⊥ · f (q⊥)

+ 1√|q0k0|
P 2

p2
g(q⊥)

]
, (26)

where k0 ≡ q0 + E, f is the Jüttner distribution function of
partons again, and the dimensionless functions f (q⊥) and

g(q⊥), respectively, obey the integral equations [26]

2q⊥ = iδE f (q⊥) + 4

3
g2

s T

∫
d2l⊥
(2π )2

C(l⊥)

× [ f (q⊥) − f (q⊥ + l⊥)] (27)

and

2
√

|q0k0| = iδEg(q⊥) + g2
s CF T

∫
d2l⊥
(2π )2

C(l⊥)

× [g(q⊥) − g(q⊥ + l⊥)]. (28)

Using the method described in Ref. [26], we recast Eqs. (27)
and (28) as differential equations and solve them using a
simple algorithm, finally, getting Re

∫
d2q⊥/(2π )2q⊥ · f (q⊥)

and Re
∫
d2q⊥/(2π )2g(q⊥) and the corresponding dilepton

production rate of the multiple scattering process.
For the QGP system, produced in collisions at RHIC

energies, with very high initial temperature (≈0.57 GeV)
[6,18], thermal charmed quark production and its contribution
to lepton pairs should be contained, especially, those from
the gluon fusion gg→cc̄ and quark-antiquark annihilation
qq̄→cc̄. Similar to the calculation for qq̄→ll̄, by replacing
the cross section σll̄(M

2) appearing in Eq. (25) with those of
the reactions qq̄→cc̄ and gg→cc̄ in leading order QCD, we
can compute the yields of charm pairs in the QGP. Almost
all of the produced thermal charmed quarks would eventually
hadronize to D mesons [17]. By considering that the D meson
decays to leptons with a 17% branching ratio for charged D

mesons [17,27,28], one can obtain the contribution of charmed
quarks from reactions gg→cc̄ and qq̄→cc̄ to lepton pairs.

We integrate these production rates over the space-time
volume of the reaction. According to Bjorken’s model, the
volume element is d4x = d2xT dyτdτ , where τ is the evolution
time of the system and y is the rapidity of the fluid element. We
consider Au197 + Au197 central collisions, so the integration
over transverse coordinates just yields a factor of d2xT =
πR2

A, where RA is the nuclear radius. Finally, we obtain the
dilepton spectra of the system,

dN

dydM2
= πR2

A

∫
τdτ

dR

dM2
. (29)

IV. CALCULATED RESULTS AND DISCUSSION

In this work, we focus on discussing Au197 + Au197 central
collisions at RHIC energies. To compare with Refs. [9,29,30],
we take initial values of the system from the Hijing model
calculation: τ0 = 0.70 fm, T0 = 0.570 GeV, λg0 = 0.08, and
λq0 = 0.02. We have investigated the effect of viscosity on
the evolution of the system using those expressions of the
shear viscosity as shown in Eqs. (12)–(16). To understand
the effect of the baryon density on the dilepton production,
we have solved the CRE for initial quark chemical potentials
µq0 = 0.000, 0.284, 0.568, and 0.852 GeV for given viscous
coefficients and obtained the evolution of the temperature T ,
quark chemical potential µq , and fugacities λg and λq of the
system. In Fig. 1, we show the evolution of the temperature
T with proper time τ for the various viscous coefficients
from the expressions in Refs. [9,13]. Following Ref. [9], we
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FIG. 1. (Color online) The evolution of the temperature T with
proper time τ for viscous coefficients η1, η2, and η at initial quark
chemical potentials µq0 = 0.000, 0.284, 0.568, and 0.852 GeV. η1 is
the viscous coefficient for parameters η0 = 0.0, 0.4, and 0.8 as given
in Ref. [9], and the corresponding values are denoted by the solid,
dashed, and dotted curves, respectively.

take the parameters η0 = 0.0, 0.4, and 0.8. The corresponding
curves are indicated by the solid, dashed, and dotted lines,
respectively. We can see that the viscosity leads to an increase
of the temperature of the QGP system. We also note that the
temperature is unreasonably raised for viscous coefficient η2.
For η1, the evolution of temperature seems to be reasonable;
however, the viscosity η1 is only obtained through adjusting
the parameter η0. In this work, we have calculated the viscous
coefficients η by the thermodynamic quantities of the QGP
system using Eqs. (14)–(16). From Fig. 1, we note that the
calculated temperature distribution is reasonable. In addition,
the temperature is also an increasing function of the initial
quark chemical potential. Figure 2 shows the value of η as
a function of the initial temperature, where the black, red,
green, and blue curves denote, in turn, the calculated η for
initial quark chemical potentials µq0 = 0.000, 0.284, 0.568,
and 0.852 GeV at the initial values previously mentioned.
From Fig. 2, one can see that η increases with increasing
temperature T .

The estimated evolution paths of the system in the phase
diagram are shown in Fig. 3, where black, red, green, and
blue curves are, in turn, the calculated evolution paths for
initial quark chemical potentials µq0 = 0.000, 0.284, 0.568,
and 0.852 GeV. The solid line is the phase boundary between
the quark phase and hadronic phase. The lines with open circles
denote the evolution of the system without viscosity; the lines
with solid circles are from the system with viscosity. The time
interval between the two circles is 0.3 fm. The corresponding
equilibration rates of gluons and quarks, λg and λq , are shown
in Fig. 4. The solid lines are for the cases of viscosity and the
short dashed lines denote ideal cases, where the black, red,
green, and blue curves are, in turn, the calculated values for

FIG. 2. (Color online) The viscous coefficient η as a function
of the temperature. Black, red, green, and blue denote, in turn,
the calculated viscous coefficients η for initial quark chemical
potentials µq0 = 0.000, 0.284, 0.568, and 0.852 GeV at the same
initial conditions as given in Fig. 1.

initial quark chemical potentials µq0 = 0.000, 0.284, 0.568,
and 0.852 GeV. From Figs. 3 and 4 we see that the evolution
of the system becomes slower owing to viscosity, whereas the
equilibration rate of the plasma becomes faster compared to
the one in the ideal case. Also, the effect of the initial quark
chemical potential on the evolution is in accordance with the
previous conclusion of Ref. [18].

Based on the evolution of the system described in Figs. 3
and 4, we have calculated dilepton spectra for processes qq̄ →
ll̄, qq̄ → gll̄, qg → qll̄, q̄g → q̄ll̄, qq̄ → cc̄, gg → cc̄, and
multiple scattering at the four initial quark chemical potentials

FIG. 3. (Color online) The calculated evolution paths of the
system in the phase diagram for the initial values as given in
Fig. 1, where black, red, green and blue curves are, in turn, the
calculated evolution paths for initial quark chemical potentials µq0 =
0.000, 0.284, 0.568, and 0.852 GeV. The lines with open circles
denote the evolution of the system without viscous effect; the lines
with solid circles are the evolution of the system with viscosity. The
time interval between the two circles is 0.3 fm.
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FIG. 4. (Color online) The calculated equilibration rates at the
same initial conditions as given in Fig. 1. The solid lines are for
the cases of viscosity and the dashed lines are for the ideal cases,
where the black, red, green, and blue lines are the calculated values
for initial quark chemical potentials µq0 = 0.000, 0.284, 0.568, and
0.852 GeV.

as previously given. The calculated dilepton spectra from
quark annihilation processes qq̄ → ll̄ and qq̄ → gll̄ are, in
turn, shown in Figs. 5(a) and 5(b). The solid lines are the
spectra of the system with the effect of viscosity and the dashed

FIG. 5. (Color online) The calculated dilepton spectra from quark
annihilation processes qq̄ → ll̄ and qq̄ → gll̄. The curves have the
same meaning as those in Fig. 4.

FIG. 6. (Color online) The calculated dilepton spectra from
processes qg → qll̄ and q̄g → q̄ll̄ and multiple scattering. The
curves have the same meaning as those in Figs. 4 and 5.

lines indicate those from the ideal system, where the black,
red, green, and blue lines denote the calculated spectra for
initial quark chemical potentials µq0 = 0.000, 0.284, 0.568,
and 0.852 GeV. One can see that the calculated spectrum
goes up with increasing initial quark chemical potential. The
law is valid for processes qg → qll̄ and multiple scattering
as shown in Figs. 6(a) and 6(c). We know that the quark
density goes up with the increase of quark chemical poten-
tial whereas the antiquark density goes down, which will
lead to a suppression of the production from the process
q̄g → q̄ll̄, as shown in Fig. 6(b). We can also see from
Figs. 5 and 6 that the dilepton production is an increasing
function of viscosity, which would be mainly attributable
to the increase of the quark phase lifetime because of the
viscosity.

The production of soft dileptons, which are connected
with the infrared contribution, has been computed following
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FIG. 7. (Color online) The calculated spectra of all processes
for the initial quark chemical potential µq0 = 0.284 GeV. Curves 1–9
are, in turn, the calculated spectra for qq̄ → cc̄, gg → cc̄, q̄g → q̄ll̄,
soft dileptons, multiple scattering, qg → qll̄, qq̄ → gll̄, qq̄ → ll̄,
and their total.

the method represented in Ref. [23] for initial quark chemi-
cal potentials µq0 = 0.000, 0.284, 0.568, and 0.852 GeV. In
Fig. 7 we show the results from all processes and their total
for the initial quark chemical potential µq0 = 0.284 GeV.
Curves 1–9 represent, in turn, the calculated spectra for
qq̄ → cc̄, gg → cc̄, q̄g → q̄ll̄, soft dileptons, multiple scat-
tering, qg → qll̄, qq̄ → gll̄, qq̄ → ll̄, and their total. From
Fig. 7, one can see that the spectra from the quark-antiquark
annihilations qq̄ → ll̄ and qq̄ → gll̄ dominate. The infrared
contribution is as important as that of reaction qq̄ → gll̄ and
even higher than the later one in the range of small invariant
mass. The contributions from Compton-like scattering qg →
qll̄, multiple scattering, and annihilation gg → cc̄ cannot also
be neglected.

We have also given the total yields of all processes of the
system for initial conditions previously mentioned, as shown
in Fig. 8. The black, red, green, and blue curves represent the
total yields for µq0 = 0.000, 0.284, 0.568, and 0.852 GeV,
respectively. To understand the effect of viscosity on the
dilepton production, we also give the yields for the ideal QGP
system, which are denoted by dashed lines. It shows clearly
that the dilepton yield of the system goes up with increasing
initial quark chemical potential. However, previous authors
have found that dileptons produced in a thermodynamic
equilibrium QGP system are suppressed with increasing initial
quark chemical potential [1]. In this work, since both the
quark chemical potential and the temperature of the system
are functions of time, compared with the baryon-free QGP
it necessarily takes a long time for the value (µq, T ) of
the system to reach a certain point of the phase boundary
to make the phase transition. Furthermore, in the calculation
we have found that with increasing initial quark chemical
potential the production rate of gluons goes up, and thus
their equilibration rate goes down, leading to a small energy

FIG. 8. (Color online) The calculated total dilepton spectra of
the system. The curves have the same meaning as those in previous
figures.

consumption of the system (i.e., a slow cooling of the system).
Since there are many more gluons than quarks in the system,
increasing the initial quark chemical potential further slows
down the cooling of the system. These cause the quark phase
lifetime to further increase, as seen in Fig. 3. These effects
will raise the dilepton yield and compensate the dilepton
suppression, leading the spectrum of the system to be an
increasing function of the initial quark chemical potential.
However, as seen in Fig. 3, because of the viscosity the
evolution of the system becomes even slower, so that the
dilepton yield will be raised, as seen in Fig. 8. From Fig. 8
one can note that the dilepton yields are remarkably raised by
the effect of the viscosity of the QGP system.

V. SUMMARY AND CONCLUSION

In this work, by taking into account reactions gg ⇀↽ ggg

and gg ⇀↽ qq̄ leading to the chemical equilibrium of the QGP
system and conservations of energy-momentum and baryon
number, as well as viscosity of the QGP system, we have
derived a set of coupled CRE of the chemically equilibrating
QGP system with viscosity at finite baryon density, produced
from Au197 + Au197 central collisions at RHIC energies,
which describes the space-time evolution of the system.
Then, we have solved the CRE and directly obtained the
viscous coefficients from the thermodynamic quantities of
the QGP system. We note that the calculated results of the
viscous coefficients are reasonable. Subsequently, based on
the evolution of the QGP system we have computed the
dilepton spectra of the QGP system, finding that the spectra
are dominated by the quark-antiquark annihilation qq̄ → ll̄

and qq̄ → gll̄, followed by the multiple scattering of quarks,
compton-like scattering qg → qll̄, and annihilation gg → cc̄.
We have also calculated the infrared contribution and found
it to be very important at the range of small invariant mass
of dileptons. Furthermore, we note that the increase of the
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dilepton yield with increasing initial quark chemical potential
can compensate for the dilepton suppression, thus eventually
leading to the dilepton spectrum to be an increasing function
of the initial quark chemical potential. Especially, we have
found that the dilepton yield of the system is obviously
enhanced by the viscous effect because this effect slows the
evolution of the system and thus the lifetime of the QGP system
increases.
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H. Stöcker, and W. Greiner, Phys. Rev. Lett. 70, 2860 (1993).

[2] J. Sollfrank, P. Huovinen, M. Kataja, P. V. Ruuskanen,
M. Prakash, and R. Venugopalan, Phys. Rev. C 55, 392 (1997).

[3] Z. J. He et al., Phys. Lett. B495, 317 (2000).
[4] E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).
[5] K. J. Eskola and X. N. Wang, Phys. Rev. D 49, 1284 (1994).
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